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This paper presents a computational approach to derive interpretable movement primitives from

speech articulation data. It puts forth a convolutive Nonnegative Matrix Factorization algorithm

with sparseness constraints (cNMFsc) to decompose a given data matrix into a set of spatiotemporal

basis sequences and an activation matrix. The algorithm optimizes a cost function that trades off

the mismatch between the proposed model and the input data against the number of primitives that

are active at any given instant. The method is applied to both measured articulatory data obtained

through electromagnetic articulography as well as synthetic data generated using an articulatory

synthesizer. The paper then describes how to evaluate the algorithm performance quantitatively and

further performs a qualitative assessment of the algorithm’s ability to recover compositional

structure from data. This is done using pseudo ground-truth primitives generated by the articulatory

synthesizer based on an Articulatory Phonology frame-work [Browman and Goldstein (1995).

“Dynamics and articulatory phonology,” in Mind as motion: Explorations in the dynamics of cogni-

tion, edited by R. F. Port and T.van Gelder (MIT Press, Cambridge, MA), pp. 175–194]. The results

suggest that the proposed algorithm extracts movement primitives from human speech production

data that are linguistically interpretable. Such a framework might aid the understanding of long-

standing issues in speech production such as motor control and coarticulation.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4812765]

PACS number(s): 43.72.Ar, 43.70.Jt, 43.70.Bk [MAH] Pages: 1378–1394

I. MOVEMENT PRIMITIVES AND MOTOR CONTROL

Articulatory movement primitives may be defined as a

dictionary or template set of articulatory movement patterns

in space and time, weighted combinations of the elements of

which can be used to represent the complete set of coordi-

nated spatio-temporal movements of vocal tract articulators

required for speech production. Extracting interpretable

movement primitives from raw articulatory data is important

for better understanding, modeling and synthetic reproduc-

tion of the human speech production process. Support for

this view is well-grounded in the literature on neurophysiol-

ogy and motor control. For instance, Mussa-Ivaldi and Solla

(2004) argue that in order to generate and control complex

behaviors, the brain does not need to explicitly solve systems

of coupled equations. Instead a more plausible mechanism is

the construction of a vocabulary of fundamental patterns, or

primitives, that are combined sequentially and in parallel for

producing a broad repertoire of coordinated actions. An

example of how these could be neurophysiologically imple-

mented in the human body could be as functional units in the

spinal cord that each generate a specific motor output by

imposing a specific pattern of muscle activation (Bizzi et al.,
2008). The authors argue that this representation might sim-

plify the production of movements by reducing the degrees

of freedom that need to be specified by the motor control

system. In this paper, we (1) present a data-driven approach

to extract a spatio-temporal dictionary of articulatory primi-

tives from real and synthesized articulatory data using

machine learning techniques; (2) propose methods to

validate1 the proposed approach both quantitatively (using

various performance metrics) as well as qualitatively [by

examining how well it can recover evidence of composi-

tional structure from (pseudo) articulatory data]; (3) show

that such an approach can yield primitives that are linguisti-

cally interpretable on visual inspection.

Kelso (2009) defines a synergy to be a functional group-

ing of structural elements (like muscles or neurons) which,

together with their supporting metabolic networks, are tem-

porarily constrained to act as a single functional unit. The

idea that there exist structural functional organizations (or

synergies) that facilitate motor control, coordination and ex-

ploitation of the enormous degrees of freedom in complex

systems is not a new one. Right from the time of Bernstein

(1967), researchers have been trying to understand the
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problem of coordination—compressing a high-dimensional

movement state space into a much lower-dimensional con-

trol space (for a review, see Turvey, 1990). Researchers have

discovered that a small number of synergies can be used to

perform simple tasks such as reaching (e.g., Ma and Feldman,

1995; d’Avella et al., 2006) or periodic tasks such as finger

tapping (e.g., Haken et al., 1985). However, the question of

how more complex tasks are orchestrated remains an open

one (complex tasks could be, for example, combinations of

reaching and periodic movements, such as those performed

by a skilled guitarist/percussionist). In other words, can we

discover a set of synergies that can be used to perform a given

complex task? In the following sections, we consider this

question for the case of human speech production.

One can approach the problem of formulating a set of

primitive representations of the human speech production

process in either a knowledge-driven or a data-driven man-

ner. An example of the former from the linguistics (and

more specifically, phonology) literature is the framework of

Articulatory Phonology (Browman and Goldstein, 1995)

which theorizes that the act of speaking is decomposable

into units of vocal tract actions termed “gestures.” Under

this gestural hypothesis, the primitive units out of which lex-

ical items are assembled are constriction actions of the vocal

organs (see Fig. 1 for an illustration of vocal tract constric-

tion organs). When the gestures of an utterance are coordi-

nated with each other and produced, the resulting pattern of

gestural timing can be captured in a display called a gestural

score. The gestural score of a given utterance specifies the

particular gestures that compose the utterance and the times

at which they occur. For example, Fig. 2 depicts the

hypothesized gestural score for the word “team.” It is impor-

tant to note that the gestural score does not directly specify a

set of lower-level raw articulatory movement trajectories,

but how different vocal tract articulators are “activated” in a

spatio-temporally coordinated manner with respect to each

other at a higher level. Hence these are more akin to the

Bizzi et al. (2008) idea of specific patterns of muscle activa-

tion, which in turn are realized as specific articulatory move-

ment trajectory patterns (or articulatory primitives). Having

said this, it is important to experimentally examine the

applicability of such knowledge-driven theories vis-�a-vis

real speech production data. In this paper, we adopt the less-

explored data-driven approach to extract sparse primitive

representations from measured and synthesized articulatory

data and examine their relation to the gestural activations for

the same data predicted by the knowledge-based model

described above. We further explore other related questions

of interest, such as (1) how many articulatory primitives

might be used in speech production, and (2) what might they

look like? We view these as first steps toward our ultimate

goal of bridging and validating knowledge-driven and data-

driven approaches to understanding the role of primitives in

speech motor planning and execution.

Electromagnetic articulography (EMA) data of vocal

tract movements (see, e.g., Wrench, 2000) offer a rich source

of information for deriving articulatory primitives that

underlie speech production. However, one problem in

extracting articulatory movement primitives from this kind

of measured data is the lack of ground truth for validation,

i.e., we do not know what the actual primitives were that

generated the data in question. Hence although experiments

on measured articulatory data are necessary in order to fur-

ther our understanding of motor control of articulators dur-

ing speech production, they are not sufficient.

We therefore also analyze synthetic data generated by a

configurable articulatory speech synthesizer (Rubin et al.,
1996; Iskarous et al., 2003) that interfaces with the Task

Dynamics model of articulatory control and coordination in

speech (Saltzman and Munhall, 1989) within the framework

of Articulatory Phonology (Browman and Goldstein, 1995).

This functional coordination is accomplished with reference

FIG. 1. (Color online) Vocal tract articulators (marked on a midsagittal

image of the vocal tract).

FIG. 2. Gestural score for the word

“team.” Each gray block corresponds

to a vocal tract action or gesture. See

Fig. 1 for an illustration of the con-

stricting organs. Also notice that at any

given instant in time, only a few ges-

tures are “on” or “active,” i.e., the acti-

vation of the gestural score is sparse in

time.
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to speech “tasks,” which are defined in the model as con-

stricting primitives or “gestures” accomplished by the vari-

ous vocal tract constricting devices. Constriction formation

is modeled using task-level point attractor dynamical sys-

tems that guide the dynamic behavior of individual articula-

tors and their coupling. The entire ensemble is implemented

in a software package called Task Dynamics Application (or

TaDA) (Nam et al., 2006; Saltzman et al., 2008). The

advantage of using such a model is that it allows us to

evaluate the similarity of the “information content”2 encoded

by (1) the hypothesized gestures, and (2) the algorithm-

extracted primitives (since the model hypothesizes what

gestural primitives generate a given set of articulator move-

ments in the vocal tract). This in turn affords us a better

understanding of the strengths and drawbacks of both the

model as well as the algorithm.

Note that real-time magnetic resonance imaging (or rt-

MRI, see for example, Narayanan et al., 2004) is another

technique which offers a very high spatial coverage of the

vocal tract at the cost of low temporal resolution. In fact, in

earlier work, we presented a technique to extract articulatory

movement primitives from rt-MRI data (Ramanarayanan

et al., 2011). However, validating primitives obtained from

rt-MRI using the TaDA synthetic model is not as straightfor-

ward as in the case of EMA, where we can directly compare

flesh-point trajectories measured to those generated by the

synthetic model. Moreover, the temporal resolution in EMA

and TaDA is much higher (100–500 Hz) as opposed to rt-

MRI (20–30 Hz). Hence we restrict ourselves to the use of

EMA data for our analyses in this paper.

A. Notation

We use the following mathematical notation to present

the analysis described in this paper. Matrices are represented

by bold uppercase letters (e.g., X), while vectors are repre-

sented using bold lowercase letters (e.g., x), while scalars are

represented without any bold case (either upper or lower

case). We use the notation X† to denote the matrix transpose

of X. Further, if x is an N-dimensional vector, we use the

notation x2RN to denote that x takes values from the

N-dimensional real-valued set. Similarly, X2RM�N denotes

that X is a real-valued matrix of dimension M � N. We use

the symbols � and � to denote element-wise matrix multipli-

cation and division, respectively. Finally, we use the notation

X¼ ½x1jx2j…jxK� to denote that matrix X is formed by col-

lecting the vectors x1, x2,…,xK together as its columns.

II. REVIEW OF DATA-DRIVEN METHODS TO EXTRACT
MOVEMENT PRIMITIVES

Recently there have been studies that have attempted to

further our understanding of primitive representations in bio-

logical systems using ideas from machine learning and spar-

sity theory. Sparsity in particular has been shown to be an

important principle in the design of biological systems. For

example, studies have suggested that neurons encode sensory

information using only a few active neurons at any point of

time, allowing an efficient way of representing data, forming

associations and storing memories (Olshausen and Field,

1997, 2004). Hrom�adka et al. (2008) have put forth quanti-

tive evidence for sparse representations of sounds in the audi-

tory cortex. Their results are compatible with a model in

which most auditory neurons are silent (i.e., not active or

spiking) for much of the time, and in which neural represen-

tations of acoustic stimuli are composed of small dynamic

subsets of highly active neurons. As far as speech production

is concerned, phonological theories such as Articulatory

Phonology (Browman and Goldstein, 1995) support the idea

that speech primitives (or “gestures”) are sparsely activated

in time, i.e., at any given time instant during the production

of a sequence of sounds, only a few gestures are “active” or

“on” (for example, see Fig. 2). However, to our knowledge,

no practical computational studies have been conducted into

uncovering the primitives of speech production thus far.

Modeling data vectors as sparse linear combinations of

basis vectors3 is a general computational approach (termed

variously as dictionary learning or sparse coding or sparse

matrix factorization depending on the exact problem formu-

lation) which we will use to solve our problem. To recapitu-

late, the problem is that of extracting articulatory movement

primitives, weighted and time-shifted combinations of which

can be used to synthesize any spatio-temporal sequence of

articulatory movements. Note that we use the terms “basis”

and “primitive” to mean the same thing in the mathematical

and scientific sense, respectively, for the purposes of this pa-

per. Such methods have been successfully applied to a num-

ber of problems in signal processing, machine learning, and

neuroscience. For instance, d’Avella and Bizzi (2005) used

nonnegative matrix factorization (or NMF, see Lee and

Seung, 2001) and matching pursuit (Mallat and Zhang,

1993) techniques to extract synchronous and time-varying

muscle synergy patterns from electromyography (EMG) data

recorded from the hind-limbs of freely moving frogs. Tresch

et al. (2006) further compared the performance of various

matrix factorization algorithms on such synergy extraction

tasks for both real and synthetic datasets. Kim et al. (2010)

formulated the problem of extracting spatio-temporal primi-

tives from a database of human movements as a tensor facto-

rization problem with tensor group norm constraints on the

primitives themselves and smoothness constraints on the

activations. Zhou et al. (2008) also proposed an algorithm to

temporally segment human motion-capture data into motion

primitives using a generalization of spectral clustering and

kernel K-means clustering methods for time-series clustering

and embedding. For speech modeling, Atal (1983) presented

an algorithm to perform temporal decomposition of log area

parameters obtained from linear prediction analysis of

speech. This technique represents the continuous variation

of these parameters as a linearly weighted sum of a number

of discrete elementary components. More recently,

Smaragdis (2007) presented a convolutive NMF algorithm to

extract “phone”-like vectors from speech spectrograms

which could be used to characterize different speakers (or

audio sources) for speech (or music) separation problems.

O’Grady and Pearlmutter (2008) included the notion of spar-

sity in this formulation and showed that this gave more intui-

tive results. Note that we can view all these formulations

as optimization problems with a cost function that involves
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(1) a data-fit term (which penalizes how accurately4 appro-

priately weighted and time-shifted primitives can represent

input data) and (2) a regularization term (which enforces

sparsity and/or smoothness constraints).

Mathematically, we say that a signal x in Rm admits a

sparse approximation over a basis set of vectors or

“dictionary” D in Rm�k with k columns referred to as “atoms”

when one can find a linear combination of a small number of

atoms from D that is as “close” to x as possible (as defined by

a suitable error metric) (Mairal et al., 2010). Note that sparsity

constraints can be imposed over either the basis/dictionary or

the coefficients of the linear combination (also called

“activations”) or both. In this paper, since one of our main

goals is to extract interpretable5 basis or dictionary elements

(or primitives) from observed articulatory data, we focus on

matrix factorization techniques such as Nonnegative Matrix

Factorization (NMF) and its variants (Lee and Seung, 2001;

Hoyer, 2004; Smaragdis, 2007; O’Grady and Pearlmutter,

2008). We use NMF-based techniques since these have been

shown to yield basis vectors that can be assigned meaningful

interpretation6 depending on the problem domain (Mel, 1999;

Smaragdis, 2007; O’Grady and Pearlmutter, 2008). In addi-

tion, we would like to find a factorization such that only a few

basis vectors (or primitives) are “active” at any given point of

time (as observed in Fig. 2), i.e., a sparse activation matrix. In

other words, we would like to represent data at each sampling

point in time using a minimum number of basis vectors.

Hence we formulate our problem such that sparsity con-

straints are imposed on the activation matrix.

III. VALIDATION STRATEGY

Direct validation of experimentally derived articulatory

primitives, especially in the absence of absolute ground truth,

is a difficult problem. That being said, we can assess the extent

to which these primitives provide a valid compositional model

of the observed data. There are two important conceptual

questions that arise during such a validation of experimentally

derived articulatory primitives. First, does speech have a com-

positional structure that is reflected in its articulation? Second,

if we are presented with a set of waveforms or movement tra-

jectories that have been generated by a compositional

structure, then can we design and validate algorithms that can

recover this compositional structure? The first question is one

that we are not in a position to address fully yet, at least with

the datasets at our current disposal.7 However, we can answer

the second question, and we address it in this paper.

The synthetic TaDA model is generated by a known

composition task model. Figure 3 illustrates the flow of in-

formation through the TaDA model. Articulatory control and

functional coordination is accomplished with reference to

speech “tasks” which are composed and sequenced together

in space and time. The temporal activations of each con-

stricting primitive or “gesture” required to perform a speech

task can be obtained from the model (i.e., we can recover a

representation similar to that shown in Fig. 2). Hence the

TaDA model provides a testbed to investigate how well a

primitive-extraction algorithm can recover the compositional

structure that underlies (pseudo) behavioral movement data.

Note that we do not claim here that the TaDA model mimics

the human speech production mechanism or is some kind of

ground truth. Nevertheless, it has been shown that it is possi-

ble to use the model to learn a mapping from acoustics

(MFCCs) to gestural activations (Mitra et al., 2011, 2012).

When this mapping is applied to natural speech, the resulting

gestural activations can be added as inputs to speech recog-

nition systems with a sharp decrease in error rate.

Furthermore, the TaDA model is a compositional model of

speech production, which we can use to test how well algo-

rithms can recover evidence of compositional structure from

(pseudo) articulatory data. Following this, we can pose

another question: To what extent does the algorithm extract

a compositional structure in measured articulatory data that

is similar to that extracted in the synthetic TaDA case?

IV. DATA

We analyze ElectroMagnetic Articulography (EMA) data

from the Multichannel Articulatory (MOCHA) database

(Wrench, 2000), which consists of data from two speakers—

one male and one female. Acoustic and articulatory data were

collected while each (British English) speaker read a set of

460 phonetically diverse TIMIT sentences. The articulatory

channels include EMA sensors directly attached to the upper

FIG. 3. (Color online) Flow diagram

of TaDA, as depicted in Nam et al.
(2012).
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and lower lips, lower incisor (jaw), tongue tip (5–10 mm from

the tip), tongue blade (approximately 2–3 cm posterior to the

tongue tip sensor), tongue dorsum (approximately 2–3 cm

posterior to the tongue blade sensor), and soft palate. Each

articulatory channel was sampled at 500 Hz with 16-bit preci-

sion. The data in its native form is unsuitable for processing,

since the position data have high frequency noise resulting

from measurement error. However, the articulatory move-

ments are predominantly low pass in nature—99% of the

energy is contained below �21 Hz for all the articulators—

therefore, each channel was zero-phase low-pass filtered with

a cut-off frequency of 35 Hz (Ghosh and Narayanan, 2010).

Next, for every utterance, we subtracted the mean value from

each articulatory channel (Richmond, 2002; Ghosh and

Narayanan, 2010). Then we added the mean value of each

channel averaged over all utterances to that corresponding

channel. Finally, we downsampled each channel by a factor

of five to 100 Hz and further normalized data in each channel

(by its range) such that all data values lie between 0 and 1.

These pre-processed articulator trajectories were used for fur-

ther analysis and experiments (see Table I).

We also analyze synthetic data generated by the Task

Dynamics Application (or TaDA) software (Nam et al., 2006;

Saltzman et al., 2008; Nam et al., 2012), which implements

the Task Dynamic model of inter-articulator speech coordina-

tion with the framework of Articulatory Phonology

(Browman and Goldstein, 1995) described earlier in this pa-

per. It also incorporates a coupled-oscillator model of inter-

gestural planning, a gestural-coupling model, and a configura-

ble articulatory speech synthesizer (Rubin et al., 1996;

Iskarous et al., 2003). TaDA generates articulatory and acous-

tic outputs from orthographical input. Figure 4 shows a

screenshot of the TaDA graphical user interface. The ortho-

graphic input is converted to a phonetic string using a version

of the Carnegie Mellon pronouncing dictionary that also pro-

vides syllabification. The syllabified string is then parsed into

gestural regimes and inter-gestural coupling relations using

hand-tuned dictionaries and then converted into a gestural

score. The obtained gestural score is an ensemble of gestures

for the utterance, specifying the intervals of time during which

particular constriction gestures are active. This is finally used

by the Task Dynamic model implementation in TaDA to gen-

erate the tract variable and articulator time functions, which

are further mapped to the vocal tract area function (sampled at

200 Hz). See Fig. 3. The articulatory trajectories are down-

sampled to 100 Hz in a manner similar to the case of the

MOCHA data described earlier. We further normalize data in

each channel (by its range) such that all data values lie

between 0 and 1. Gestural scores, articulatory trajectories, and

corresponding acoustics were each synthesized (and normal-

ized, in a manner similar to the EMA data) for 460 sentences

corresponding to those used in the MOCHA-TIMIT (Wrench,

2000) database. The list of pre-processed articulator trajectory

variables we use for analysis is listed in Table I.

V. PROBLEM FORMULATION

The primary aim of this research is to extract dynamic

articulatory primitives, weighted combinations of which can

be used to resynthesize the various dynamic articulatory

movements in the vocal tract. Techniques from machine

learning such as non-negative matrix factorization (NMF)

which factor a given non-negative matrix into a linear com-

bination of (non-negative) basis vectors offer an excellent

starting point to solve our problem.

A. Nonnegative Matrix Factorization and its
extensions

The aim of NMF (as presented in Lee and Seung, 2001)

is to approximate a non-negative input data matrix

V2R�0;M�N as the product of two non-negative matrices, a

basis matrix W2R�0;M�K and an activation matrix

H2R�0;K�N (where K � M) by minimizing the reconstruc-

tion error as measured by either a Euclidean distance metric

or a Kullback–Liebler (KL) divergence metric. Although

NMF provides a useful tool for analyzing data, it suffers

from two drawbacks of particular relevance in our case.

First, it fails to account for potential dependencies across

successive columns of V (in other words, to capture the

(temporal) dynamics of the data); thus a regularly repeating

dynamic pattern would be represented by NMF using multi-

ple bases, instead of a single basis function that spans the

pattern length. Second, it does not explicitly impose sparsity

constraints on the factored matrices, which is important for

our application since we want only few bases “active” at any

given sampling instant. These drawbacks motivated the de-

velopment of convolutive NMF (Smaragdis, 2007), where

we instead model V as

V 	
XT
1

t¼0

WðtÞ � ~Ht ¼ V; (1)

where W is a basis tensor,8 i.e., each column of

WðtÞ 2R�0;M�K is a time-varying basis vector sampled at

time t, each row of H2R�0;K�N is its corresponding activa-

tion vector, T is the temporal length of each basis (number of

image frames) and the ð~� Þi operator is a shift operator that

TABLE I. Articulator flesh point variables that comprise the post-processed

synthetic (TaDA) and real (EMA) datasets that we use for our experiments.

Note that the EMA dataset does not have a Tongue Root sensor, but has an

extra maxillary (upper incisor) sensor in addition to the mandibular (jaw)

sensor. Also, TaDA does not output explicit spatial coordinates of the ve-

lum. Instead it has a single velic opening parameter that controls the degree

to which the velopharyngeal port is open. Since this parameter is not a spa-

tial (x, y) coordinate like the other variables considered, we chose to omit

this parameter from the analysis described in this paper.

Symbol Articulatory parameter TaDA MOCHA-TIMIT

UL(x,y) Upper lip � �

LL(x,y) Lower lip � �

JAW(x,y) Jaw � �

TT(x,y) Tongue tip � �

TF(x,y) / TB(x,y) Tongue front/body � �

TD(x,y) Tongue dorsum � �

TR(x,y) Tongue root �

VEL(x,y) Velum �

UI(x,y) Upper Incisor �
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moves the columns of its argument by i spots to the right, as

detailed in Smaragdis (2007):

if H ¼ 1

2

3

4

5

6

� �
; then ~H

1¼ 0

0

1

2

3

4

� �
:

In this case the author uses a KL divergence-based error cri-

terion and derives iterative update rules for W(t) and H

based on this criterion. This formulation was extended by

O’Grady and Pearlmutter (2008) to impose sparsity condi-

tions on the activation matrix (i.e., requiring that a certain

number of entries in the activation matrix are zeros).

However, the parameter which trades-off sparsity of the acti-

vation matrix against the error criterion (in their case, k) is

not readily interpretable, i.e., it is not immediately clear

what value k should be set to yield optimal interpretable

bases. We instead choose to use a sparseness metric based

on a relationship between the l1 and l2 norms (as proposed

by Hoyer, 2004) as follows:

sparsenessðxÞ ¼
ffiffiffi
n
p 
 ð

P
i jxijÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiP
i x2

i

p
ffiffiffi
n
p 
 1

; (2)

where n is the dimensionality of x. This function equals

unity if x contains only one non-zero component and 0 if all

components are equal up to signs and smoothly interpolates

between the extremes. More recently Wang et al. (2009)

showed that using a Euclidean distance-based error metric

was more advantageous (in terms of computational load and

accuracy on an audio object separation task) than the KL

divergence-based metric and further derived the correspond-

ing multiplicative update rules for the former case. It is this

formulation along with the sparseness constraints on H [as

defined by Eq. (2)] that we use to solve our problem. Note

that incorporation of the sparseness constraint also means

that we can no longer directly use multiplicative update rules

for H—so we use gradient descent followed by a projection

step to update H iteratively (as proposed by Hoyer, 2004).

The added advantage of using this technique is that it has

been shown to find a unique solution of the NMF problem

with sparseness constraints (Theis et al., 2005). The final

formulation of our optimization problem, which we term

“convolutive NMF with sparseness constraints” or cNMFsc,

is as follows:

min
W;H

�����V

XT
1

t¼0

WðtÞ�~Ht

�����
2

s:t: sparsenessðhiÞ ¼ Sh; 8i;

(3)

where hi is the ith row of H and 0 � Sh � 1 is user-defined

(for example, setting Sh ¼ 0.65 roughly corresponds to

FIG. 4. (Color online) A screenshot of the Task Dynamics Application (or TaDA) software GUI (after Nam et al., 2006). Displayed to the left is the instanta-

neous vocal tract shape and area function at the time marked by the cursor in the temporal display. Note especially the pellets corresponding to different

pseudo vocal-tract flesh-points in the top left display, movements of which (displayed in color in the bottom center panels) are used for our experiments. The

center panels just above these consist of two overlaid waveforms. There is one panel for each constriction task/goal variable of interest. The square waveforms

depict activations of theoretical gestures associated with that task (input to the model), while the continuous waveforms depict the actual waveforms of those

task variables obtained as output from the TaDA model.
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requiring 65% of the entries in each row of H to be 0).

Figure 5 provides a graphic illustration of the input and out-

puts of the model, while Fig. 6 pictorially depicts how

weighted and shifted additive combinations of the basis

reconstruct the original input data sequence.

B. Extraction of primitive representations from data

If x1, x2, …, xM are the M time-traces (consisting of

N samples each; represented as column vectors of dimension

N � 1) corresponding to the M articulator (fleshpoint)

trajectory variables (could be obtained from either TaDA or

MOCHA-TIMIT), then we can design our data matrix V to

be

V¼ ½x1jx2j…jxM�† 2RM�N; (4)

where † is the matrix transpose operator. We now aim to

find an approximation of this matrix V using a basis tensor

W and an activation matrix H. A practical issue which arises

here is that in our dataset, there are 460 files corresponding

to different sentences, each of which results in a M � N data

FIG. 5. (Color online) Schematic illus-

trating the proposed cNMFsc algo-

rithm. The input matrix V can be

constructed either from real (EMA) or

synthesized (TaDA) articulatory data.

In this example, we assume that there

are M ¼ 7 articulator fleshpoint trajec-

tories. We would like to find K ¼ 5 ba-

sis functions or articulatory primitives,

collectively depicted as the big red

cuboid (representing a three-

dimensional matrix W). Each vertical

slab of the cuboid is one primitive

(numbered 1 to 5). For instance, the

white tube represents a single compo-

nent of the third primitive that corre-

sponds to the first articulator (T
samples long). The activation of each

of these five time-varying primitives/

basis functions is given by the rows of

the activation matrix H in the bottom

right hand corner. For instance, the

five values in the tth column of H are

the weights which multiply each of the

five primitives at the tth time sample.

FIG. 6. (Color online) Schematic illus-

trating how shifted and scaled primi-

tives can additively reconstruct the

original input data sequence. Each

gold square in the topmost row repre-

sents one column vector of the input

data matrix, V, corresponding to a sin-

gle sampling instant in time. Recall

that our basis functions/primitives are

time-varying. Hence, at any given time

instant t, we plot only the basis func-

tions/primitives that have non-zero

activation (i.e., the corresponding rows

of the activation matrix at time t has

non-zero entries). Notice that any

given basis function extends T ¼ 4

samples long in time, represented by a

sequence of four silver/gray squares

each. Thus, in order to reconstruct say

the fourth column of V, we need to

consider the contributions of all basis

functions that are “active” starting any-

where between time instant 1 to 4, as

shown.
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matrix V (where N is equal to the number of frames in that

particular sequence). However we would like to obtain a sin-
gle basis tensor W for all files so that we obtain a primitive

articulatory representation for any sequence of articulatory

movements made by that speaker. One possible way to do

this is to concatenate all 460 sequences into one huge matrix,

but the dimensionality of this matrix makes computation

intractably slow. In order to avert this problem we propose a

second method that optimizes W jointly for all files and H

individually per file. The algorithm is as follows:

(1) Initialize W to a random tensor of appropriate dimension

(2) W Optimization for Q of N files in the database do

(a) Initialize H to a random matrix of requisite

dimensions

(b) PROJECT. Project each row of H to be non-

negative, have unit l2 norm and l1 norm set to

achieve the desired sparseness (Hoyer, 2004).

(c) ITERATE
(i) H Update

for t ¼ 1 to T do

� Set ĤðtÞ ¼ H 
 lHWðtÞðV
 t 
 V

 tÞ:

�PROJECTH:

H 1

T

X
ĤðtÞ:

(ii) W Update for t ¼ 1 to T do

� Set WðtÞ ¼WðtÞ � Vð~HtÞ†�Vð~HtÞ†:

(3) for the rest of the files in the database do

�H Update keeping W constant:

Steps 2 and 3 are repeated for an empirically specified num-

ber of iterations. The stepsize parameter lH of the gradient

descent procedure (described in Step 2) and the number of

files Q used for the W optimization are also set manually

based on empirical observations.

C. Selection of optimization free parameters

In this section we briefly describe how we performed

model selection, i.e., choosing the values of the various free

parameters of the algorithm. The Akaike Information

Criterion (or AIC, Akaike, 1981) and Bayesian Information

Criterion (or BIC, Schwarz, 1978) are two popular model

selection criteria that trade off the likelihood of the model

(which is proportional to the objective function value)

against the model complexity (which is proportional to the

number of parameters in the model). For a more detailed ex-

planation, see the Appendix. Since performing AIC and BIC

computations for the whole corpus is time- and resource-

consuming, we computed these criteria for a subset of the

data. Figure 7 shows the AIC computed for different values

of K (number of bases/primitives) and T (the temporal extent

of each basis) over a 5% subset of subject fsew0’s data (the

BIC and AIC trends are similar for both speakers, hence we

only present the AIC computed for subject fsew0 in the inter-

est of brevity). We see that the AIC tends to overwhelmingly

prefer models that are less complex, since the model com-

plexity term far outweighs the log likelihood term in the

model as the values of K and T increase.

In light of the AIC analysis, we would like to choose K
and T as small as possible, but in a meaningful manner.

Therefore, we decided to set the temporal extent of each ba-

sis sequence (T) to ten samples (since this corresponds to a

time period of approximately 100 ms, factoring in a sam-

pling rate of 100 samples per second) to capture effects on

the order of the length of a phone on average. We chose the

number of bases, K, to be equal to the number of time-

varying constriction task variables generated (by TaDA) for

each file, i.e., eight.

The value of the sparseness parameter Sh was set based

on the percentage of constriction tasks (generated by TaDA)

that were active at any given time instant. Figure 8 shows a

histogram of the number of constriction tasks active at any

sampling time instant (computed over all TaDA-generated

constriction task variables). We observe that most of the

FIG. 7. (Color online) Akaike Information Criterion (AIC) values for differ-

ent values of K (the number of bases) and T (the temporal extent of each ba-

sis) computed for speaker fsew0. We observe that an optimal model

selection prefers the parameter values to be as low as possible since the

number of parameters in the model far exceeds the contribution of the log

likelihood term in computing the AIC.

FIG. 8. (Color online) Histogram of the number of non-zero constriction

task variables at any sampling instant.
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time only 2 or 3 task variables have non-zero activations,

suggesting that choosing Sh in the range of 0.65–0.75 would

be optimal for our experiment.

VI. RESULTS AND VALIDATION

A significant hurdle to validating any proposed model of

articulatory primitives is the lack of ground truth data or

observations, since these entities are difficult to observe and/

or measure directly given that they exist. However, we can

evaluate quantitative metrics of algorithm performance such

as the fraction of variance explained by the model and root

mean squared error (RMSE) performance of the algorithm

for different articulator trajectories and phonemes. In addi-

tion, we can evaluate how well the model performs for meas-

ured articulatory data vis-�a-vis synthetic data generated by

an articulatory synthesizer (TaDA). Therefore, in the

following section we first present quantitative evaluations of

our proposed model, and then follow it up with qualitative

comparisons with the Articulatory Phonology-based TaDA

model.

A. Quantitative performance metrics

We first present a quantitative analysis of the convolu-

tive NMF with sparseness constraints (cNMFsc) algorithm

described earlier. In order to see how the algorithm performs

for different phone classes, we need to first perform a pho-

netic alignment of the audio data corresponding to each set

of articulator trajectories. We did this using the Hidden

Markov Model toolkit (HTK, Young et al., 2006).

Figures 9 and 10 show the RMSE for each articulator

and phone class (categorized by ARPABET symbol) for

MOCHA-TIMIT speakers msak0 and fsew0, respectively.

FIG. 9. (Color online) RMSE for each articulator and phone class (categorized by ARPABET symbol) obtained as a result of running the algorithm on all 460

sentences spoken by male speaker msak0.

FIG. 10. (Color online) RMSE for each articulator and phone class (categorized by ARPABET symbol) obtained as a result of running the algorithm on all

460 sentences spoken by female speaker fsew0.
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Recall that since we are normalizing each row of the original

data matrix to the range [0,1] (and hence each articulator tra-

jectory), the error values in Figs. 9 and 10 can be read on a

similar scale. We see that in general, error values are very

high. Among the articulator trajectories, the errors were

highest (0.15–0.2) for tongue-related articulator trajectories.

On the other hand, trajectories of the lip (LLx and LLy) and

jaw (JAWx and JAWy) sensors were reconstructed with lower

error (�0.1). As far as the phones were concerned, errors

were comparatively higher for the voiced alveolo-dental stop

DH. One reason for this can be attributed to the way we

form the data matrix V. Recall that we construct V by con-

catenating articulatory data corresponding to several (say, Q
¼ 20) sentences into a single matrix. In other words, there

will be Q - 1 discontinuities in the articulatory trajectories

contained in V, one corresponding to each sentence bound-

ary. Moreover, we found that roughly a third of all instances

of DH occurred in the beginning of the sentences (as the first

phone). The RMSE errors for these sentence-initial instances

of DH were significantly higher than the RMSE errors of DH
instances that occurred in other positions in the sentence.

This suggests that the higher reconstruction error observed

in DH instances that occur sentence-initially is likely not an

artifact of the cNMFsc algorithm itself, but rather due to the

presence of discontinuities in the original data matrix.

We further computed for each speaker the fraction of

variance that was not explained (FVU) by the model for

each sentence in the database. The histograms of these distri-

bution are plotted in Fig. 11. The mean and standard devia-

tion of this distribution was 0.079 6 0.028 for speaker msak0
(i.e., approx. 7.9% of the original data variance was not

accounted for on average) and 0.097 6 0.034 for speaker

fsew0, respectively. These statistics suggest that the cNMFsc

model accounts for more than 90% of the original data

variance.

B. Qualitative comparisons of TaDA model
predictions with the proposed algorithm

Figure 12 shows selected measured articulator trajecto-

ries superimposed on those obtained by reconstruction based

on the estimated cNMFsc model for the TaDA and EMA

data, respectively. Notice that while the reconstructed curves

approximate the shape of the original curves, they are not as

smooth. This is likely due to the imposition of sparseness

constraints in our problem formulation in Eq. (3), where the

optimization procedure trades off reconstruction accuracy

for sparseness of rows in the activation matrix. This could

explain the higher phone error rates that we observed in

Figs. 9 and 10 as well. Note that although we are plotting

only a subset of the articulatory trajectories, we generally

observe that synthetic (TaDA) data is reconstructed with a

smaller error as compared to the measured (EMA) data,

which makes sense, considering that a greater amount of

within-speaker variability is observed in actual speech artic-

ulation. This extra variability may not be captured very well

by the model. Also notice that panels on the right (corre-

sponding to EMA measurements) have a smaller total utter-

ance duration (�1.2 s) as compared to the TaDA panels on

the left (�1.7 s), which further reinforces the earlier argu-

ment that synthetic speech does not account for phenomena

such as phoneme reduction, deletion, etc., which contribute

to signal variability.

1. Comparison with gestural scores

Now that we have generated spatio-temporal basis func-

tions or synergies of articulator trajectories, linear combina-

tions of which can be used to represent the input, the next

step is to compare the activations/weights of these spatio-

temporal bases generated for each sentence to the gestural

activations hypothesized by TaDA for that sentence.

However, comparison of time-series data is not trivial in

general, and in our case in particular, since the basis func-

tions extracted by the algorithm need not represent the ges-

tures themselves in form, but might do so in information

content.2 In other words, the two sets of time-series repre-

sented by the gestural score matrix G and the estimated acti-

vation matrix H cannot be directly compared to each other.

Notice that this is a particularly difficult problem in signal

processing and time-series analysis in general, especially

because of its abstract nature. To our knowledge, there is no

easy or direct method of solving this problem to date.

That being said, we present here a sub-optimal, indirect

approach to attacking this complex problem using

FIG. 11. (Color online) Histograms of the fraction of variance unexplained

(FVU) by the proposed cNMFsc model for MOCHA-TIMIT speakers (a)

msak0 and (b) fsew0. The samples of the distribution were obtained for each

speaker by computing the FVU for each of the 460 sentences. (The algo-

rithm parameters used in the model were Sh ¼ 0.65, K ¼ 8, and T ¼ 10).
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well-established signal modeling techniques. Specifically,

we propose a two-step procedure in order to perform this

comparison. First, we model each set of time-series

(hypothesized gestural activations and extracted activation

traces) by an auto-regressive (AR) model using linear pre-

diction (for example, see Makhoul, 1975). Once this is done,

FIG. 12. (Color online) Original (dashed) and cNMFsc-estimated (solid) articulator trajectories of selected (left) TaDA articulator variables and (right) EMA

(MOCHA-TIMIT) articulator variables (obtained from speaker msak0) for the sentence “this was easy for us.” The vertical axis in each subplot depicts the

value of the articulator variable scaled by its range (to the interval [0,1]), while the horizontal axis shows the sample index in time (sampling rate ¼ 100 Hz).

The algorithm parameters used were Sh ¼ 0.65, K ¼ 8, and T ¼ 10. See Table I for an explanation of articulator symbols.
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we find the canonical correlation between the set of AR coef-

ficient matrices to examine the similarity between the two

sets of time-series. Canonical correlation linearly projects

both sets of signals (contained in the matrices) into a com-

mon signal space where they are maximally correlated to

each other. Hence, by examining the magnitude of (canoni-

cal) correlation values, we can get an estimate of how maxi-

mally correlated the two sets of multidimensional timeseries

are to each other.9 In the following paragraphs, we describe

the procedure in more detail.

The technique of linear prediction (Makhoul, 1975) mod-

els a given discrete time-varying signal as a linear combina-

tion of its past values (this is also known as auto-regressive or

AR system modeling). Mathematically, if the given signal

(for example, an articulator trajectory in our case) is x, then

x½n� ¼
XP

i¼1

aix½n
 i�; (5)

where P is the order of the model and ai, 8i are the linear

prediction or AR model coefficients.

Recall from Eq. (4) that each row of our K � N activa-

tion matrix H represents activation of a different time-

varying basis. Using linear prediction, we can model each

row of this matrix by a LP model, thus giving us a K � P
matrix HLP. If G is the Kg � Ng matrix of gestural activa-

tions (where again, rows represent gestural activations asso-

ciated with different constriction task variables and columns

represent time), these can also be modeled as a Kg � P ma-

trix GLP in a similar fashion.

If we have two sets of variables, x1, …, xn and y1, …,

ym, and there are correlations among the variables, then ca-

nonical correlation analysis will enable us to find linear com-

binations of the x’s and the y’s which have maximum

correlation with each other. We thus examine the canonical

correlation values between the rows of matrices GLP and

HLP, respectively. This allows to observe how much linear

correlation there is between the 2 spaces and thus obtain an

estimate of the “information content” of the two spaces are,

and, in addition, allow us to estimate a linear mapping

between the two variable spaces, which will allow us to con-

vert the estimated activation matrices into gestural activa-

tions. Table II shows the top five canonical correlation

values obtained in the cases of both TaDA and EMA data. In

general we observe high values of canonical correlations

which supports the hypothesis that the estimated activation

matrices capture the important information structure con-

tained in the gestural activations.

However, as we have mentioned earlier, this technique

of comparison is at best sub-optimal, for many reasons.

First, recall that the activation matrices are sparse. Modeling

sparse time-series in general, and specifically using AR mod-

eling is prone to errors since the time-series being modeled

are not generally smooth. Second, the optimal choice of

model parameters, such as the number of coefficients in the

LPC/AR analysis [P in Eq. (5)] is not clear. In our case, we

chose a value that captured temporal effects on the order of

approximately 200–250 ms.

2. Significance of extracted synergies

To check that our algorithm indeed captures some struc-

ture in the data, we compared the reconstruction error of

extracted activation matrix (synergies) H to those obtained

by substituting it for a random matrix of the same sparsity
structure in Eq. (1). This procedure was repeated 50 times.

A right-sided Student’s t-test found that the mean square

error objective function value for the random matrices was

significantly higher than for the case of the estimated H ma-

trix (p ¼ 0).

C. Visualization of extracted basis functions

Figure 13 show exemplar basis functions extracted from

MOCHA-TIMIT data from speaker msak0. We observe that

the bases are interpretable and capture important and diverse

articulatory movements from a phonetics perspective. The

bases are interpretable and 7 of the 8 correspond to articula-

tory patterns associated with the formation of constrictions

of the vocal organs. Basis 1 exhibits the articulatory pattern

expected when a labial constriction (note vertical movement

of lower lip) is formed in the context of a (co-produced)

front vowel (note vertical movements of front tongue

markers), while basis 3 exhibits the pattern expected for a la-

bial constriction co-produced with a back vowel (note the

backward and raising motions of the tongue markers).

Comparably, bases 4 and 8 show patterns expected of a coro-

nal (tongue tip) constriction co-produced with back and front

vowels, respectively. Basis 5 shows the expected pattern for

a tongue dorsum constriction with a velar or uvular location,

while 6 shows the pattern of a dorsum constriction with a

palatal location. Basis 7 shows the expected pattern for

tongue root constriction in the pharynx. Basis 2 is the only

one that does not appear to represent a constriction, per se,

but rather appears to capture horizontal movement of all the

receivers.

Since different phonetic segments are formed with dis-

tinct constrictions, we would expect that they should activate

distinct bases. To test this, we plot the average activation

patterns of selected segments in Fig. 14. We did this by col-

lecting all columns of the activation matrix corresponding to

each phone interval [as well as (T – 1) ¼ 9 columns before

and after, since the primitives are spatiotemporal in nature

with temporal length T ¼ 10] and taking the average across

each of the K ¼ 8 rows. Let us first consider the activation

patterns of the three voiceless stops in Fig. 14(a). Each of

TABLE II. Top five canonical correlation values between the gestural acti-

vation matrix G (generated by TaDA) and the estimated activation matrix H

for both TaDA and EMA cases.

nth highest canonical correlation value TaDA MOCHA-TIMIT

n ¼ 1 0.9089 0.9407

n ¼ 2 0.7717 0.8548

n ¼ 3 0.7158 0.7817

n ¼ 4 0.6350 0.6017

n ¼ 5 0.4947 0.4409
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the consonants have a different average gestural activation

pattern. For /p/, the basis with the highest activation is the

one identified above as a labial constriction co-produced

with a back vowel [3 or (c)], the labial-front vowel pattern [1

or (a)] is also highly active (third highest). For /t/, the two

patterns identified as coronal constriction patterns [4 (d) and

8 (h)] have the highest activation, while for /k/, the dorso-

palatal pattern is most active [6 or (f)]. We might have

expected more activation of the dorso-velar constrictions

pattern, but in English the dorsal stops are quite front,

FIG. 13. (Color online) Spatio-

temporal basis functions or primitives

extracted from MOCHA-TIMIT data

from speaker msak0. The algorithm pa-

rameters used were Sh ¼ 0.65, K ¼ 8

and T ¼ 10. The front of the mouth is

located toward the left hand side of

each image (and the back of the mouth

on the right). Each articulator trajec-

tory is represented as a curve traced

out by ten colored markers (one for

each time step) starting from a lighter

color and ending in a darker color. The

marker used for each trajectory is

shown in the legend.
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particularly in front vowel contexts. Similarly, in Fig. 14(b),

we qualitatively observe that the average activation patterns

of different vowels are different. For the vowels that are pro-

duced with narrow constrictions (IY, AA, OW, and UW),

the highest activated bases are those that produce the appro-

priate constriction. The bases most highly activated for IY

are the dorsal constriction bases (5 and 6). For AA and OW,

it is the pharyngeal constriction basis (7) and the labial con-

striction in back vowel context (3) (here capturing lip-round-

ing) that are most active. For UW, the dorso-velar (5) and

labial constriction (1 and 3) bases are most active. For the

less constricted vowels (IY, EH, AE, UH), there is, perhaps

unsurprisingly, a lack of clearly dominant bases, except for

the back-vowel rounding basis (3) for (UH), and perhaps the

horizontal movement basis for EH. This suggests that

although the cNMFsc algorithm does extract some discrimi-

natory phonetic structure from articulatory data, there is still

plenty of room for improvement.

We notice that in general there are some similarities

in movement between different bases but also differences,

i.e., each basis captures some distinct aspect of speech

articulation, mostly the formation of distinct constrictions.

The bases extracted by the algorithm depend on the choice

of parameters, and will change accordingly. Thus we do not

claim to have solved the problem of finding the “correct” set

of articulatory primitives (under the assumption that they do

exist). However we have proposed an algorithm that can

extract interpretable spatiotemporal primitives from meas-

ured articulatory data that are similar in information content

to those derived from a well-understood model of the speech

production system. The extracted bases are similar to the

bases of Articulatory Phonology, which also represent con-

strictions of the vocal organs. One difference is that there are

distinct bases extracted for distinct constriction locations of

the tongue body (palatal, velar/uvular, and pharyngeal),

while in the standard version of Articulatory Phonology

(e.g., Browman and Goldstein, 1992), these are distinguished

by parameter values of a single basis (Tongue Body

Constriction Location). However, this parametric view has

been independently called into question by recent data (e.g.,

Iskarous, 2005; Iskarous et al., 2011) that argues that distinct

constriction locations are qualitatively distinct actions. A sec-

ond difference is that the distinct bases appear to be extracted

for labial and coronal constrictions in different vowel contexts

(front vs back), while in AP, these contextual differences

result from the temporal overlap of activation of consonant

and vowel bases. Why the consonant and vowel constrictions

are conflated in the extracted bases is not clear. Perhaps with

fewer bases, this would not be the case. A thorough validation

of these primitives is a subject for future research.

VII. DISCUSSION AND FUTURE WORK

In order to fully understand any cognitive control

system which is not directly observable, it is important to

experimentally examine the applicability of any knowledge-

driven theory or data-driven model of the system vis-�a-vis

some actual system measurements/observables. However,

comparatively little work has been done with respect to data-

driven models, especially in the case of the speech produc-

tion system. In this paper, we have presented some initial

efforts toward that end, by proposing a data-driven approach

to extract sparse primitive representations from real and syn-

thesized articulatory data. We further examined their relation

to the gestural activations for the same data predicted by the

knowledge-based Task Dynamics model. We view this as a

first step toward our ultimate goal of bridging and validating

knowledge-driven and data-driven approaches.

There remain several open research directions. From an

algorithmic perspective, for example, we need to consider

nonparametric approaches that do not require a priori choice

of parameters such as the temporal dimension of each basis

or the number of bases. We also need to design better techni-

ques to validate and understand the properties of articulatory

movement primitives. Such methods should obey the rules

and constraints imposed by the phonetics and phonology of a

language while being able to reconstruct the repertoire of

articulatory movements with high fidelity.

There are many applications to these threads of

research. Consider the case of coarticulation in speech,

FIG. 14. (Color online) Average activation pattern of the K ¼ 8 basis func-

tions or primitives for (a) voiceless stop consonants, and (b) British English

vowels obtained from speaker msak0’s data. For each phone category, 8 col-

orbars are plotted, one corresponding to the average activation of each of

the 8 primitives. This was obtained by collecting all columns of the activa-

tion matrix corresponding to each phone interval (as well as T – 1 columns

before and after) and taking the average across each of the K ¼ 8 rows.
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where the position of an articulator/element may be affected

by the previous and following target (Ostry et al., 1996).

Using the idea of motor primitives, we can explore how the

choice, ordering and timing of a given movement element

within a well-rehearsed sequence can be modified through

interaction with its neighboring elements (co-articulation).

For instance, through a handwriting-trajectory learning task,

Sosnik et al. (2004) demonstrate that extensive training on a

sequence of planar hand trajectories passing through several

targets results in the co-articulation of movement compo-

nents, and in the formation of new movement primitives.

Let us further consider the case of speech motor control.

One popular theory of motor control is the inverse dynamics

model, i.e., in order to generate and control complex behav-

iors, the brain needs to explicitly or implicitly solve systems

of coupled equations. Mussa-Ivaldi et al. (1999) and Hart

and Giszter (2010) instead argue for a less computationally

complex viewpoint wherein the central nervous system uses

a set of primitives (in the form of force fields acting upon

controlled articulators to generate stable postures) to “solve”

the inverse dynamics problem. Constructing internal neural

representations from a linear combination of a reduced set of

modifiable basis functions tremendously simplifies the task

of learning new skills, generalizing to novel tasks or adapt-

ing to new environments (Flash and Hochner, 2005).

Further, particular choices of basis functions might further

reduce the number of functions required to represent learned

information successfully. Thus, by understanding and deriv-

ing a meaningful set of articulatory primitives, we can de-

velop better models of speech motor control, and possibly, at

an even higher level, move toward an understanding of the

language of speech actions (see for example work by

Guerra-Filho and Aloimonos, 2007).

VIII. CONCLUSIONS

We have presented a convolutive Nonnegative Matrix

Factorization algorithm with sparseness constraints

(cNMFsc) to automatically extract interpretable articulatory

movement primitives from human speech production data.

We found that the extracted activation functions or synergies

corresponding to different basis functions (from both syn-

thetic as well as measured articulatory data) captured the im-

portant information structure contained in the gestural scores

in general, and further estimated linear transformation matri-

ces to convert the estimated activation functions to gestural

scores. Since gestures may be viewed as a linguistically

motivated theoretical set of primitives employed for speech

production, the results presented in this paper suggest that

(1) the cNMFsc algorithm successfully extracts movement

primitives from human speech production data, and (2) the

extracted primitives are linguistically interpretable in an

Articulatory Phonology (Browman and Goldstein, 1995)

framework.
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APPENDIX: AIC COMPUTATION

The Akaike information criterion or AIC (Akaike, 1981)

is a measure of the relative goodness of fit of a statistical

model. It is used as a criterion for model selection among a

finite set of models. The formula for AIC is

AIC¼ 
 2 lnðLÞ þ 2k; (A1)

where L is the maximized value of the likelihood function

for the estimated model, and k is the total number of free pa-

rameters in the model. Under the assumption that the likeli-

hood L of the data is Gaussian-distributed, one can show that

the log-likelihood, ln(L), in Eq. (A1) is proportional to the

objective function of the convolutive NMF (or cNMF) for-

mulation, presented earlier in Eqs. (1) and (3)

lnðLÞ / 1

2
kV
 Vk2 ¼ 1

2

�����V

XT
1

t¼0

WðtÞ � ~Ht

�����
2

: (A2)

For further details, see Kong et al. (2011); F�evotte and

Cemgil (2009). Hence, Eq. (A1) reduces to

AIC 	 
kV
 Vk2 þ 2k: (A3)

The value of k equals the number of parameters of in the

model, i.e., the number of entries in the M � K � T-dimen-

sional basis matrix (W) and the K � N-dimensional activa-

tion matrix (H), respectively. Also noting the imposition of

sparseness constraints on the activation matrix, we find the

final expression for AIC as follows:

AIC 	 
kV
 Vk2 þ 2ðMKT þ ShKNÞ; (A4)

where Sh is the sparseness parameter, which requires that

each row of H needs to have a sparseness of Sh, as defined in

Eq. (2).

1Note that validation of experimentally derived articulatory primitives,

especially in the absence of absolute ground truth, is a difficult problem.
2Although the term “information content” is a loaded term with neurocog-

nitive under-pinnings, we operationally use this term to abstractly refer to

the structure encoded in the multivariate signal of interest.
3In linear algebra, a basis is a set of linearly independent vectors that, in a

linear combination, can represent every vector in a given vector space.

Such a set of vectors can be collected together as columns of a matrix—a

matrix so formed is called a basis matrix. More generally, this concept can

be extended from vectors to functions, i.e., a basis in a given function

space would consist of a set of linearly independent basis functions that

can represent any function in that function space. For further details, see

Strang (2003).
4As measured by a suitable metric such as a norm distance.
5By interpretable we mean a basis that a trained speech researcher can

assign linguistic meaning to on visual inspection; for example, a basis of

articulator flesh-point trajectories, or sequences of rt-MRI images of the

vocal tract.
6It is worth noting that Donoho and Stodden (2004) give specific mathemat-

ical conditions required for NMF algorithms to give a “correct” decompo-

sition into parts, which affords us some mathematical insight into the

decomposition. Presentation of the exact conditions here requires a level

of mathematical sophistication that is beyond the scope of this paper and

is hence omitted. Interested readers are directed to Donoho and Stodden

(2004) for further details.
7Note that some phonological models of speech do support the hypothesis

that speech sounds have a compositional structure. For more details, see

Jakobson et al. (1951) and Clements and Ridouane (2011).
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8Note that a multidimensional matrix is also called a tensor. In this case we

have a three-dimensional basis tensor, with the third dimension represent-

ing time.
9Note that instead of this two-step process, one can also consider using

functional canonical correlation analysis (fCCA, Leurgans et al., 1993).

However, since the time-series under consideration are sparse, this method

may not provide useful results in practice. This is because the technique

relies on appropriate smoothing of the time-series before finding their opti-

mal linear projections. Another altogether different technique one can

think of using is based in information theory, i.e., computing the mutual

information (see Cover and Thomas, 2012) between the 2 sets of signals.

However, the sparsity of the signals, coupled with the lack of proven

methods of computing mutual information of arbitrary multidimensional

time-series (not vectors), makes reliable estimation of this quantity

difficult.
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