
©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

www.landesbioscience.com Plant Signaling & Behavior e22554-134

Plant Signaling & Behavior 8:1, e22554; January 2013; © 2013 Landes Bioscience

 AUTOPHAGIC PUNCTUM ARTICLE ADDENDUM

Addendum to: Sun A, Nie, S, Xing D. Nitric oxide-
mediated maintenance of redox homeostasis 
contributes to NPR1-dependent plant innate 
immunity triggered by lipopolysaccharides. Plant 
Physiol 2012; 160:1081-96; PMID:22926319.

Keywords: nitric oxide, lipopolysaccha-
rides, NPR1, nitric oxide synthase, plant 
innate immunity, priming

Submitted: 10/14/12

Accepted: 10/15/12

http://dx.doi.org/10.4161/psb.22554

Citation: Sun A, Li Z. Regulatory role 
of nitric oxide in lipopolysaccharides-
triggered plant innate immunity. Plant 
Signal Behav 2013; 8:e22554;  
PMID: 23221762; http://dx.doi.
org10.4161/psb.22554.

*Correspondence to: Zhe Li;  
Email: lizhe@scnu.edu.cn

Recent studies have suggested that lipo-
polysaccharides (LPS) induce nitric 

oxide (NO) production and defense gene 
expression in plants. Our current work 
investigated the signaling mechanism of 
NO and the role of NONEXPRESSOR 
OF PATHOGENESIS-RELATED 
GENES1 (NPR1) in LPS-induced innate 
immunity of Arabidopsis (Arabidopsis 
thaliana). We have provided evidence 
that LPS-elicited NO generation as 
well as increased antioxidant enzyme 
activities capable of maintaining the 
redox state could be important to pro-
tect plants against oxidative damage 
from pathogen attack. In addition, LPS-
activated defense responses, including 
callose deposition and defense-related 
gene expression, are regulated through 
an NPR1-dependent signaling pathway. 
Our results contribute to elucidation 
of the signaling mechanism of NO and 
highlight an important role of NPR1 in 
modulating LPS-triggered innate immu-
nity in plants. However, further research 
is necessary to clarify the cross-talk 
between mitochondria and NO on acti-
vating LPS-induced defense responses, 
and the regulatory mechanism of NO 
in LPS-induced innate immunity needs 
further improvement.

Emerging evidence suggests that patho-
gen-associated molecular patterns 
(PAMPs) are potent elicitors that could 
induce defense mechanisms against bacte-
rial, fungal and viral pathogens.1 Bacterial 
Lipopolysaccharides as the prototypical 
PAMP can induce various plant defense-
related responses, including the oxida-
tive burst, nitric oxide (NO) generation, 
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cell-wall alteration and pathogenesis-
related (PR) gene expression.2-4 NO is 
emerging as an important multifunctional 
signaling molecule in plants.5,6 During 
defense-related responses, NO production 
is an important hallmark of innate immu-
nity elicited by LPS.7 Two key enzyme 
pathways are responsible for plant NO 
synthesis: oxidation of arginine to citrul-
line by a nitric oxide synthase (NOS)-like 
enzyme and reduction of nitrite to NO 
by a nitrate reductase (NR).8 Although 
no NOS gene has yet been identified in 
plants, NOS activity as well as inhibition 
of NO synthesis by animal NOS inhibi-
tors has been reported in plants.9,10 NO 
mediates Tobacco mosaic virus (TMV)-
induced AOX induction that triggers sys-
temic basal defense against viral pathogen, 
and as a redox regulator of the NPR1/
TGA1 system promotes the nuclear trans-
location of NPR1.11 NPR1 plays impor-
tant roles in activating defense gene and 
mediating plant defense response.12 These 
findings prompt us to further investigate 
the signaling mechanism of NO and the 
important role of NPR1 in LPS-induced 
innate immunity.

Accumulating experimental evidence 
support that LPS as a plant defense acti-
vator can lead to the production of NO 
and play a key role in plant disease resis-
tance.7,13 Our current work has shown 
that LPS as a typical PAMP could directly 
induce defense-related responses includ-
ing PR1 gene induction and callose depo-
sition.14 However, some biological agents 
and synthetic compounds cannot induce 
PR1 expression and callose deposition per 
se until pathogen infection; these induced 
reactions are frequently associated with 
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the function of mitochondria cross-talk 
with NO on LPS-induced defense acti-
vation, and requires further attention. In 
addition, the translocation of NPR1 into 
the nucleus is promoted by NO during 
LPS induction, which is consistent with 
previous study that the nuclear translo-
cation of NPR1 is induced by GSNO/
NO.10 Although GSNO/NO-mediated 
S-nitrosylation of NPR1 facilitates its 
oligomerization, it is suggested that this 
S-nitrosylation-mediated oligomeriza-
tion is not seen as an inhibitory effect of 
NPR1 signaling but rather as a step prior 
to monomer accumulation.10 We did not 
show evidence how the NPR1 activity 
was regulated by NO. Further studies to 
elucidate the more comprehensive mech-
anism are warranted.
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