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In plants, defense responses are induced by pathogen-associ-
ated molecular patterns (PAMPs) through pattern recognition 
receptors (PRRs). This recognition activates a defense pro-
gram known as PAMP-triggered immunity (PTI).1 Arabidopsis 
defense responses against necrotrophs such as B. cinerea are 
mediated by jasmonic acid (JA) and/or ethylene (ET) signal-
ing cascades.2 Arabidopsis resistance to B. cinerea is also sali-
cylic acid (SA)-dependent.3,4 Chitin is a major fungal PAMP 
that triggers the PTI defense response in plants.5 Chitin is pro-
duced by B. cinerea and is recognized by CERK1 PRR (chitin 
elicitor receptor kinase, also known as LysM-RLK1).5 Binding 
of PAMPs to extracellular domains of receptor-like kinases 
(RLKs) is thought to activate the intracellular kinase domains 
of RLKs.6 The lectin receptor kinases are RLKs characterized 
by the presence of an extracellular legume lectin-like domain, 
a transmembrane domain and an intracellular serine/threonine 
(Ser/Thr) kinase (STK) domain. Lectin receptor kinases are 
divided in three types, G, C, and L based on their extracel-
lular lectin motif.7 Recently, we demonstrated that the L-type 
lectin receptor kinase VI.2 (LecRK-VI.2) positively regulates 
Arabidopsis bacteria-mediated PTI.8 Here we suggest that 
LecRK-VI.2 possesses a functional kinase domain that is able to 
auto-phosphorylate. In addition, resistance to the necrotrophic 
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fungal pathogen B. cinerea and expression of PTI-responsive 
genes after chitin treatment were at wild-type levels in a lecrk-
VI.2-1 T-DNA insertion mutant. Our results suggest that 
LecRK-VI.2 specifically regulate bacteria-mediated PTI.

LecRKVI.2 is a Functional Kinase Protein  
and is not Essential for Basal Resistance  

to Botrytis cinerea

In order to evaluate the functionality of the LecRK-VI.2 kinase 
domain in silico, amino acid sequences of kinase domain of 
various published LecRKs such as LecRK-V.1, LecRK-VII.1, 
and LecRK-VII.2,7 PsLecRLK9 and OsSIK110 were aligned with 
the kinase domain (KD) of LecRK-VI.2. We found that the 
amino acids reported to be essential for catalytic activities of all 
11 kinase sub-domains11 (numbered from I-XI, Fig. 1A) from 
Arabidopsis, pea and rice were highly conserved in LecRK-VI.2, 
suggesting that its kinase domain is functional. LecRK-VI.2 
exhibited divalent metal cations dependent auto-phosphor-
ylation activity in vitro (Fig. 1B). To evaluate Arabidopsis 
LecRK-VI.2 possible role in the resistance response to other 
types of pathogens, we inoculated the lecrk-VI.2-1 mutant with 
the necrotrophic fungus B. cinerea. The mutant lecrk-VI.2-1 
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LecRK-VI.2 is not critical for Arabidopsis resistance to fungal 
pathogens.

Conclusions

We showed that LecRKVI.2 is a positive regulator of bacterial 
PTI response in Arabidopsis.8 In this report we demonstrate 
that LecRKVI.2 possesses a functional kinase domain. PTI, 

demonstrated a wild type resistance response to the necrotroph 
B. cinerea (Fig. 1C). In addition, no significant differences in 
expression levels of PTI responsive genes between the mutant 
lecrk-VI.2-1 and the wild-type Col-0 control were observed after 
chitin treatment (Fig. 1D), suggesting that PTI activation after 
treatment with the fungal PAMP chitin is not dependent on a 
functional LecRK-VI.2. Together, these observations suggest that 

Figure 1. LecRKVi.2 is a functional protein kinase and is dispensable for arabidopsis resistance to B. cinerea. (A) alignment comparison of the pre-
dicted amino acid sequences of LecRK-Vi.2 with 3 arabidopsis LecRKs (LecRK-V.1, LecRK-Vii.1 and LecRK-Vii.2), the rice OsSiK1 and the pea PsLecRLK. 
Sequences above the Roman numerals in black boxes indicate the 11 sub-domains characteristic of a typical protein kinase. (B) expression and 
purification of LecRK-Vi.2-KD from E. coli using affinity resin and phosphorylation assay. the GSt-fusion protein was stained with coomassie blue and 
confirmed by peptide sequencing. GSt was used as a control (left panel). GSt fusion protein LecRKVi.2-KD (2 μg) was incubated with atP for 30 min 
in the presence of 5 mm mncl2, 5 mm cacl2 or 5 mm mgcl2. Phosphorylation signal was observed with ProQ Diamond phosphoprotein gel staining 
(right panel). (C) B. cinerea disease symptoms. arabidopsis leaves were droplet-inoculated and symptoms were visualized 2 d later. experiments were 
repeated 3 times with similar results. Bar = 1 cm. error bars are SD (n = 18 leaves). Different letters indicate statistically significant differences compared 
with the wild-type col-0 (LSD test; p < 0.05). (D) Relative expression levels of WRKY53, FRK1, NHL10, CYP81F2 and CBP60 g were analyzed 30 and 60 min 
after chitin infiltration (50 μg/ml). EF-1 and UBQ10 were used for normalization. Relative gene expression levels were compared with buffer control 
(defined value of 1) by qRt-PcR analyses. the values are the means ± SD of three biological replicates (n = 9). no significant differences to wild-type 
col-0 were observed when based on a t-test (p < 0.01).
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SA- and JA-mediated signaling cascades are intimately bound1 and 
manipulation of PTI through alteration of LecRK-VI.2 expression 
may alter JA signaling and resistance to necrotrophic fungi. We 
therefore asked whether LecRKVI.2 plays a role in resistance to 
a necrotrophic fungal pathogen such as B. cinerea. Resistance to 
B. cinerea and upregulation of PTI-responsive genes after treat-
ment with the fungal PAMP chitin were at wild-type levels in 
lecrk-VI.2-1. Similarly, the PTI response triggered by chitin does 
not depend on BAK1.12 Collectively these observations indicate 
that LecRK-VI.2 is not required for basal resistance to B. cinerea 
and suggest that LecRK-VI.2 is specifically involved in bacterial 
defense signaling. LecRK-VI.2 may thus function as a positive 
regulator specific for bacteria-triggered PTI.
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