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Plant mitochondria are proposed to 
act as signaling organelles in the 

orchestration of defense responses to 
biotic stress and acclimation responses 
to abiotic stress. However, the primary 
signal(s) being generated by mitochon-
dria and then interpreted by the cell are 
largely unknown. Recently, we showed 
that mitochondria generate a sustained 
burst of superoxide (O

2
-) during par-

ticular plant-pathogen interactions. This 
O

2
- burst appears to be controlled by 

mitochondrial components that influ-
ence rates of O

2
- generation and scaveng-

ing within the organelle. The O
2

- burst 
appears to influence downstream pro-
cesses such as the hypersensitive response, 
indicating that it could represent an 
important mitochondrial signal in sup-
port of plant stress responses. The find-
ings generate many interesting questions 
regarding the upstream factors required 
to generate the O

2
- burst, the mitochon-

drial events that occur in support of and 
in parallel with this burst and the down-
stream events that respond to this burst.

Plant mitochondria play a central role in 
carbon and energy metabolism, but have 
also been suggested to generate “signals” 
that influence processes such as nuclear 
gene expression and resistance to biotic 
and abiotic stress.1-6 Certainly, mitochon-
dria must be capable of retrograde regu-
lation, whereby their function generates 
signals able to control the expression of 
nuclear genes encoding mitochondrial 
proteins.7,8 However, the primary signals 
responsible for these phenomenon remain 
largely unknown, and there is only a frag-
mented knowledge of any signal transduc-
tion pathways or cellular processes under 
mitochondrial influence.
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Reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) have 
become increasingly recognized as sig-
nal molecules involved in controlling a 
range of plant processes.9-12 The signaling 
function of these reactive molecules pre-
sumably requires specific mechanisms to 
control their synthesis, degradation and 
localization, all in response to particu-
lar conditions. Our knowledge of these 
mechanisms is generally quite limited, 
although substantial progress has been 
made in some plant systems.13-16

ROS and RNS Generation by Plant 
Mitochondria

Mitochondria are a source of ROS. This is 
due to “single electron leak” from electron 
transport chain (ETC) components to O

2
 

producing superoxide (O
2

-). In both plants 
and animals, complexes I and III are pro-
posed to be major sites of such electron 
leak17,18 (Fig. 1). Once produced, matrix 
O

2
- can be further converted to H

2
O

2
 by 

a matrix-localized manganese superoxide 
dismutase (MnSOD).19 The generation of 
RNS has also been linked to mitochondria 
although, in this case, the mechanism and 
site(s) of generation are less well under-
stood, particularly in plants.18,20

The rate of ROS generation by mito-
chondria depends upon the reduction 
state of ETC components. In animals, 
this reduction state is generally dependent 
upon the rate of electron transport and 
the membrane potential, which in turn 
are primarily dependent upon the rate of 
dissipation of membrane potential, par-
ticularly by oxidative phosphorylation. 
Hence, when ADP is readily available and 
being actively phosphorylated to ATP, 
dissipation of the proton gradient lowers 
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signaling events that culminate in 
defense responses such as the hypersensi-
tive response (HR), a programmed cell 
death (PCD) at the site of infection.25,26 
Beside this well-characterized apoplastic 
source of ROS, it is possible that intra-
cellular sources of ROS (and RNS) are 
also important in orchestrating defense 
responses to pathogens. The mitochon-
drion is one such potential source that has 
been implicated.27-29

Recently, we examined the interac-
tion of Nicotiana tabacum with the bacte-
rial pathogen Pseudomonas syringae.30 We 
showed that the incompatible P. syringae 
pv maculicola induced defense responses 
that included the HR, which was preceded 
by an early and persistent increase of O

2
- 

in the mitochondrial matrix (Fig. 2). This 
“O

2
- burst” was specific to the interaction 

with the HR-inducing pv maculicola, not 
being seen in response to a compatible 
(i.e., disease-causing) pv or in response 
to the incompatible pv phaseolicola that 
induced well-known defense responses but 
not including the HR. The disparate effect 
of the two incompatible pv’s appears to be 
due to a coordinated response of AOX (as 
a means to modulate the rate of O

2
- gen-

eration) and MnSOD (the sole enzymatic 
means to scavenge matrix O

2
-). While pv 

phaseolicola infection resulted in a strong 
induction of AOX and a maintenance 

which mitochondria may generate NO is 
via single electron leak from the ETC to 
nitrite.18,20 Hence our results suggest that 
AOX, by controlling the reduction state 
of the ETC, also dampens the generation 
of NO. Our conclusions were further sup-
ported by experiments with antimycin 
A (AA), a complex III inhibitor that, by 
restricting electron flow, causes an over-
reduction of ETC components. In wild-
type plants, both mitochondrial O

2
- and 

NO increased dramatically in response 
to AA. However, these increases were not 
seen in plants overexpressing AOX and 
hence able to maintain high rates of elec-
tron flow, even in the presence of AA.23

Plant Mitochondria as Signaling 
Organelles During Biotic Stress

We hypothesized that plants may use 
mitochondrial-derived ROS and RNS 
as signaling molecules, and further that 
AOX could provide a means to modu-
late their generation, particularly during 
stress.24 Below we describe recent evidence 
supporting this hypothesis.

It is well known that plant infection by 
a pathogen can lead to the rapid activation 
of a plasma membrane-localized NADPH 
oxidase.10,14 This activation results in an 
apoplastic “oxidative burst” that is closely 
associated with subsequent intracellular 

membrane potential and O
2

- generation is 
less than when ADP is limiting. In plants, 
however, the relationship between electron 
transport, oxidative phosphorylation and 
ROS generation is more complex due to 
the presence of alternative oxidase (AOX), 
an additional ETC component (Fig. 1). 
AOX catalyzes the oxidation of ubiquinol 
and reduction of O

2
 to H

2
O, effectively 

acting as a branch in the ETC whereby 
electron flow bypasses proton-pumping 
complex III, cytochrome (cyt) c and pro-
ton-pumping complex IV (cyt oxidase).21 
Significantly, electron flow from ubiquinol 
to AOX is not proton-pumping and hence 
does not contribute to membrane poten-
tial (Fig. 1). Hence, AOX could provide a 
means to maintain electron flow while still 
preventing the over-reduction of the ETC.

Using fluorescent confocal microscopy, 
we recently showed that tobacco leaves 
with suppressed levels of AOX, due to 
RNA interference, have increased con-
centrations of O

2
- in their mitochondria.22 

This provides direct in planta evidence 
that one function of AOX is to prevent the 
over-reduction of ETC components that 
leads to single electron leak. Interestingly, 
the same study also found higher lev-
els of nitric oxide (NO), a RNS, in the 
leaves lacking AOX and this appeared to 
be due, at least in part, to higher levels 
of NO in mitochondria. One means by 

Figure 1. The plant mitochondrial ETC includes two terminal oxidases able to catalyze the 4-electron reduction of O2 to H2O, the usual cyt oxidase 
(complex IV) and AOX. Electron transport from the ubiquinone pool (Q) to complex IV is coupled to the generation of a membrane potential that is 
subsequently dissipated by ATP synthase (complex V) to produce ATP. However, electron flow from Q to AOX is non-energy conserving. When the 
ability of an ETC component to transport electrons is reduced and/or membrane potential is high, electron transport can slow, leading to an over-
reduction of the ETC. Under these conditions, single electron leak to O2 or nitrite increases, producing O2

- and NO, respectively. In plants, the specific 
sites and mechanisms of O2

- and NO generation are not yet well understood. See text for further details. I, II, III, IV, V: complexes I to V.
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changes in mitochondrial-derived ROS 
and/or RNS are impacting the signal 
path(s) that control stomatal movement.

Previous work shows that AOX can pro-
vide a level of protection against PCD.24 
Since the HR is a natural example of PCD 
that is likely of benefit to the plant, it is 
perhaps not surprising that AOX would be 
kept suppressed after pv maculicola infec-
tion. An interesting question is how this 
suppression is achieved since infection 
results in the rapid elevation of several 
molecules previously described as induc-
ers of AOX synthesis such as salicylic 
acid (SA), NO and H

2
O

2
. We provided 

evidence that SA levels above a threshold 
amount might be responsible suppressing 

lesions.36 However, definitive experiments 
to test for the appearance of a O

2
- burst 

in response to such pathogens are now 
needed.

If the mitochondrion has a signal-
ing role during biotic stress, it would 
be interesting to establish whether this 
role extends to abiotic stresses as well. A 
common theme among several disparate 
mitochondrial mutants is their increased 
or decreased stress tolerance.2,4,37,38 Are 
specific mitochondrial ROS and/or RNS 
signatures responsible for this altered tol-
erance state? Disparate mitochondrial 
mutants also exhibit changes in stomatal 
aperture, particularly under stress condi-
tions.39-41 An intriguing possibility is that 

of high MnSOD activity, pv maculicola 
infection failed to induce AOX and was 
accompanied by a loss of MnSOD activ-
ity30 (Fig. 2). We further established that, 
in transgenic AOX knockdown plants 
unable to induce AOX in response to pv 
phaseolicola, a O

2
- burst was now generated 

in response to infection.23 Further, AOX 
knockdown plants infected with pv macu-
licola displayed a delayed O

2
- burst that 

manifested itself in a delayed HR. These 
results place AOX as a potential key regu-
lator of a mitochondrial O

2
--based signal-

ing pathway that subsequently impacts 
plant responses to biotic stress.23,30

It is worth emphasizing that the O
2

- 
burst we have reported is clearly distinct 
from “mitochondrial O

2
- flashes” that have 

been detected, mostly in animals but also 
in plants.31,32 Those apparent flashes in 
O

2
- are short-term (seconds) in duration 

and have been detected using circularly 
permuted yellow fluorescent protein as the 
O

2
- sensor. Recently, it has been strongly 

argued that these O
2

- flashes are in fact 
an artifact of the detection system.33 On 
the other hand, the O

2
- bursts we have 

reported are long-lived (hours) and have 
been measured using a mitochondrion-
localizing version of hydroethidine 
(MitoSOX; Molecular Probes), a well-
established small-molecule fluorescent 
O

2
- probe.23,30 As controls, we showed that 

the fluorescence signal observed with this 
probe could be strongly attenuated by the 
O

2
- scavenger SOD-PEG (a membrane-

permeable SOD) or strongly amplified by 
AA.

Characterization and Significance 
of the Mitochondrial O2

- Burst

Our results23,30 generate many interesting 
questions about mitochondrial signaling 
in general and the O

2
- burst, in particular. 

Some of these questions are summarized 
in Figure 3 and further discussed below.

First, work to date has been done exclu-
sively with P. syringae. Hence, it will be 
interesting to establish whether the HR 
induced by viruses and fungi is also pre-
ceded by a O

2
- burst. Changes in mito-

chondrial ROS have been implicated as 
important during such pathogen interac-
tions.3,4,34,35 Further, AOX overexpression 
did result in smaller TMV-induced HR 

Figure 2. The impact of two incompatible pv’s of P. syringae on the mitochondria of tobacco leaf 
mesophyll cells. (A) Infection with the HR-inducing pv maculicola results in an early and persis-
tent burst of O2

- in the mitochondrial matrix that may have a signaling role in support of the HR. 
(B) Infection with pv phaseolicola, that causes induction of plant defenses but not including the 
HR, lacks a matrix O2

- burst. The differential effect of the two pv’s is supported by a coordinated 
response of the major ETC mechanism to avoid O2

- generation (AOX) and the sole enzymatic 
means to scavenge matrix O2

- (MnSOD). In response to pv phaseolicola, AOX is strongly induced 
and MnSOD activity remains high, while in response to pv maculicola MnSOD activity declines 
and AOX remains low. As a result, the two bacterial pv’s each generate distinct mitochondrial ROS 
signatures that may impact defense responses and cell fate.
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its mechanism and site of action are not 
well understood, and the reported effects 
of SA on energy metabolism need further 
confirmation in intact leaf. Interestingly, 
our results hinted that complex III might 
be the mitochondrial target of biotic 
stress,23 and studies with isolated mito-
chondria have implicated SA to impact 
the function of this complex.47 The mode 
of action of SA on mitochondria may also 
differ depending upon SA concentration.46 
This provides a potential mechanism by 
which the different incompatible pv’s, 
which did elicit different SA amounts,30 
could have impacted mitochondria in 
disparate ways. Besides SA acting on the 
mitochondrion, another possibility is that 
increased NO inhibits cyt oxidase, which 
could then promote further generation of 
NO and O

2
- due to over-reduction of the 

ETC. NO is a potent inhibitor of cyt oxi-
dase, but AOX is NO-resistant,48 which 
further illustrates how AOX amount could 
strongly impact mitochondrial function 
during biotic stress.

Beside suppressing AOX induction, pv 
maculicola infection was associated with 
a loss of MnSOD activity, which likely 

of a permeability transition pore (PTP), 
which in turn is often implicated to result 
in the release of cyt c to the cytosol. 
Unfortunately, the cause-effect relation-
ship of these mitochondrial events, how 
they relate to O

2
- generation and how they 

impact cell fate is still largely unknown 
and is an important area for continued 
study.44 One possible means to promote 
a high membrane potential, beside keep-
ing AOX activity low, would be disabling 
of the adenine nucleotide translocator, 
which could restrict oxidative phosphory-
lation and hence dissipation of membrane 
potential.45

While AOX knockdown plants have 
constitutive higher amounts of O

2
- than 

wild-type, this amount is nonetheless fur-
ther strongly enhanced by the interaction 
with incompatible P. syringae indicating 
that, in addition to keeping AOX low, 
additional factor(s) associated with infec-
tion are required for the O

2
- burst to fully 

manifest itself. These factors are unknown 
but a prime candidate may be SA. Studies 
with plant suspension cells and isolated 
mitochondria strongly suggest that SA can 
target mitochondrial function.46 However, 

AOX induction, but this is clearly an area 
that requires further study. Whether AOX 
activity is also being suppressed by some 
post-translational mechanism is also rel-
evant. In this regard, it is intriguing that 
AOX has been identified as a target of 
tyrosine nitration, albeit the study was 
not in relation to biotic stress and how the 
modification impacted AOX activity is 
not known.42 Suppression of AOX activ-
ity could perhaps also occur by oxidation 
of regulatory cysteine thiols43 but again, 
whether this occurs in response to patho-
gen is not yet known.

As discussed earlier, membrane poten-
tial is typically a key factor determining 
the rate of O

2
-, and perhaps NO, gen-

eration by the ETC. A persistent O
2

- 
burst implies that membrane potential 
remains high and perhaps even increases 
after infection with the HR-inducing pv 
maculicola. A few studies have reported 
increases in membrane potential as an 
early event preceding various sorts of plant 
PCD, but more often it has been reported 
that loss of membrane potential is an 
early event.44 Loss of membrane potential 
is sometimes attributed to the opening 

Figure 3. Simple cartoon of a plant cell and mitochondrion. This figure is meant to highlight some key questions regarding the upstream factors 
required to generate a mitochondrial O2

- burst, the mitochondrial events that occur in support of or in parallel with this burst, and the downstream 
events that may be responsive to this burst. See text for further discussion of these aspects. PM, plasma membrane; OMM, outer mitochondrial mem-
brane; IMS, intermembrane space; IMM, inner mitochondrial membrane.
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in pv phaseolicola using the AOX knock-
down plants, this was now accompanied 
by a large and sustained increase in whole 
leaf H

2
O

2
.23 While this could perhaps be 

explained by the mitochondrial O
2

- burst 
providing all the substrate for this H

2
O

2
 

rise, another intriguing possibility is that 
the mitochondrial O

2
- burst lead to acti-

vation of NADPH oxidase. In animals, 
there are several model systems in which 
activation of NADPH oxidase depends 
upon intracellular ROS.50 Interestingly, it 
is reported in tobacco that SA potentiates 
the oxidative burst51 and that intracellular 
ROS rises prior to the oxidative burst.29
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