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Abstract
The vocal folds are known to be mechanically anisotropic due to the microstructural arrangement
of fibrous proteins such as collagen and elastin in the lamina propria. Even though this has been
known for many years, the biomechanical anisotropic properties have rarely been experimentally
studied. We propose that an indentation procedure can be used with uniaxial tension in order to
obtain an estimate of the biomechanical anisotropy within a single specimen. Experiments were
performed on the lamina propria of three male and three female human vocal folds dissected from
excised larynges. Two experiments were conducted: each specimen was subjected to cyclic
uniaxial tensile loading in the longitudinal (i.e. anterior-posterior) direction, and then to cyclic
indentation loading in the transverse (i.e. medial-lateral) direction. The indentation experiment
was modeled as contact on a transversely isotropic half-space using the Barnett-Lothe tensors. The
longitudinal elastic modulus EL was computed from the tensile test, and the transverse elastic
modulus ET and longitudinal shear modulus GL were obtained by inverse analysis of the
indentation force-displacement response. It was discovered that the average of EL/ET was 14 for
the vocal ligament and 39 for the vocal fold cover specimens. Also, the average of EL/GL, a
parameter important for models of phonation, was 28 for the vocal ligament and 54 for the vocal
fold cover specimens. These measurements of anisotropy could contribute to more accurate
models of fundamental frequency regulation and provide potentially better insights into the
mechanics of vocal fold vibration.
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1 Introduction
The vocal folds are composed of a layered structure with distinct histologies which play
different functional roles in the phonation process. The layers may be classified using a
three-layer scheme as: vocal fold cover (epithelium and superficial layer of the lamina
propria), vocal ligament (intermediate and deep layers of the lamina propria), and muscle
(see Figure 1). The vocal fold cover is the main oscillatory portion during vocal fold
vibration. The vocal ligament is the load-bearing portion (Titze, 2000; Gray et al, 2000). The
superficial, intermediate, and deep layers are collectively referred to as the lamina propria.
The lamina propria is predominantly an extracellular matrix consisting of non-muscular
tissues. The two main fibrous proteins in the lamina propria are elastin and collagen fibers.
Interstitial proteins (e.g. hyaluronan) surround these fibrous proteins and are largely
responsible for the viscosity of the tissue (Butler et al, 2001; Gray, 2000). The elastin fibers
and bundles of collagen fibers in the lamina propria are aligned primarily in the anterior-
posterior direction (Hirano et al, 1982; Ishii et al, 1996; Gray et al, 2000; Thibeault et al,
2002; Chan et al, 2007; Miri et al, 2012). This microstructural arrangement, which is well
established in the literature, would logically lead to anisotropy in tissue mechanical
properties. The term “anisotropy” in this study is defined as either the ratio of the
longitudinal elastic modulus to the transverse elastic modulus (EL/ET) or the ratio of the
longitudinal elastic modulus to the longitudinal shear modulus (EL/GL). Figure 1 shows a
schematic drawing of the relevant anatomical structures.

For canine vocal folds, the anisotropic tissue properties (i.e. longitudinal, transverse, and
shear elastic moduli) were measured by Hirano et al (1982), assuming transverse isotropy
and tissue incompressibility. However, due to the testing procedures employed, all
measurements were not made on a single specimen but rather required inter-subject
comparisons, which introduced uncertainties due to large inter-subject variations.
Measurements on the tensile response of the human vocal fold lamina propria showed that
the longitudinal elastic modulus can vary by an order of magnitude (Zhang et al, 2007;
Kelleher et al, 2011). The transverse shear modulus of the vocal fold lamina propria can
vary by an order of magnitude as well (Chan and Rodriguez, 2008). These large variations
between subjects make estimations on the anisotropy dubious. Hence, for such purpose the
measurements should be made on a single specimen.

Past finite element modeling and analytical modeling with Timoshenko beam theory of
vocal fold specimens revealed that the fundamental frequency of vibration could strongly
depend upon the degree of anisotropy (Kelleher et al, 2010, 2011). Also, a sensitivity study
ranked the elastic constants, specifically the transverse elastic modulus and the longitudinal
shear modulus, as some of the most influential model parameters relating to modal
frequencies (Cook et al, 2009). The elastic constants are sometimes inversely predicted
using lumped parameter or continuum models (e.g. de Vries et al (1999)), or they are often
assumed, particularly the transverse properties, with little justification provided (e.g. Alipour
et al (2000); Berry and Titze (1996); Titze (1976)). This could potentially generate model
errors that lead to faulty conclusions. Consequently, building accurate models of vocal fold
vibration and fundamental frequency prediction is limited by the lack of knowledge on the
tissue anisotropy.

To our knowledge, how the anisotropic tissue properties compare within a single specimen
has never been quantitatively studied in human vocal folds. Macroscale transverse
indentation experiments can be a viable technique for estimating the transverse mechanical
properties of human vocal fold tissues (Chhetri et al, 2011). Therefore, it is hypothesized
that a mechanical testing protocol including transverse indentation can be used in
conjunction with uniaxial tension in order to obtain an estimate of the biomechanical
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anisotropy within a single specimen. Measurements of the anisotropy as described in this
study could contribute to more accurate models of fundamental frequency regulation and
provide potentially better insights into vocal fold vibration.

Analyzing the mechanics of indentation in an anisotropic medium requires a much greater
deal of complexity than analyzing isotropic indentation. It is partly for this reason that
virtually all of the analytical indentation studies on soft tissues have only considered
isotropy. There are a few investigations that characterize the anisotropic mechanical
properties of soft tissues, but typically by inversely fitting computational models (Cox et al,
2008). For vocal fold tissues, a transverse indentation-type loading has been attempted in
vivo in humans (Tran et al, 1993) and in canines (Haji et al, 1992), though the analyses were
highly simplified and assumed isotropy. In other biological materials, rarely is an
anisotropic contact model used to analyze indentation experiments (e.g. Mattice et al (2006);
Gefen and Margulies (2004); Yoo et al (2011)), except for nano-indentation studies on
mineralized hard tissues (Fan et al, 2002). However, one does not necessarily know a priori
that an isotropic contact model is appropriate for tissues that are anisotropic.

There are a few closed-form analytical solutions available for contact on a transversely
isotropic half-space (e.g. Dahan and Zarka (1977); Turner (1980); Yu (2001)). However, all
of these solutions are limited to loading in the direction that is parallel to the axis of material
symmetry. Only recently has an analytical solution been presented where the loading occurs
in a direction orthogonal to the axis of material symmetry (Zhupanska, 2010).
Unfortunately, the solution in Zhupanska (2010) is given as complicated functions of stress
and strain rather than in the force-displacement form which is more convenient for this
investigation. Traditional methods of solving deformations for anisotropic elasticity (e.g. the
Stroh formalism) involve solving the eigenvalue problem in terms of the elastic stiffnesses.
This approach encounters difficulties for certain cases of material symmetry (e.g. isotropy or
transverse isotropy when the axis of material symmetry is not parallel to the loading
direction), due to repeated eigenvalues and/or eigenvectors (Ting, 1996). Thus, for the
present indentation experiment, the solutions that rely on solving the eigenvalue problem to
compute relations for the displacements cannot be implemented (e.g. Willis (1966);
Swanson (2004)). An alternative solution procedure that is utilized here to estimate the
transverse mechanical properties involves the Barnett-Lothe tensors (Barnett and Lothe,
1975; Lothe and Barnett, 1976). This technique is attractive because it avoids solving the
eigenvalue problem and instead computes the necessary functions directly from the elastic
stiffnesses. Therefore, cases of mathematical degeneracy due to non-distinct eigenvalues are
circumvented.

2 Materials and Methods
2.1 Vocal Fold Specimens

Tissue specimens were isolated from the excised larynges of six human cadaveric subjects,
with no known history of smoking, laryngeal or head and neck disease (see Table 1). Three
male and three female subjects were included, all of whom were Caucasian except subject E
who was African American. All larynges were procured from the Willed Body Program of
the University of Texas Southwestern Medical Center and gross examination of the vocal
folds revealed no abnormalities or pathologies. For each subject, one vocal fold cover (i.e.
epithelium and superficial layer of the lamina propria) specimen and the contralateral vocal
ligament (i.e. middle and deep layers of the lamina propria) specimen were dissected from
the excised larynx and tested with a tensile cyclic stretch-release paradigm (Chan et al,
2007). The sample preparation and testing protocols were approved by the Institutional
Review Board of University of Texas Southwestern Medical Center. The cover and ligament
specimens were dissected with instruments for phonomicrosurgery, separated from the
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underlying vocalis muscle and immediately placed in phosphate buffered saline (PBS). As
the tensile stretch test required sections of thyroid and arytenoid cartilages dissected together
with a cover or a ligament specimen (to maintain the natural anterior and posterior
attachments), it was only possible to dissect the vocal ligament contralateral to the vocal fold
cover within any single larynx.

2.2 Uniaxial Tension
3-0 nylon sutures were inserted through the center of a section of arytenoid cartilage and the
center of a section of thyroid cartilage, both remained naturally attached to the vocal
ligament or vocal fold cover specimen following dissection. The suture inserted through the
arytenoid cartilage section was connected to the actuator (lever arm) of a servo-controlled
lever system1, while the suture in the thyroid cartilage section was connected to the
mechanical support at the bottom of the experimental setup.

Figure 2 depicts the tensile experimental setup. The lever system was under displacement
feedback control, and was connected to a function generator and an oscilloscope to monitor
the displacement input. The tensile force response of the specimen was detected by the lever
system, digitized at 500 samples/sec and output for further analysis. A small amount of pre-
load (typically 0.01-0.02 N) was applied to the tissue in order to remove any suture
slackness. The applied displacement was sinusoidal at 1 Hz with an amplitude of 4.0 to 8.0
mm, depending upon the initial in situ vocal fold length. The length measurements in Table
1 were made after the specimen was dissected. Each tissue was mounted in the tensile
testing setup in a manner where the specimen's length was near the in situ measurement in
order to closely mimic the physiological state. The uniaxial tensile test was conducted for
180 cycles, similar to previous studies on vocal fold elasticity (Kelleher et al, 2011, 2012).

A monochrome CCD camera2 (pixel size of 9.9 × 9.9 μm, maximum frame rate of 75 fps)
together with a macro-lens3 was used to capture images continuously during the experiment,
in order to optically track the specimen displacement at specific points. A spirit level was
used to ensure that the optical path of the camera was perpendicular to the specimen axis. A
traceable speckle pattern was applied to the surface of the tissue specimen by using black
enamel based spray paint. The spray paint produced a fine mist where the sizes of the black
spots on the specimen were less than 1 mm. This procedure resulted in a covering of the
tissue specimen surface with a discontinuous speckle pattern (see Figure 2(a)) such that
specimen stiffness and moisture ingress were not disturbed (Kelleher et al, 2010, 2011).
During the experiment, specimens were kept in air at room temperature to avoid optical
distortions related to the use of a glass chamber with physiological solution, as well as
dissolution or smudging of the spray paint. Instead, specimens were hydrated periodically by
dripping PBS onto the tissue.

Optical measurements of tensile deformation have been shown to be crucial for vocal fold
tissues (Kelleher et al, 2011). Therefore, displacements of two points on the specimen
surface at equidistant longitudinal locations from the anterior commissure and the vocal
process were obtained from image sequences via digital image correlation functions of the
Image Processing Toolbox™ of Matlab®. The elongation of this mid-membranous portion
of the tissue specimen was computed optically. The tensile stretch λ can then be calculated
by

1Aurora Scientific Model 300B-LR, Aurora, Ontario, Canada.
2Allied Vision Technologies, Stingray F-033B, Stadtroda, Germany.
3Computar M0814-MP2, Commack, New York, USA.
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(1)

where ΔL is the elongation of the tissue specimen as determined from the displacement data
at the two measurement points. The point tracking algorithm used for determining ΔL were
confirmed to be accurate within ±1 pixel (approximately ±0.06 mm) by manually tracking
the points using NIH ImageJ, as in other studies (Kelleher et al, 2011).

Distance measurements were calibrated by taking the image of an object of known
dimensions to establish a pixel-to-mm ratio. The specimen diameter was optically measured
at five equidistant locations between the two points defining L0, and the cross-sectional area
was calculated assuming the tissue specimen to be of circular cross-section. A second CCD
camera, orthogonal to the first, confirmed the circular cross-section to be a reasonable
assumption (the diameter measurements from each camera were generally within 10%)
though it is generally more applicable for describing the geometry of the vocal ligament
specimens. The circular cross-section approximation is an outcome of the dissection
procedure and not necessarily applicable to the in vivo geometry. The five area
measurements were averaged to estimate the cross-sectional area A0. The average cross-
sectional diameter D0 is given in Table 1. Finally, the nominal stress σ = F/A0 was
determined from the force output from the lever arm F and the cross-section area A0 in the
undeformed state. The linear (i.e. small stretch) portion of the loading and unloading curves
of the tensile stress-stretch response was characterized by a linear elastic model as

(2)

where  is the longitudinal elastic modulus and i = loading or unloading, respectively. The
first few points of the loading (or unloading) curve were fit to Eqn. 2. Each successive point
along the curve was added and re-fit until the coefficient of determination (R2) value began
to consistently decrease. The stretch level at this instance (typically λ ≈ 1.05) was
determined to be the end of the linear regime. The longitudinal elastic modulus EL was then
taken as the average of the modulus of the loading and unloading curves within the linear,
small stretch region.

2.3 Transverse Indentation
Immediately following the uniaxial tensile stretch experiment, the specimen was placed in
PBS and allowed to rest for at least 75 minutes. As the vocal fold lamina propria is a
connective tissue (primarily an extracellular matrix), unlike other tissue types such as
muscles, it is not as susceptible to postmortem tissue changes that would significantly affect
the mechanical properties. In fact, changes in elastic shear modulus of the vocal fold lamina
propria within 24 hours postmortem at room temperature have been shown to be minimal
(Chan and Titze, 2003). The specimen was then positioned onto another mechanical testing
device4 for the transverse indentation experiment. A custom test fixture (see Figure 3) was
designed for the Bose ELF 3200 system. The fixture was fabricated using a rapid
prototyping system5 and made of acrylonitrile butadiene styrene (ABS) which possesses a
modulus several orders of magnitude larger than the vocal folds. The moving part of the
fixture serves as an indenter (radius of 1.0 mm) and was driven by the linear motor of the
system in a sinusoidal fashion at 1 Hz. The stationary part of the fixture provides a rigid

4Bose ElectroForce 3200, Eden Prairie, Minnesota, USA.
5Dimension BST 1200, Stratasys, Minneapolis, Minnesota, USA.
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support for the specimen to be compressed against, and was connected to a precision
miniature strain-gauge load cell with a range of ±2.45 N and a non-repeatability error of
±2.45 mN.6 Precise translational oscillatory actuation was enabled by displacement
feedback control via a linear variable differential transformer (linearity error of ±16 μm) in
the Bose ELF 3200 system. The diameter of the tissue specimen at the location of
indentation was measured optically. The applied compressive displacement ranged from
0.12 to 0.48 mm, such that all tissue specimens were indented to approximately 30% of their
initial diameter for a total of 60 cycles. The displacement of the indenter and the
compressive force response of the specimen were digitized at 5000 samples/sec and output
for further analysis. Also, the raw force signal was filtered to remove high frequency noise.
The data was filtered with a low-pass Butterworth filter of second order and a cutoff
frequency of 10 Hz with the Signal Processing Toolbox™ of Matlab®.

The indentation setup is shown in Figure 3. Following dissection, the medial surface of the
tissue was identified, typically by the vocal process or the thyroid cartilage which was
bisected in the mid-sagittal plane at the anterior commissure, such that the orientation of the
specimen was always known. The tissue was positioned such that the indentation took place
in the medial-to-lateral direction at a frequency of 1 Hz, with no tension applied along the
anterior-posterior direction of the specimen. Along the anterior-posterior axis, the specimen
was indented at the mid-coronal location so that the tissue was indented within the gauge
length of the measurements in the tensile experiment. This is imperative because our
previous studies have shown that there is a spatial heterogeneity in the elastic modulus of
vocal fold tissues (Kelleher et al, 2010, 2012). Thus, the location of indentation must match
the tissue region where the stretch is optically measured from the uniaxial tensile test in
order to make an accurate comparison of the longitudinal and transverse properties.

The compressive force-displacement response was evaluated using an anisotropic contact
model and considering a transversely isotropic tissue. The transverse indentation experiment
was modeled as contact between two cylinders with perpendicular axes, Figure 4(a). The
analytical solution for two contacting cylinders with perpendicular axes is equivalent to a
sphere contacting an elastic half-space with an effective Gaussian radius of curvature

 (Popov,2010).

The analytical solution of the force-indentation depth response accounting for the tissue
anisotropy follows from Swadener and Pharr (2001), which was developed for the more
general case of complete anisotropy. Now considering a transversely isotropic tissue with
the axis of material symmetry being in the x-direction and subjected to an indentation load
in the z-direction (as depicted in Figure 4), the stiffness tensor Cijkl of the stress-strain
relationship σij = Cijkl∊kl is

(3)

6Honeywell Sensotec, Model 31, 6-32, Columbus, Ohio, USA.
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The symmetry condition requires that ELνTL = ETνLT, thus reducing the number of elastic
constants to five: EL, ET, GL, νTT, νLT. The P-δ relation for an anisotropic half-space
contacted by a rigid frictionless sphere is

(4)

where P is the indentation force, M is the indentation modulus, and δ is the indentation
depth. The radius of curvature R should be substituted with R̃ for the case of the contacting
cylinders with perpendicular axes. The indentation modulus M is

(5)

where a3i are the direction cosines of the indentation load normal to the surface, B is a
Barnett-Lothe tensor, a1 and a2 are the semiaxes of the contact ellipse, and γ is the angle
between t and the x-axis. It was initially assumed that the contact area is circular, a1/a2 = 1.
Furthermore, since the indentation was occurring orthogonal to the axis of material
symmetry and not offset at some angle, then a1 and a2 will be aligned with the x and y axes
(i.e. the angle φ defined in Swadener and Pharr (2001) is zero). The Barnett-Lothe tensor B
is

(6)

with φ being the angle between m and an arbitrary datum in the plane normal to t. The
second-order tensors (ab) are defined as (ab)jk = aiCijklbl, and the unit vectors with respect
to the (x, y, z) coordinate system are m = [−cos φ sin γ cos φ cos γ sin φ]T and n = [sin φ sin
γ − sin φ cos γ cos φ]T, where T denotes the transpose. The primary equations concerning
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the anisotropic contact model relevant to this investigation are given above, but readers
seeking more details should consult the original article by Swadener and Pharr (2001).

Equations 3–6 were implemented and solved numerically in Matlab®. The integration of B
and M were performed using the trapezoidal rule over the open interval from 0 to π (0 < γ,
φ < π). The tissue was assumed to be nearly incompressible so νLT = 0.45 and νTT = 0.95
(though the model was insensitive to these values, see Appendix B), and EL was known
from the uniaxial tensile test. The anisotropic contact model received inputs for the elastic
constants EL, νLT, νTT and the effective Gaussian radius of curvature R̃. Therefore, two
parameters ET and GL, remain to be inversely estimated relative to the experimental data.

The anisotropic contact model was fitted to the midline of the hysteresis loop of the filtered
P-δ response by a nonlinear least-squares approach. Upper and lower bounds were set on the
parametric search space for ET and GL. Supposing the extreme case of an isotropic tissue,
the upper bounds were [ELEL/2] for ET and GL, respectively. The lower bounds for ET and
GL were set to zero. Additionally, a constraint was imposed such that ET > GL. An
optimization process was executed which solved the least-squares problem for multiple start
points for ET and GL, in an effort to find the global minimum rather than local minima. The
initial start point given was the solution of the classical Hertzian contact law for isotropic
materials P = 4ÊT√R̃δ3/2 / [3(1 − ν2)], i.e. [ÊTÊT /3] for ET and GL, respectively. The set of
ET and GL that was deemed the optimal solution was one that met the conditions above and
minimized the residual sum of squares (RSS). As a measure of the goodness-of-fit, the
coefficient of determination R2 = 1 − RSS/TSS, where TSS is the total sum of squares, was
calculated and provided in Table 2.

Each tissue specimen was indented to approximately 30% of its initial diameter. However,
compressing the tissue to this level may induce substantial nonlinear effects causing the
linear contact models (both isotropic and anisotropic) to poorly predict the nonlinear
experimental P-δ response. It was observed that the P-δ response begins to exhibit
nonlinearity when the indentation exceeds approximately 20% of the specimen's initial
thickness, for our indentation setup. As an example, the contact models were fit to the P-δ
curve for the vocal ligament of subject A at increasing levels of indentation depth. The
goodness-of-fit (i.e. R2 value) is very good until an indentation depth of approximately 20%,
which can be seen in Appendix A. Therefore, the contact models were fitted to the
experimental P-δ response until 20% indentation depth to ensure linearity. This approach
was similar to the one described previously (§ 2.2) for curve fitting the tensile data.

3 Results
All vocal fold tissue specimens exhibited a time dependent response with the stress at
maximum applied stretch/indentation declining continuously with the number of load cycles
N, such that no steady state response was reached, consistent with other studies (Chan et al,
2009; Zhang et al, 2009). Thus, the elastic constants EL, ET, and GL were obtained from a
representative cycle such that transient effects associated with tissue preconditioning were
minimized, following the approach of Kelleher et al (2011). In particular, data are presented
for the 55th loading cycle of both the uniaxial tension and transverse indentation tests. For
uniaxial tension, the average in-cycle peak force decayed by 33% from cycles N = 1 to N =
180. The detailed analysis of the tissue specimens was conducted for cycle N = 55 where the
peak force had experienced on average 75% of the total decay. For transverse indentation,
the average in-cycle peak force decayed by 28% from cycles N = 1 to N = 60. Thus, by
cycle N = 55 the peak force had experienced on average 92% of the total decay. An example
of the in-cycle peak force decay in dependence of the applied load cycle number for both the

Kelleher et al. Page 8

Biomech Model Mechanobiol. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tensile and indentation experiments, along with sample longitudinal σ-λ and transverse P-δ
curves for subject A are displayed in the Appendix.

The values of the elastic constants computed for all subjects are given in Table 2. The mean
and standard deviation of ratios EL/ET and EL/GL, commonly employed as measures of the
“degree of anisotropy,” are presented in Figure 5 for the cover and ligament specimens from
male and female subjects. Ratios EL/ET and EL/GL were computed within each tissue
specimen and then the mean was calculated, rather than taking the population mean of EL
and then dividing it by the population mean of ET or GL. The mean and standard deviation
of EL/ET was 14±8 for the vocal ligament and 39±22 vocal fold cover specimens of all
subjects. For EL/GL, the mean and standard deviation for all subjects was 28±8 for the vocal
ligament and 54±23 for vocal fold cover specimens. Furthermore, on average the male
subjects had higher EL/ET and EL/GL ratios than the female subjects, though it was not
statistically significant. For all subjects tested, the vocal fold cover was stiffer in
longitudinal tension than its contralateral vocal ligament roughly by a factor of 10,
consistent with the findings of Chan et al (2007). Also, the vocal fold cover exhibited a
larger ET and GL than its contralateral vocal ligament, except for subject E. In order to
assess the anisotropic model's sensitivity to assumed values (a1/a2, νLT, and νTT) and
material parameters (EL, ET, and GL), a sensitivity study was conducted for one subject and
the results are in Appendix B. Additionally, the anisotropic contact model is validated in a
numerical experiment with a finite element model given in Appendix C.

Hypothesis testing of the data was conducted to determine if the anisotropic tissue
parameters were different from the isotropic tissue with statistical significance (p < 0.05).
The mean anisotropy ratios (EL/ET and EL/GL) were the test statistics. The null hypotheses
were that the mean of EL/ET was equal to one, and that the mean of EL/GL was equal to
three – signifying that the material is isotropic. The alternative hypotheses were that the
mean of EL/ET and EL/GL were greater than one and three, respectively – signifying that the
tissue is anisotropic. The hypothesis tests were performed using a one-tailed Student's t-
distribution for four cases with n = 3: vocal ligament from male subjects, vocal fold cover
from male subjects, vocal ligament from female subjects, and vocal fold cover from female
subjects.

It was found that EL/ET was greater than one with statistical significance for the vocal
ligament (p = 0.028) and vocal fold cover (p = 0.042) from male subjects, but only the vocal
fold cover (p = 0.029) from female subjects. Also, the ratio EL/GL was greater than three
with statistical significance for the vocal ligament (p = 0.0003) and vocal fold cover (p =
0.046) from male subjects, and the vocal ligament (p = 0.033) and vocal fold cover (p =
0.016) from female subjects.

An additional hypothesis test was conducted to determine if the means of EL/ET and EL/GL
of the vocal fold cover were greater than those of the vocal ligament with statistical
significance. The null hypotheses were that the mean anisotropy ratios of the cover were
equal to those of the ligament. The alternative hypotheses were that the means of EL/ET and
EL/GL of the cover were greater than those of the ligament. The male and female subjects
were combined and EL/ET and EL/GL of the cover (n1 = 6) were compared to those of the
ligament (n2 = 6) using a two sample Student's t-distribution. It was discovered that EL/ET
and EL/GL of the cover were significantly greater than those of the ligament (p = 0.018 and
p = 0.021, respectively) with all subjects combined.

4 Discussion
The results in this investigation reveal that the longitudinal elastic modulus of the vocal fold
cover is generally larger than that of the vocal ligament, which is consistent with other
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studies (Chan et al, 2007; Hirano et al, 1982; Zhang et al, 2007; Kelleher et al, 2011). The
transverse elastic modulus results corroborate the findings on canine vocal folds where
typically EL > 10ET (Hirano et al, 1982). Additionally, the values of EL reported here for the
vocal ligament specimens compare well to those in previous studies where EL of the
ligament was estimated to be near 30 kPa (Min et al, 1995). Measurements of the complete
set of transversely isotropic elastic properties of human vocal fold tissue have not been
reported so far. In studies concerned solely with measurements of the transverse response of
humans and canines, the transverse modulus was typically estimated to be in the range of
1-10 kPa (Chhetri et al, 2011; Hirano et al, 1982; Tran et al, 1993), which is in the range
measured in this study. Concerning anisotropy values of other biological samples reported in
the literature, the ratio of EL/ET common in bone is approximately 2 (Lotz et al, 1991; Dong
and Guo, 2004). This ratio is larger in non-mineralized tissue with EL/ET ≈ 4 for shoulder
ligaments (Moore et al, 2004, 2005) and EL/ET ≈ 30 for the knee ligaments (Quapp and
Weiss, 1998), indicating that the anisotropy is likely dependent upon the tissue's function.
The anisotropy EL/ET presented here for the vocal fold lamina propria is near that of other
soft tissues, particularly those of the knee. Also, when comparing the transverse elastic
modulus ET with the prediction from an isotropic contact model, it was discovered that there
was only a mild difference. Therefore, the isotropic solution may be used to provide a quick
initial guess for ET which has been suggested in similar investigations (Vlassak et al, 2003).

The averages of EL/ET and EL/GL of the cover were greater than the ligament with statistical
significance, indicating that the vocal fold cover is more anisotropic. This outcome seems
contradictory to previous histological studies that have reported the vocal ligament (middle
and deep layers of the lamina propria) to have more longitudinally aligned fibrous proteins
than the vocal fold cover (epithelium and superficial layer of the lamina propria, SLLP,
encompassing the basement membrane zone, BMZ) (Gray et al, 2000; Hammond et al,
2000). Nonetheless, some histological examinations have found less type I collagen in the
intermediate layer than in the superficial and deep layers (Bühler et al, 2011). It has also
been proposed that, “Although the SLLP has been characterized as having sparse and loose
fibrous proteins, the SLLP around the BMZ is relatively rich in the deeper part of the SLLP
not only in collagen type III, but also in collagen type I and elastin. The SLLP around the
BMZ might be regarded as a different layer from that identified as the deeper part of the
SLLP” (Tateya et al, 2006). Additionally, there may be age-related aberrations in the
microstructure since all the subjects tested in this study, except subject A, were geriatric.
Aging has been shown to potentially cause increased cross-linking of fibers (Monniere and
Sell, 1994; Sato and Hirano, 1997), increased prevalence of disarray of the microarchitecture
(Madruga de Melo et al, 2003), and elastic fibers that are looser and more atrophied in the
intermediate layer of the lamina propria (Hirano et al, 1982). Even though the finding that
the longitudinal elastic modulus of the cover is generally larger than that of the ligament
may seem to disagree with the classical histological findings, this observation has actually
been corroborated by some other studies (Chan et al, 2007; Hirano et al, 1982; Zhang et al,
2007; Kelleher et al, 2011). Therefore, our results suggest that the familiar notion that the
vocal fold cover is an isotropic tissue layer with a loose fiber architecture may need to be
reassessed.

This study quantitatively reports the anisotropic biomechanical properties within a single
human vocal fold specimen. As noted earlier, the elastic constants (EL, ET, and GL) are
crucial to accurately replicate vibration characteristics in models of phonation (Cook et al,
2009). The biomechanical constants presented in this paper may have significance relating
to phonatory processes. The shear mode of deformation is known to be a primary factor
contributing to the mucosal wave of vocal fold vibration (Titze, 2006). However, this mode
cannot be captured in string or classical (i.e. Euler-Bernoulli) beam models of phonation. It
was recently demonstrated in an approximate analytical Timoshenko beam model that the
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fundamental frequency of vibration would decrease by roughly 30% for EL/GL near 40-50
with typical vocal fold length and diameter dimensions (Kelleher et al, 2011). This decrease
is not present in models that do not account for rotary inertia nor shear deformation. Based
on the current findings continuum models of phonation could now have a realistic range for
elastic constants which were previously assumed, even though the sample size in this study
is small. Additionally, it is proposed that this transverse indentation approach could be tested
in vivo, with an instrument like that described by Tran et al (1993). This could potentially
provide data for the transverse stiffness of the vocal folds in an in situ, natural, physiological
environment.

In order to accurately model more advanced phonatory processes (e.g. vocal fold posturing)
where longitudinal tensile stretch is present with shear deformation, the evolution of ET and
GL as a function of the longitudinal load will need to be understood. This development of
the elastic constants of vocal folds subjected to multi-axial loads is a subject of future
research. Also, assessing the anisotropy as modulus ratios, EL/ET or EL/GL, is a good
foundation, but a more detailed understanding of anisotropy could be gained through a
multi-scale constitutive model incorporating quantitative histological data on the vocal fold
anisotropic microstructure (e.g. the orientation of collagen and elastin fibers). Recent work
to study the morphology of vocal fold fibrous proteins with advanced microscopy
techniques could be a promising method to obtain such quantitative microstructural data
(Miri et al, 2012).

The findings of this study should be regarded as preliminary, as limited by the small sample
size, as well as several other limitations. First, only the initial linear response of the σ-λ and
P-δ curves were analyzed. This represents a first step towards understanding the
biomechanical anisotropy in human vocal folds, yet it is not a complete description. How the
nonlinearity of the σ-λ and P-δ curves at larger deformations could change the anisotropy
should be addressed in future studies. Another limitation of the current study is the 1 Hz
loading rate in the transverse (medial-lateral) direction during indentation. This indentation
loading rate was chosen in order to be consistent with the 1 Hz tensile test. However, with
regard to phonation, the transverse compressive forces encountered during vocal fold
collision occur at phonatory frequencies (roughly 100-250 Hz). Testing the tissue under such
high loading rates would likely produce a much stiffer material response due to the viscous
nature of the tissue. The transverse shear modulus has been shown to increase substantially
as the loading rate is increased to the phonatory range (Chan and Rodriguez, 2008).
Estimations of the transverse properties ET and GL could potentially be extrapolated to the
high frequency regime if the material's time dependence in the transverse direction was
known. Therefore, the transverse elastic properties of human vocal folds at higher
frequencies should also be examined by further studies.

5 Conclusion
A new protocol has been developed to quantitatively measure the biomechanical anisotropy
of vocal fold tissues within a single specimen. The protocol included each specimen being
subjected to cyclic uniaxial tensile loading in the longitudinal (i.e. anterior-posterior)
direction, and then to cyclic indentation loading in the transverse (i.e. medial-lateral)
direction. For this investigation, experiments were performed on the lamina propria of three
male and three female human vocal folds dissected from excised larynges. A rigorous
analytical treatment of the indentation test was achieved by modeling the contact with a
transversely isotropic half-space using the Barnett-Lothe tensors. The longitudinal elastic
modulus EL was computed from the tensile test, whereas the transverse elastic modulus ET
and the longitudinal shear modulus GL were obtained by inverse analysis of the indentation
force-displacement response. EL/ET and EL/GL ratios were computed as indications of the
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degree of anisotropy. The tissue specimens exhibited substantial anisotropy. It was found
that the average ratios EL/ET and EL/GL of the vocal fold cover were greater than those of
the vocal ligament with statistical significance, signifying that the vocal fold cover is more
anisotropic. These measurements of anisotropy could contribute to more accurate models of
fundamental frequency regulation and provide potentially better insights into the mechanics
of vocal fold vibration.
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Appendix A
As one example of the complete analysis Appendix A provides experimental data details for
subject A of this study. Figure 6 depicts the in-cycle peak force decays in the cyclic tensile
and indentation experiments.

The linear elastic model and contact model were fit to the σ-λ and P-δ curves, respectively,
for the vocal ligament of subject A at increasing levels of stretch or indentation depth. The
goodness-of-fit (i.e. R2 value) begins to decline at an indentation depth of approximately
20% of the tissue's initial diameter due to nonlinear effects in the P-δ curve.

The longitudinal σ-λ and transverse P-δ curves for the vocal ligament of subject A. The
linear fit of EL lies within the small stretch regime of the loading and unloading tensile
response in Figure 8(a). For the transverse indentation response, the isotropic and
anisotropic contact models yield P-δ curves that are identical in Figure 8(b), but the values
of elastic constants (ET, GL, and ÊT) obtained are different (see Table 2).

Appendix B
A brief sensitivity analysis was performed using subject A in order to assess the anisotropic
contact model's sensitivity to certain parameters. First, the assumption of a circular contact
area was tested. The ratio of the semiaxes of the contact ellipse a1/a2 was increased from 1.0
to 1.5, causing the predicted parameters ET and GL to decrease by 0.5%. This reveals that
the model is essentially unaffected by a1/a2, as supported by another study for a broad range
of anisotropic materials (Swadener and Pharr, 2001). Next, the Poisson ratios νLT and νTT
were changed to see their effect on ET and GL. When increasing νLT from 0.45 to 0.49, the
estimations of ET and GL decreased by approximately 2%; and increasing νTT from 0.95 to
0.99, caused ET and GL to increase by almost 1.0%. Once again, the model is relatively
insensitive to the choice of the two Poisson's ratios.

Since the model's sensitivity to assumed values has been shown to be minimal, the
sensitivity to computed parameters (i.e. elastic constants) was then explored. The
longitudinal elastic modulus EL was varied by ±10% which resulted in ET and GL changing
by about ±5%, respectively. Holding EL constant and then varying ET by ±10% caused the
estimated value of GL to change by approximately ∓4%, respectively. Finally, varying only
GL by ±10% resulted in the estimated value of ET to change by ∓30%, respectively.
Therefore, the most sensitive parameter seemed to be the longitudinal shear modulus.
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Appendix C
In order to validate the anisotropic contact model, a finite element model of the indentation
experiment was created and analyzed using the commercial software ABAQUS (version
6.11). The finite element model consisted of two cylinders with perpendicular axes
contacting each other (see Figure 9). The indenter was modeled as a rigid body. The tissue
was modeled as a transversely isotropic linear elastic solid, and discretized using 10 node
modified three-dimensional tetrahedron hybrid elements with hourglass control
(C3D10MH). The nodes at both ends of the cylinder representing the tissue were fixed in all
directions. Additionally, a rigid plane was defined to provide the contact constraint as the
indenter compresses the tissue from the medial direction. The cylinder representing the
tissue had a diameter of 1.5 mm and a length of 15 mm. The indenter radius was 1 mm. In a
numerical experiment, the tissue was assumed to be linear elastic and transversely isotropic
with the following material parameters: EL = 28.2 kPa, ET = 2.53 kPa, GL = 0.91 kPa, νLT =
0.45, and νTT = 0.95. Such values correspond to the properties of the vocal ligament of
subject A, which are typical anisotropies for the vocal fold tissue considered here. The
force-displacement response was obtained as applied displacements and computed reaction
forces at the reference node to the rigid surface representing the indenter. The data was used
as input to the anisotropic contact model for inverse parameter estimation, together with EL .
The material parameters obtained as the outcome from the anisotropic contact model were
ET = 2.84 kPa and GL = 0.88 kPa. This corresponds to errors of 12% for ET and 3% for GL.
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Fig. 1.
A schematic showing a coronal cross-section of the vocal fold and the thyroarytenoid
(vocalis) muscle.

Kelleher et al. Page 16

Biomech Model Mechanobiol. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
The experimental setup for the cyclic tensile stretch test.
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Fig. 3.
The experimental setup for the transverse indentation test.
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Fig. 4.
Model of the indentation experiment.
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Fig. 5.
Mean ± standard deviation of the anisotropy ratios (EL/ET and EL/GL) for the vocal ligament
and vocal fold cover. * denotes that EL/ET > 1 or that EL/GL > 3 with statistical significance
(p < 0.05).

Kelleher et al. Page 20

Biomech Model Mechanobiol. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
The peak force decay as a function of the cycle number for subject A.

Kelleher et al. Page 21

Biomech Model Mechanobiol. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
The goodness-of-fit, represented by R2, to the experimental data from the vocal ligament of
subject A.
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Fig. 8.
Experimental and model results for the 55th loading cycles of the vocal ligament of subject
A.
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Fig. 9.
The finite element model of the indentation experiment.
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