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Abstract
Semantic coherence is a higher-order coherence benchmark that assesses whether a constellation
of estimates—P(A), P(B), P(B | A), and P(A | B)—maps onto the relationship between sets
implied by the description of a given problem. We present an automated method for evaluating
semantic coherence in conditional probability estimates that efficiently reduces a large problem
space into five meaningful patterns: identical sets, subsets, mutually exclusive sets, overlapping
sets, and independent sets. It also identifies three theoretically interesting nonfallacious errors. We
discuss unique issues in evaluating semantic coherence in conditional probabilities that are not
present in joint probability judgments, such as errors resulting from dividing by zero and the use
of a tolerance parameter to manage rounding errors. A spreadsheet implementing the methods
described above can be downloaded as a supplement from www.springerlink.com.
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The study of probability estimation has a long and distinguished history in cognitive science,
with Tversky and Kahneman’s (1974) article being particularly influential. Much of that
research has focused on reasoning biases and logical fallacies (e.g., Kahneman & Tversky,
1973) or the empirical accuracy of such judgments (Reyna & Adam, 2003; Yates, Lee,
Shinotsuka, Patalano, & Sieck, 1998). However, Wolfe, Reyna, and colleagues have
recently introduced a new benchmark for assessing the quality of joint probability and
conditional probability estimates, called semantic coherence (Fisher & Wolfe, 2010; Wolfe
& Fisher, 2010; Wolfe & Reyna, 2010a, 2010b), along with a method for its assessment in
joint probability estimation (Wolfe & Reyna, 2010b). In the present article, the concept and
method of evaluating semantic coherence are extended to conditional probability judgment.

The work presented here builds on research by Wolfe and Reyna (2010a, 2010b). Wolfe and
Reyna (2010b) conducted three experiments on joint probability estimation. Participants
received a number of story problems and estimated P(A), P(B), P(A and B), and P(A or B).
These patterns of estimates were analyzed for semantic coherence and logical fallacies using
formulae implemented in an Excel spreadsheet (see Wolfe & Reyna, 2010a). In those
experiments, gist representations were manipulated with pedagogic analogies. The
suboptimal tendency to ignore relevant denominators was addressed with training in the
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logic of 2 × 2 tables to clarify joint probability estimates. In all experiments using these
interventions, analogies increased semantic coherence, and the 2 × 2 tables reduced fallacies
and increased semantic coherence. The spreadsheet (also available as a supplemental
download from the Behavior Research Methods Web site) automated and greatly facilitated
the analysis of the internal consistency of these response sets.

The remainder of the article will proceed as follows. First, the concept of semantic
coherence is introduced, as it applies to conditional probability estimation. Next, an
automated method of evaluating semantic coherence using formulae in a spreadsheet is
outlined. In the final section, issues that are unique to conditional probability estimation are
addressed, including the evaluation of nonfallacious errors, divide-by-zero errors, and the
use of a tolerance parameter to manage rounding errors in estimations.

Bayes’s theorem has been a longstanding benchmark for assessing the coherence of
conditional probability estimates (Barbey & Sloman, 2007; Kahneman & Tversky, 1973).
One problem, however, is that a constellation of conditional probability estimates can be
consistent with Bayes’s theorem and nonsensical at the same time. To illustrate this point,
consider the following probability estimates regarding two election outcomes. Let P(S) be
the probability that Smith will win and P(J) be the probability that Johnson will win. The
estimates P(S) = .60, P(J) = .40, P(J | S) = .33, and P (S | J) = .50 are internally consistent
because P(S | J) can be inferred from the previous three estimates by applying Bayes’s
theorem. However, since election outcomes are mutually exclusive, the previous estimates
are nonsensical, as they imply that both candidates can win the same election. Assuming that
one candidate has won precludes the other candidate from winning. In order to achieve
semantic coherence, it must be the case that P(S | J) = P(J | S) = 0, which also satisfies
Bayes’s theorem. Thus, semantic coherence imposes an additional, more stringent
constraint, whereby a constellation of estimates must map onto the relationship between sets
described in the problem.

There are only five qualitatively different relationships among two sets of probability
estimates and their conditional relationships: identical sets, in which all A are B and all B
are A; mutually exclusive sets, in which no A are B; subsets, in which all A are B, but some
B are A while some B are not A; and overlapping sets, in which some A are B, some B are
A, but some A are not B and some B are not A. Independent sets represent a special case of
overlapping sets in which the occurrence of A (or B) provides no additional information
about the occurrence of B (or A). That is to say, A and B are orthogonal to one another, and
the relationship between the two is completely random.

When estimating P(A), P(B), P(B | A), and P(A | B) using integers on a 0%–100% scale,
there are over 100 million permutations. The formulae that we outline below reduce this
large problem space into five meaningful response patterns, with the remaining responses
classified as inconsistent with Bayes’s theorem. Based on the following definitions, the
spreadsheet classifies a constellation of responses as matching a set relationship with a 1, or
classifies with a 0 otherwise. The definitions produce a mutually exclusive and exhaustive
classification system, with one rare exception that will be discussed further below. A
constellation of estimates is semantically coherent with respect to identical sets if P(A) =
P(B) and P(B | A) = P(A | B) = 1.00 (see Fig. 1). A constellation of estimates is semantically
coherent with respect to mutually exclusive sets if P(A) + P(B) ≤ 1.00, P (A) > 0, P(B) > 0,
and P(B | A) = P(A | B) = 0. The additional constraints that P(A) > 0 and P(B) > 0 are
imposed because it is impossible to interpret a constellation when all four estimates equal
zero. A constellation of estimates is semantically coherent with respect to subsets (with A as
a subset of B) if 0 < P(A) < P(B), P(B | A) = 1.00, and P(A | B) = P(A)/ P(B) (see Fig. 2). A
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constellation of estimates is semantically coherent with respect to independent sets if P(A) =
P(A | B) > 0 and P(B) = P(B | A) > 0 (see Fig. 3).

To determine whether a set of estimates is consistent with overlapping sets or is inconsistent,
an intermediate calculation is used to make the formulae more tractable. The result of this
calculation is called total overlapping sets. It is true when a constellation of estimates does
not match identical, mutually exclusive, subset, or independent sets. A constellation of
estimates is semantically coherent with respect to overlapping sets if P(A | B) can be
inferred from the other three estimates—that is, P(A), P(B), and P(B | A)—using Bayes’s
theorem: P(A | B) = [P(B | A) * P(A)]/P (B). It must also avoid committing what we term a
minimum overlapping error (described in detail below; see Fig. 4). Finally, a constellation of
estimates is considered to be inconsistent if it does not match any of the previously defined
set relationships.

Inconsistent sets account for approximately 97% of the entire problem space, and we have
identified three particular errors that may provide some insight regarding the processes
involved in probability estimation. A conversion error is committed when P(A | B) = P(B |
A) and P(A) ≠ P (B). According to fuzzy trace theory (FTT; Reyna & Brainerd, 2008), a
conversion error results from the simplification of the hierarchical set relationship for
overlapping sets. Another error occurs when P(A) < P(B) but P(B | A) < P(A | B), when in
fact the smaller denominator in P(B|A) implies a larger probability. According to FTT, this
error occurs as a result of the complexity of the hierarchical set relationship present in
overlapping sets. A minimum overlapping error, mentioned earlier, occurs when the
conjunctive probability implied by a constellation of estimates does not satisfy the following
constraint: P(B | A) * P(A) ≥ P(A) + P(B) – 1.00. The sum of probabilities will exceed 1.00
otherwise. It is important to note that a constellation of estimates can be consistent with
Bayes’s theorem and yet violate this constraint, as the following demonstrates: P(A) = .80,
P(B) = .80, P(B | A) = .10, P(A | B) = .10, but .80 * .10 = .08 < .80 + .80 − 1.00 = .60.

Unlike the assessment of semantic coherence in joint probability estimation (Wolfe &
Reyna, 2010b), conditional probability estimation poses a unique challenge, because
dividing by zero is implied when either P(A) or P(B) is estimated to be zero. The conditional
implied by such an estimate is undefined. One approach is to classify such responses as
inconsistent. Alternatively, the approach we adopt is to classify some of these responses as
identical or mutually exclusive sets, based on semantics and context. To illustrate using the
classic Linda problem (Tversky & Kahneman, 1983), consider the following estimates, in
which P(F) is the probability that Linda is a feminist and P (B) is the probability that Linda
is a bank teller: P(F) = .90, P (B) = 0, P(F | B) = .40, and P(B | F) = 0. The last conditional
can be easily interpreted, because P(B | F) = [P(F | B) * 0]/ .90 = 0 for all values of P(F | B).
However, the conditional P (F | B) requires one to assume the truth of a statement previously
said to be impossible. We argue that judges may bypass this contradiction by assuming an
alternative state of affairs in which Linda is in fact a bank teller and providing an estimate
on that basis—in which case, P(F|B) can take any value. We interpret such a pattern as
consistent with mutually exclusive sets, because events A and B cannot occur
simultaneously. Formally, if P(B) = 0, then 0 < P(A) ≤ 1.00, P(B | A) = 0, and 0 ≥ P(A | B) ≥
1.00. A similar argument is proposed for identical sets in which P(A) = P(B) = 0 and P(B |
A) = P(A | B) = 1.00. Even though P(A) = P(B) = 0, when A is assumed to be true, B must
also be true, and vice versa. It should be noted that such responses are very rare in our
experience (0.5% of responses).

Another issue resulting from division in conditional probability estimation is that of
rounding error. Excel, for example, defaults to a precision level of 15 decimal places, a level
of precision far too stringent to be expected of human judges. To remedy this problem, the
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formulae for subsets and overlapping sets compare the absolute difference between an
estimated conditional and the expected conditional to an adjustable tolerance parameter,
located in a separate tab of the spreadsheet. We recommend performing a sensitivity
analysis by testing several tolerance levels. In our research, using tolerances of ±.005, ±.01,
and ±.05 produced qualitatively similar results.

Our final issue regards the rare case in which a response is consistent with two set
relationships (less than 0.5% of responses in our experience). When P(A) = P(B) = P(B | A)
= P(A | B) = 1.00, it is consistent with both identical and independent sets. Resolving this
problem requires an a priori classification decision in service of the goals of the researcher.
By default, the supplemental spreadsheet classifies such responses as identical sets. As
Wolfe and Reyna (2010b, p. 379) note, “automating the process of categorizing patterns of
responses does not substitute for inspecting one’s data.”

Discussion
With only a few caveats, the method presented above automates the evaluation of semantic
coherence in conditional probability estimation in a quick and effective manner. In addition
to reducing a large problem space into five meaningful patterns, the spreadsheet identifies
three nonfallacious errors that may be of theoretical interest. Unlike joint probability
estimation, conditional probability estimation poses a unique challenge, because division by
zero is implied by the conditionals when either of the marginal probabilities is estimated to
be zero. Two solutions for dealing with this issue were proposed: classifying such responses
as inconsistent, or classifying them as identical or mutually exclusive sets if certain
constraints are satisfied. We find both solutions defensible, so long as one is adopted a
priori. Since conditional probability estimation is more prone to rounding error as a result of
division, a tolerance parameter can adjusted to a desired level of precision and used to
perform a sensitivity analysis.

Much of the early work on conditional probability estimation addressed bold questions such
as “Are people irrational?” and “Are people intuitive Bayesians?” Perhaps most current
research focuses on questions that are more subtle and nuanced, but arguably no less
important. For example, some researchers are interested in understanding the cognitive
processes that produce conditional probability judgments, in studying individual differences
in conditional probability estimation, and in determining the consequences of theoretically
motivated cognitive interventions (Fisher & Wolfe, 2010; Wolfe & Fisher, 2010). Extending
the work on semantic coherence from joint probabilities (Wolfe & Reyna, 2010a, 2010b) to
conditional probabilities may have implications for the Bayesian approach to reasoning
(Evans, 2007; Oaksford & Chater, 2007; Over, 2009). To illustrate, it has been argued that
people judge the proposition “if A then B” as the conditional probability P(A | B) (Evans,
2007). Thus, from this standpoint, probability heuristics are used in many forms of verbal
reasoning. Assessing semantic coherence within this framework may help distinguish among
models of reasoning (Oaksford & Chater, 2007), as well as models of probabilistic inference
(Reyna & Brainerd, 2008; Wolfe & Reyna, 2010b). Semantic coherence offers a benchmark
or yardstick for assessing a constellation of conditional probability estimates. This is
particularly helpful because, unlike joint probabilities, no single conditional probability
estimate can be considered fallacious in and of itself. Yet, like fallacies, semantic coherence
is a measure of internal consistency. It thus provides potential insights into nonrandom
inconsistencies in thinking of the sort that have long been of interest to psychologists.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
An example of identical sets and the corresponding formula
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Fig. 2.
An example of subsets and the corresponding formula. The ISERROR function converts the
divide-by-zero error to 0, and P(A | B) is compared to a tolerance parameter located in a
separate worksheet
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Fig. 3.
An example of independent sets and the corresponding formula. By default, a constellation
is classified as identical sets when all estimates equal 1.00 (H5 = 0)
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Fig. 4.
An example of overlapping sets and the corresponding formula. The ISERROR function
converts the divide-by-zero error to 0. The absolute difference between P(A | B) and its
expected value derived from Bayes’s theorem is compared to a tolerance parameter
specified on a separate worksheet
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