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Abstract

Discovering the genetic origin of aging-related traits could greatly advance strategies aiming to extend health
span. The results of genome-wide association studies (GWAS) addressing this problem are controversial, and
new genetic concepts have been fostered to advance the progress in the field. A limitation of GWAS and new
genetic concepts is that they do not thoroughly address specifics of aging-related traits. Integration of theoretical
concepts in genetics and aging research with empirical evidence from different disciplines highlights the con-
ceptual problems in studies of genetic origin of aging-related traits. To address these problems, novel approaches
of systemic nature are required. These approaches should adopt the non-deterministic nature of linkage of genes
with aging-related traits and, consequently, reinforce research strategies for improving our understanding of
mechanisms shaping genetic effects on these traits. Investigation of mechanisms will help determine conditions
that activate specific genetic variants or profiles and explore to what extent these conditions that shape genetic
effects are conserved across human lives and generations.

Introduction

The increases in life expectancy in humans world-
wide require effective strategies to reduce the burdens

of morbidity and extend years of healthy life.1–3 Studies of
health in long-living people indicate that it is possible to
avoid major diseases for long periods of life.4–9 Studies of
heritability also show that health at old ages and life span
can have a genetic origin.10–18 Accordingly, yielding insights
into genetic predisposition to aging-related traits could be a
major breakthrough in addressing the problem of extending
health span. Aging-related traits are referred to phenotypes
that are characteristic for the post-reproductive period (e.g.,
diseases of heart, cancer, type 2 diabetes, Alzheimer disease).

Genome-wide association studies (GWAS) have been
thought as a breakthrough compared to candidate gene
studies to foster progress in the field. Although GWAS in-
deed have pinpointed genes associated with aging-related
traits, the views on GWAS progress19 range from exciting20

to disappointing,21,22 making the picture on the role of genes
in health span elusive.

Controversial discussion of GWAS findings is motivated
by two major concerns. One is that, unlike the original ex-
pectations, GWAS suggest that complex traits are likely
controlled by a large number of genes (see, e.g., refs. 20, 21),
many of which are of tiny effect.23 The other is that even a
large number of genetic variants discovered by GWAS ex-

plain only a small portion of the genetic variance in a
complex trait.24,25 Taken together, both of these concerns
constitute a serious problem of ‘‘missing genetic variance.’’26

Different genetic strategies to address this problem are
fostered including a more prominent role of rare variants
compared to common variants, epigenetics, structural di-
versity of genome, epistasis, pleiotropy, interactions through
different layers of genomic complexity, etc.19,23,26–28 It is also
suggested that the problem of missing genetic variance can
be overblown because standard GWAS strategies have im-
portant limitations.26,27

These genetic strategies, however, do not typically address
a fundamental problem in genetic susceptibility to aging-
related traits—the lack of direct, evolutionary programmed
mechanisms linking genes to such traits. This problem im-
plies that genetic determinism (in evolutionary context) in the
case of aging-related traits is an implausible concept. The
latter becomes particularly important given numerous GWAS
evidence on the highly polygenic origin of complex traits, i.e.,
that such traits can be influenced by a large number of
common and/or rare variants.29 This evidence questions the
original GWAS hypothesis of common disease–common
variants (CDCV)30,31 and strengthen the ‘‘risk’’ hypothesis.
Unlike the CDCV hypothesis, the risk hypothesis emphasizes
the quantitative nature of common traits in the sense that
genes rather confer the risks of common traits than cause
them32 (originally proposed by Fisher33).
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Paired together, the risk hypothesis and the lack of direct,
evolutionary programmed mechanisms highlight four inter-
related aspects of the problem of genetic susceptibility to
aging-related traits not commonly discussed in genetic lit-
erature, including (1) inheritance, (2) evolutionary selection,
(3) life-course-related processes, and (4) etiologic complexity.

Inheritance of the Aging-Related Traits

The most plausible explanation of inheritance of common
aging-related traits within the framework of Mendelian ge-
netics is when these traits are controlled by a few common
variants. In this case, these traits will segregate as in an or-
dinary case of Mendelian genetics. Having a large number of
unlinked disease alleles poses theoretical challenges. Fisher33

provided a theoretical basis for inheritance of polygenic
phenotypes, suggesting that they could be inherited through
a mechanism of inheritance of quantitative traits. A key of
this mechanism is the concept of allelic equivalence, i.e., that
different alleles confer risk of, rather than cause, the same
trait.33,34 In this sense, common traits are considered as non-
Mendelian, whereas the risk alleles still follow Mendelian
segregation.33

The problem is that this basis is plausible mostly for
common genetic variants.32 The CDCV hypothesis, however,
becomes discouraging 21 whereas the role of rare variants is
promoted.35–37 For rare variants there is a fundamental
problem of explaining individualized risks of aging-related
traits in the context of their inheritance.

Rare variants and individualized risks
of aging-related traits

Individualized risks of aging-related traits in a population
can be very high. For example, the risk of cardiovascular
disease (CVD) in men with an unfavorable risk profile from
45 to 80 years is about 50%,38 i.e., every other man in such a
population will develop CVD over 35 years. Similarly, ac-
cording to the Surveillance Epidemiology and End Results
(SEER) Cancer Statistics Review, 1975–2009 (http://seer
.cancer.gov), men have a 45% lifetime risk of cancer. High-
risk groups can have 16% risk of developing type 2 dia-
betes.39 High individualized risks imply that the person’s
genome has an adequate number of the rare risk variants.
This number will depend on how strong the effect of an
individual allele is; the weaker effect is, the larger number of
the risk alleles is required to collectively explain high disease
risk in a given person.35,39–41

Analyses of biomolecular mechanisms involved in regu-
lation of aging-related traits suggest that these mechanisms
are likely associated with genome-wide networks.42,43 This
implies that the risks of such traits in a given individual
should be explained by multiple variants spread throughout
the entire genome. Indirectly, this conclusion is supported by
the results of recent GWAS. For example, Teslovich et al.20

showed that single-nucleotide polymorphisms (SNPs) at 95
loci spread throughout the entire genome can be involved in
regulation of blood lipids and, potentially, diseases of heart.

If individualized risks are conferred by a large number of
rare variants spread throughout the entire genome, then we
face a principal problem in the framework of Mendelian
genetics provided that these variants are not in either genetic
or functional linkage. Indeed, suppose we have n rare risk

alleles with minor allele frequency (MAF) of 1%. Following
the Hardy–Weinberg principle, the frequency of the minor
allele homozygotes in a population is MAF-squared, i.e., 1 of
10,000 individuals will carry both risk alleles. One copy of
this allele is carried by 198 of 10,000 heterozygous individ-
uals. Therefore, the most common mode of transmittance of
rare risk alleles to progeny in a population is through mating
of major allele homozygous and heterozygous parents. In the
case of Mendelian segregation, this crossing implies that the
number of the risk (minor) alleles in progeny declines in a
power law fashion, i.e., 0.5n, where the base is the Mendelian
expectation in this type of crossing. For example, in the case of
four alleles, only 6.25% of children of major allele homozygous
and heterozygous parents inherit the parental rare risk alleles.
This implies that if a large number of rare alleles confer risks
of aging-related traits, heritability of these traits should be
tiny. This does not comply either with clustering of aging-
related traits in families or with large narrow-sense heritability
estimates for such traits (e.g., 40% for type 2 diabetes39).44

Do rare variants really matter for common
aging-related traits?

Thus, transmittance of rare variants in families implies
that unless (1) there is a large pool of rare variants in a
population with exceptionally strong effects when one or
two variants from this pool explain high individualized
risks of highly prevalent (e.g., about 30% of all deaths in the
United States in 2008 were attributed to diseases of heart
and stroke combined and about 23% to cancers45) aging-
related traits (that essentially resembles the case of Men-
delian traits) or (2) the rare variants do not demonstrate
‘‘clear Mendelian segregation,’’40 the leading role of rare
variants in common aging-related traits appears to be elu-
sive. Accordingly, common genetic variants should play a
more fundamental role in the etiology of aging-related
traits. Then, the question is: Why have GWAS results not
been so encouraging? The following three sections help in
addressing this question.

Genes, Aging-Related Traits,
and Evolutionary Selection

Evolutionary constraints are a major theoretical challenge
for explaining linkage of genes with aging-related traits. For
example, classical evolutionary hypothesis assumes that ag-
ing processes and the related traits are a result of a decline in
the force of natural selection with age that results in accu-
mulation of mutations.46 According to this hypothesis,
aging-related traits should be non-adaptive and subject to
stochastic variation.47 Another widespread hypothesis views
aging and its related traits as a result of antagonistic pleiot-
ropy, where the same gene can be favorable for fitness but
can confer risks of traits in late life.48,49 Aging and the related
traits are also viewed as a side effect of the evolutionary
programmed mechanism of an organism’s development50

when genes that are optimized for development become
deleterious or fade in the post-maturational period. It is also
hypothesized that parents’ life span can be an evolutionary
factor improving the fitness of children of reproductive age
(the so-called grandmother hypothesis51). Kirkwood and
Austad47 review other evolutionary hypotheses of aging-
related processes.
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Neither one of these hypotheses supports deterministic
linkage of genes with aging-related traits, including longev-
ity, which could be established by direct evolutionary se-
lection against or in favor of these traits as, e.g., in the case of
the program of an organism’s development.17 The word
‘‘direct’’ in this context means that aging-related traits are
irrelevant for reproductive success of the same organism.
This linkage can, however, be a side effect of evolutionary
programmed mechanisms, for example, when fitness factors
coincide with the risk factors for diseases. Furthermore, al-
though longevity can indirectly be relevant to the evolu-
tionary advantage of children of long-living parents, life
span constraints in the history of humans are an important
factor to consider. Indeed, the world record life expectancy
(i.e., essentially mean life span) in 1840 was about 45 years
for women.52 Accordingly, aging-related traits could not
even theoretically be a major contributor to mortality, even
relatively recently; a major non-violent player during those
times was infectious diseases. This poses theoretical con-
straints on aging-related traits as the driving force of evo-
lutionary programming of their mechanisms. The lack of
evolutionary programmed linkage of genes with aging-
related traits is a source of issues discussed in the next two
sections.

Life Course and Genetics of Aging-Related Traits

A fundamental problem of genetic susceptibility to aging-
related traits is two-fold. First, a genetic profile is transmitted
from parents to offspring at inception, whereas the risks of
these traits sharply increase in late life, i.e., genes and aging-
related traits are separated by a large portion of life of an
organism (called life course). Second, evolutionary selection
did not directly program deterministic mechanisms linking
genes with those traits. This two-fold problem, which is
typically not in the focus of genetic strategies, implies that
processes associated with life course appear to be a key in
understanding the effect of genes on aging-related traits (Fig.

1). These processes are a superposition of two major inter-
related processes, i.e., the process of intrinsic biological aging
(senescence) and dynamic environmental exposures (Fig.
1B). Both of these processes act at the level of individual
genes and the level of phenotypes, which are eventually
defined by sets of genes.

Senescence primarily contributes to intra-individual vari-
ability of genetic effects. This contribution is indirectly seen
as a variation of phenotypes with aging, i.e., during an or-
ganism’s life. For example, decades of biodemographic and
gerontological studies provided evidence on changes in
various endophenotypes (e.g., the levels of physiological
markers,53–55 bone mineral density56), and risks of diseases57

and death with age. As long as one believes that aging-
related traits have a genetic basis, the observed changes in
phenotypic expression over the life course imply that the
effects of genes on these phenotypes inevitably have to
change with aging. Candidate gene studies support this
conclusion by showing the differential role of genes in
complex traits at different periods of life.58–63

An organism’s life is accompanied by varying environ-
mental exposures that primarily contribute to inter-individual
variability, diversifying genetic heterogeneity at different
ages. However, known exposures may not necessarily ex-
plain all heterogeneity in genetic susceptibility to aging-
related traits. For example, life span of even genetically
identical species in an environment controlled for known
exposures (e.g., diet, collective behavior, temperature) can
still vary dramatically (e.g., see refs. 64, 65). Such evidence is
a basis of a hypothesis on a stochastic origin of aging-related
traits.66 However, stochasticity in this context should be in-
terpreted with great caution because unless we know its
fundamental laws (such as, e.g., the Heisenberg uncertainty
principle in physics), it can be simply a measure of insuffi-
cient knowledge about the mechanisms linking genes to
aging-related traits.

The complex role of genes in aging-related traits is one of
sources of missing genetic variance. A classical example is

FIG. 1. The role of genes in aging-related traits: Deterministic and dynamic concepts. Currently prevailing strategies
traditionally consider genetic susceptibility to aging-related traits in framework of a concept of heritability. This concept
assumes that a phenotype (P) can be represented as an additive superposition of genetic (G) and environmental (E) effects (A).
Linkage of genes to a phenotype within this concept is implicitly assumed to be of deterministic nature. This concept, however, was
developed for reproduction-related phenotypes used in breeding experiments with plants and referred to ‘‘the genetic contribution
to variance within a population and in a specific environment.’’ 112 Extension of this concept to aging-related human traits is,
therefore, at best problematic because of: (1) Lack of directly programmed deterministic mechanisms linking genes with those traits
and (2) uncontrolled changes in environmental exposures for humans. Given these constraints, B illustrates the dynamic concept
when the effects of genes on aging-related traits have to be inevitably shaped by aging-related processes (senescence) in dynamic
environment. The role of environment in this concept is through activation of genes at different periods of life and modulation of
gene actions over the life course and across generations. Color images available online at www.liebertpub.com/rej
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antagonistic pleiotropy (postulated by Williams49; examples
are provided in refs. 48, 67–71), which can result in under-
estimation of effects because gene function can be different at
different ages (see also the Pleiotropy section, below).

Dynamic concept of genetic susceptibility
to aging-related traits and its clinical relevance

The clinical relevance of the dynamic concept (Fig. 1B) is
supported by epidemiological and clinical studies showing
that aging-related traits develop during a substantial period
of life.72 This evidence implies that the dynamic component
in the effect of genes on aging-related traits should be rela-
tively sustainable, i.e., it should be on a long timescale,
comparable with aging-related changes in an organism.
Long-term dynamics make this concept feasible for practical
implications.

Analysis of the role of life course in genetic susceptibility
to aging-related traits addresses an important problem of
personalization of medicine and diminishing iatrogenesis
(i.e., unintentional harm resulting from medical treatment or
advice). Iatrogenesis is a serious problem that can result in
losing up to about 100,000 lives each year only in the United
States.73

De novo mutations and genetics of aging-related traits

Although new mutations may play a substantial role in
genetic diseases,74 they are unlikely to play a pivotal role in
aging-related traits. This conclusion is based on empirical
observations of the extent of recent secular changes in inci-
dence of aging-related traits,27 e.g., incidence of type 2 dia-
betes doubled from the 1970s to 1990s in the United States,75

that are not accompanied by adequate extensions in life
span.76 Such extensive changes in health can unlikely be
explained by the modest rate of de novo mutations.77 Ac-
cordingly, the observed secular changes strengthen the dy-
namic concept, i.e., that the existing genetic variants with
different roles at different periods of life in changing envi-
ronment should primarily explain susceptibility to aging-
related traits across human generations.

Etiologic Complexity of Aging-Related Traits

Trait-specific and systemic mechanisms of gene
actions on aging-related traits

The lack of mechanisms of development of aging-related
traits directly programmed by evolutionary selection
implies that genes can confer risks of such traits through
different mechanisms. There are at least two fundamentally
different etiologic groups of such mechanisms.16 One of them
is associated with the biochemical genetic basis of a spe-
cific aging-related trait (trait-specific mechanisms) and the
other with systemic processes of decline in functioning of
an organism with age (systemic or aging-related mecha-
nisms).16,18,78–81

Currently prevailing GWAS mostly focus on a group of
trait-specific mechanisms. The inherent heterogeneity of
aging-related traits is one of the key problems in these stud-
ies.26,40,82 GWAS typically follow a reductionist approach to
overcome this problem, and the basis of this approach is to
select more homogeneous sub-phenotypes. For example, one
common strategy is to focus on endophenotypes that can be in

a causative pathway to a trait in question.83,84 The limitation
of this strategy is that endophenotypes can be even more
heterogeneous than the trait itself. Accordingly, alleles in-
volved in regulation of endophenotypes may not necessarily
be involved in regulation of the downstream trait. Epide-
miology explicitly illustrates this limitation. For example,
30.7% of women who have two and more major physiolog-
ical risk factors for CVD develop this disease between the
ages of 45 and 90 years.38 Accordingly, 69.3% of women do
not develop this disease at those ages, even though they have
those risk factors (these estimates address the problem of
death as a competing risk38). Therefore, genes that regulate
these risk factors in 69.3% of women in this sample will not
affect CVD within their current life span.

Another common GWAS strategy is to more precisely
define a trait in question or select its more homogeneous
components.82 A clear limitation of this strategy is that it
does not guarantee etiologic homogeneity because of limited
knowledge about etiology of aging-related traits.82 Current
GWAS following trait-specific mechanisms do not typically
address the role of life course in aging-related traits.

Existence of a group of systemic mechanisms is supported
by extensive evidence from epidemiology and gerontology
studies that highlight health deterioration with aging
across not just one but multiple health domains, regardless
of population specifics (provided the same levels of popu-
lations’ development are used). Clearly, such systemic
processes should have a genetic basis associated with fun-
damental changes in intrinsic biology with aging.16,18,80,81

This group of mechanisms is not commonly considered in
GWAS, although genetic studies of long-living individuals
(e.g., centenarians) may reveal such mechanisms. Contrary to
the reductionist approach adopted in the trait-specific
mechanism, the aging-related mechanism requires systemic
approaches to embrace the problem of heterogeneity by fo-
cusing on multiple traits. The systemic mechanism naturally
accommodates the dynamic concept of genetic susceptibility
to aging-related traits (Fig. 1B).

Pleiotropy

The diversity of mechanisms of gene actions on aging-
related traits implies that pleiotropy (i.e., the same allele
affects multiple traits) should play a fundamental role in
genetic susceptibility to such traits. Due to confinement of
early GWAS to a specific trait, studies did not typically focus
on pleiotropy—for example, quoting Frazer et al.29 from a
2009 Nature paper: ‘‘A surprising finding of genome-wide
association (GWA) studies is that over 15 loci are associated
with the risk of developing two or more diseases’’ (italic is by
A.K.). Currently, the fundamental role of pleiotropy is more
commonly recognized.23 However, pleiotropy in most
GWAS is still considered in terms of the trait-specific
mechanisms for causally related traits.85 Systemic mecha-
nisms of genetic susceptibility to aging-related traits suggest
a more fundamental role of pleiotropy.42,43,67,86,87 Pleiotropy
is further diversified by the life course processes shaping
actions of genes on aging-related traits (Fig. 1B).

As a result of diversity of mechanisms of pleiotropy, the
same direction of the effects of the same alleles on different
traits may not be generally plausible. Accordingly, the same
allele can confer risks to some traits but protect against the

GENETICS OF AGING-RELATED TRAITS 307



others exhibiting genetic trade-offs.29,87–98 Trade-off is a
broader concept than antagonistic pleiotropy49 because it
may not necessarily include fitness traits. Trade-off can be
one of the sources of weak genetic signals. For example,
trade-offs among upstream traits can result in tiny or no
overall effect on a downstream trait, e.g., the same apolipo-
protein e4 allele can confer risk for CVD but show a pro-
tective effect against cancer that significantly alters estimates
for life span.87 Clearly, mishandling genetic trade-offs may
contribute to iatrogenesis. This is a particularly important
issue to consider in newly emerging methods of multi-
variate genotype–phenotype analyses.99,100 Abundance of
antagonism in gene actions on aging-related traits is sup-
ported by evidence of antagonistic relationships at the phe-
notypic level (e.g., see refs. 93, 101–104).

The problem of replication

Considering the CDCV hypothesis, GWAS assumed that
the true effect of the same genetic variant should be repli-
cated in different populations. However, numerous recent
GWAS reports challenge the CDCV hypothesis and
strengthen the risk hypothesis.32,33 A key concept of the risk
hypothesis is a concept of allelic equivalence, i.e., that dif-
ferent alleles confer risk of the same trait. Therefore, a basic
GWAS concept of replication of the association of the same
allele with the same trait becomes questioned, even in
framework of the risk hypothesis. Evolutionary constraints
and the derivative problem of the diversity of etiologic
mechanisms of aging-related traits further challenge the
traditional concept of replication of association at the same
variant, with the same allele, in the same direction with the
same trait in different populations.

Recognition of this problem22,105–107 suggests that alterna-
tive strategies are needed. One of them is to use biological
evidence for validation.108,109 Another strategy could be to use
pleiotropy. The latter is plausible because evidence on addi-
tive associations of the same genetic variant with different
traits reduces the probability of false discoveries of stochastic
origin, especially, in framework of systemic strategies.

Conclusions and Implications

Integration of theoretical fundamentals with empirical
evidence from different disciplines, including biodemo-

graphy, epidemiology, and gerontology, highlights the in-
herently complex role of genes in aging-related traits (Fig. 1).
Figure 2 summarizes the evolution of conceptual hypotheses
of the structure of linkage of genes with such traits based on
that integrative view. The complex structure of such a link-
age formalized as a dynamic diseasome (Fig. 2E) requires
effective strategies beyond those adopted in currently pre-
vailing studies using genome-wide resources that are unable
‘‘to fully describe the architecture of phenotypic variation.’’26

Straightforward strategies on ‘‘increasing the size of human
disease cohorts is likely only to scale the heterogeneity in
parallel’’ 82 with unclear chances for success.

A major conclusion from the integrative discussion in this
paper is that determinism in the linkage of genes with aging-
related traits is not supported either by theory or by empir-
ical evidence as a key in the strategies aiming to unravel
genetic origin of these traits. As long as such genetic deter-
minism is implausible, one inevitably concludes that the ef-
fects of genes on such traits have to be shaped by processes
characteristic for the period of life between inception (when
genes are transmitted from parents to their children) and
expression of those traits (in post-reproductive period) (Fig.
1B). This implies that the key strategy in studies of genetic
origin of aging-related traits becomes understanding the role
of aging-related processes (including those in utero110) in
changing environment within and across human genera-
tions. The key is to unravel mechanisms that shape genetic
effects on aging-related traits but not merely report signifi-
cant hits. In this regard, next-generation sequencing tech-
nologies may substantially extend the scope of the research
questions about the nature of genetic mechanisms contrib-
uting to regulation of health in late life and life span by
highlighting new variations in the human genome at differ-
ent layers of genomic complexity.111

Investigation of mechanisms is aimed at determining
conditions that activate specific genetic variants or profiles
and exploring to what extent these conditions shaping ge-
netic effects are conserved across specific periods of human
lives and across generations. Given the concept of dynamic
diseasome (Fig. 2E), these studies require systemic ap-
proaches integrating insights not just on one trait but on a
major subset of them. Ideally, these studies should focus on
life span, a wide array of aging-related diseases, and wide
spectrum of endophenotypes characterizing health-related

FIG. 2. Conceptual hypotheses of structure of linkage of genes (G) with aging-related traits (D). (A) The basic concept,
known as the common disease–common variants (CDCV) hypothesis, adopts linear structure when few genes can influence a
given trait. (B) The CDCV hypothesis becomes discouraging whereas the risk hypothesis is strengthened; the risk hypothesis
emphasizes the concept of polygenicity (many genes–one phenotype). (C) Recognition of fundamental role of pleiotropy (one
gene–multiple phenotypes) in aging-related traits implies that the pleiotropy concept should complement the concept of
polygenicity. (D) Superposition of these two concepts constitutes qualitative transition from the linear structure to the net
structure formalized as the diseasome. (E) Recognition of the dynamic concept of genetic susceptibility to aging-related traits
(Fig 1B) leads to the concept of the dynamic diseasome.
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changes occurring over the large portion of individual’s life
and across different generations. Such data are already
available in longitudinal studies of health and aging, in-
cluding the Framingham Heart Study, the Cardiovascular
Health Study, and the Long Life Family Study, among oth-
ers. Despite the great promise of using rich longitudinal data
for systemic analyses of mechanisms of genetic susceptibility
to aging-related traits,63 their potential in studies using
genome-wide resources is heavily underused. Collection of
new longitudinal data for systemic analyses is essential to
advancing progress in the field.
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