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Abstract

Background—VX-809, a cystic fibrosis transmembrane conductance regulator (CFTR)
modulator, has been shown to increase the cell surface density of functional F508de/-CFTR in
vitro.

Methods—A randomised, double-blind, placebo-controlled study evaluated the safety,
tolerability and pharmacodynamics of VX-809 in adult patients with cystic fibrosis (h=89) who
were homozygous for the £F508del-CFTR mutation. Subjects were randomised to one of four
VX-809 28 day dose groups (25, 50, 100 and 200 mg) or matching placebo.

Results—The type and incidence of adverse events were similar among VX-809- and placebo-
treated subjects. Respiratory events were the most commonly reported and led to discontinuation
by one subject in each active treatment arm. Pharmacokinetic data supported a once-daily oral
dosing regimen. Pharmacodynamic data suggested that VVX-809 improved CFTR function in at
least one organ (sweat gland). VVX-809 reduced elevated sweat chloride values in a dose-dependent
manner (p=0.0013) that was statistically significant in the 100 and 200 mg dose groups. There was
no statistically significant improvement in CFTR function in the nasal epithelium as measured by
nasal potential difference, nor were there statistically significant changes in lung function or
patient-reported outcomes. No maturation of immature F508del-CFTR was detected in the
subgroup that provided rectal biopsy specimens.

Conclusions—In this study, VX-809 had a similar adverse event profile to placebo for 28 days
in F508del-CFTR homozygous patients, and demonstrated biological activity with positive impact
on CFTR function in the sweat gland. Additional data are needed to determine how improvements
detected in CFTR function secondary to VVX-809 in the sweat gland relate to those measurable in
the respiratory tract and to long-term measures of clinical benefit. Clinical trial number
NCT00865904

INTRODUCTION

Cystic fibrosis (CF) is the most common autosomal recessive lethal genetic disease in the
Caucasian population, with an incidence of 1:3500 births in the USA. The most common
cause of morbidity and mortality is lung disease, which is characterised by infection,
inflammation and airway damage that leads to respiratory failure.l

CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene,23
which encodes the CFTR protein. CFTR is a member of the ATP-binding cassette protein
family and functions as a chloride ion (CI7) channel and a key regulator of salt and water
transport across a variety of epithelia.*~8 The CFTR gene has >1600° reported disease-
associated mutations, with F508del-CFTR being the most common. F508del-CFTR results
from a 3 bp deletion that leads to the omission of phenylalanine at position 508 of the full-
length protein.10 The resulting F508del protein product is unstable and susceptible to rapid
degradation in the 26S proteosome, with little if any F508del-CFTR at the plasma
membrane.1112 The F508de/-CFTR mutation is found in the majority of patients with CF,13
and therefore the consequences of this mutation on the CFTR protein are important to
address in therapeutic development for CF.

CFTR ‘correctors’ aim to increase the cell surface density of functional CFTR protein,
resulting in improved chloride transport and decreased sodium reabsorption.14-16 \/X-809
restores F508del-CFTR processing and plasma membrane localisation in primary human
bronchial epithelial (HBE) airway cells isolated from patients homozygous for the F508del-
CFTR mutation, achieving ~15% of wild-type CFTR levels as measured by the amount of
chloride channel function and the quantity of fully mature, C-Band CFTR.17
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In this report, we describe the safety, tolerability, pharmaco-dynamics and pharmacokinetics
(PK) of escalating doses of VX- 809 in patients with CF homozygous for the F508del-CFTR
mutation compared with placebo.

This study was a randomised, double-blind, placebo-controlled, multiple-dose, multicentre,
phase lla study. Institutional Review Board approvals and informed consents were obtained
for all study subjects.

Subjects enrolled in the study had a confirmed diagnosis of CF, accompanied by a sweat
chloide value of =60 mmol/Il. All subjects were =18 years of age, and were required to have
the F508del-CFTR mutation on both alleles. At screening, subjects were required to have a
forced expiratory volume in 1 s (FEV1) of at least 40% of predicted normal for age, gender
and height (Knudson standards).18

Study design

End points

Subjects were enrolled into two cohorts, group A and group B. Group A subjects were
randomised to receive VX-809 once daily at doses of 25 mg or 50 mg, or placebo in a 2:2:1
randomisation ratio. After 15 group A subjects completed 28 days of treatment, a safety
review was conducted by an independent Data Monitoring Committee. Enrolment in group
B began following the Data Monitoring Committee review. In group B, subjects were
randomised to receive VX-809 at doses of 100 mg or 200 mg, or placebo in a 2:2:1 ratio for
28 days. All study sites, the patients, and the sponsor remained blinded to treatment
assignment throughout the study.

The primary objective, evaluation of safety and tolerability of VX-809, was assessed by
adverse events (AEs), haematology, clinical chemistry, urinalysis, ECG, vital signs and
physical examinations. Secondary objectives included evaluation of the pharmacodynamic
impact of VX-809 on CFTR function. Measures of CFTR activity included sweat chloride
and nasal potential difference (NPD).1? The latter was considered optional. Other secondary
end points included spirometry to measure pulmonary function (ie, FEV1, forced expiratory
flow 25-75% (FEF,5_759,) and forced vital capacity (FVC)) and the CF Questionnaire-
Revised (CFQ-R), a disease-specific patient-reported outcome.2? The minimal clinically
important difference in respiratory domain (MCID) is improvement =4.21 The details of
CFTR biomarkers and pharmacokinetic analysis are included in the Supplemental Methods
section.

Statistical analyses

Safety data were analysed primarily using descriptive statistics, and efficacy data were
analysed primarily using analysis of covariance (ANCOVA) models. The planned total
sample size of 90 subjects provided a study power of >97% to detect a 20 mmol/l reduction
in sweat chloride concentration from baseline, and a probability of 99% to observe at least 1
adverse event in the study. All subjects who received at least one dose of study drug were
included in the analyses.

Thorax. Author manuscript; available in PMC 2013 August 19.
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A total of 109 adult subjects with CF who were homozygous for the F508del-CFTR
mutation (based on screening medical history) were screened and 89 were randomised to
one of four VX-809 dose groups (25 mg (n=18), 50 mg (n=18), 100 mg (n=17), 200 mg
(n=19)) or to placebo (n=17). Confirmatory genotyping identified one subject randomised to
the 50 mg VX-809 group who was heterozygous for F508del-CFTR despite a medical
history indicating homozygosity. Safety and efficacy data obtained from this subject were
included in the final analysis. The identity of this subject’s non-F508del allele was not
available (based on parameters of the informed consent document for that study site).
Baseline characteristics are provided in table 1. Median sweat chloride values and FEV,
percentage predicted were similar between the different groups and consistent with the
values reported in the literature for patients homozygous for the F508de/-CFTR mutation.
The baseline median sweat chloride was 103.5 mmol/l and the median baseline FEV was
71% predicted. The study groups were well matched except for trends towards less severe
lung disease in the placebo and 25 mg dose groups.

Safety and AE profile

PK results

The incidence of AEs was similar between dose groups (table 2). Respiratory events were
the most commonly reported type of AE, with cough occurring in 46% of VVX-809-treated
subjects and 41% of placebo-treated subjects. There was no difference in the incidence of
physician-diagnosed pulmonary exacerbations between VVX-809- and placebo-treated
subjects (17% of VX-809 subjects compared with 12% of placebo subjects; p=0.62). AEs
that occurred in more than one subject in any VX-809 treatment arm are included in table 2.
Eight AEs were considered severe, including fatigue, sinus congestion, musculoskeletal
discomfort, two events of cough and three events of acute pulmonary exacerbation. All
pulmonary exacerbations were considered serious.

Four of 89 (5%) subjects discontinued study drug during the study, one subject in each of
the VX-809 dose groups. No placebo-treated subjects withdrew from treatment. All
discontinuations were due to the occurrence of respiratory AEs. There were no clinically
significant changes in laboratory findings during the study.

Plasma concentrations of VX-809 were measured by a fully validated bioanalytical method.
PK parameters estimated at the four dose levels of VX-809 on days 1 and 28 are
summarised in table 3. VX-809 appeared to be slowly absorbed from the gut in subjects with
CF with median time to reach maximum concentration (tyax) Values ranging from 3to 4 h
across all doses on days 1 and 28. Based on predose PK samples collected from day 1 to day
28, plasma steady-state concentrations appeared to be reached by day 7 at all dose levels
with a mean accumulation ratio ranging from 1.7 to 2.0 on day 28 (based on area under the
cuve (AUC) over the 24 h dosing period, AUCq_o4 ). The time to reach steady state and the
extent of accumulation observed in this study were consistent with a terminal half-life
approaching 24 h. The estimated mean values of this PK parameter in this study were
slightly lower (range from 15 to 18 h) which may be explained by the low number of PK
samples collected beyond 24 h on the last dosing day. The estimated oral VVX-809 clearance
(ie, volume of plasma purified per unit of time) at steady state was relatively low (<2%
hepatic blood flow) and comparable for all doses. The estimated volume of distribution of
VX-809 at steady state (V,/F) suggested a potential diffusion of the drug into tissues.
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Maximum (Cax) and total (AUCq_p4 ) exposure to VVX-809 increased proportionally with
V' X-809 dose increases from 25 to 200 mg over the 28 days of treatment. The intersubject
variability observed for VX-809 in subjects with CF appeared to be moderate and
comparable across all doses for Crhax (30-40%) but with a trend to increase slightly with
dose for AUCq_p4 1, (from 40% to 60%) on day 28.

CFTR bioactivity

The effects of VX-809 on F508del-CFTR processing and function were evaluated
throughout the trial. The assessments included measurements of sweat chloride
concentration (in all subjects) and NPD (in 71 subjects). The relative amounts of the
immature (B-Band) and mature (C-Band) forms of F508de/-CFTR, which are markers of
protein maturation beyond the endoplasmic reticulum and Golgi, were measured in biopsies
of the rectal epithelium in 34 subjects.

Sweat chloride

Figure 1 shows changes in sweat chloride values, which were reduced in a dose-dependent
manner (p=0.0013) in VVX-809- treated subjects. The reduction in sweat chloride values was
rapid and sustained, with measurable changes seen within 7 days of VX-809 dosing (figure
1A). The mean change from baseline in sweat chloride concentration (mmol/l) after 7 days
was 2.2 in the placebo group, —0.5 in the 25 mg group, —3.7 in the 50 mg group (95% ClI
-7.1t0 -0.28, p=0.03), —2.3 in the 100 mg group and —6.6 in the 200 mg group (95% ClI
-10.27 to —2.83, p=0.0008). At day 28, the mean treatment differences from baseline
(—placebo) for the 25, 50, 100 and 200 mg groups were +0.10, —4.61, —6.13 (95% CI -12.25
to —0.01) and —8.21 mmol/l (95% CI —-14.33 to —2.10), respectively (figure 1B). These
differences were statistically significant versus placebo for the 100 mg (p<0.05) and 200 mg
(p<0.01) groups. Following 7 days of drug washout, mean sweat chloride values returned to
approximately pretreatment levels (figure 1A).

The number of subjects whose sweat chloride values were reduced by the threshold
(‘responder’) values was evaluated using predefined and posthoc study criteria. Using a
posthoc responder criterion of 210 mmaol/l reduction, six subjects (38%) in the 200 mg
group and six subjects (40%) in the 100 mg group responded compared with none of the
placebo-treated patients (p=0.02 for both VX-809 treatment groups). In the 25 and 50 mg
dose groups, there were no subjects classified as responders by either criterion. Using the
predefined responder criterion, only one subject (6.3%, in the 200 mg dose group) had a =20
mmol/l response to VX-809 (p=NS).

Nasal potential difference

Seventy-one subjects underwent NPD measurements throughout the study. There was no
significant change in CFTRdependent NPD parameters (chloride or sodium transport) in any
of the dose groups. Supplementary figure 1 summarises the CFTR chloride ion transport
parameters (change in chloride-free isoproterenol response) for the VVX-809 treatment
groups from baseline to day 28 after removing the change in the placebo group (treatment
difference).

CFTR B-to C-Band maturation

Thirty-four subjects provided rectal biopsy tissue for evaluation of F508del-CFTR
maturation. Among the 33 subjects who were homozygous for the F508del-CFTR allele, no
mature C-Band was detected (supplementary figure 2). Only one subject in the highest dose
group (VX-809 200 mg) provided rectal biopsy tissue.
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Clinical outcomes

Spirometry—There were no significant changes in lung function (FEVq, FVC, FEF5_750)
in any of the dose groups, including changes in percentage predicted values versus baseline
and placebo, or raw measures of litre flow (data not shown). Figure 2 shows the percentage
change relative to baseline FEVq (percentage predicted) for each study group across all
study visits. After 28 days of treatment, the mean percentage change from baseline in FEV,
percentage predicted was 0.07, —2.46, —2.15, 0.32 and 0.47 in the placebo, 25, 50, 100 and
200 mg dose groups, respectively (p=NS).

Patient-reported outcomes—Supplementary table 1 summarises the change in CFQ-R
measures (day 28 vs baseline) across the placebo- and VVX-809-treated subjects. There were
no clear or sustained changes in the respiratory domain or in any other subdomains of the
CFQ-R in any dose group. After 28 days, the respiratory domain score in the placebo group
increased by 4.5. After 28 days of treatment in the 25, 50, 100 and 200 mg dose groups, the
changes were -5.2, -6.3, —1.30 and +2.2, respectively.

DISCUSSION

These data provide evidence of a safety and tolerability profile sufficient to support further
clinical evaluation of VX-809 in subjects with CF homozygous for the F508del-CFTR
mutation, the most common CF mutation worldwide. Over a dosing range of 25-200 mg,
study participants reported symptoms and AEs that were similar to those in the placebo
group, and similar to those commonly found in adult patients with CF. One subject in each
of the four dose groups developed a pulmonary exacerbation during the 28 day period of
treatment, and the incidence of symptoms such as cough was similar across the dose groups
and to that of the placebo group.

Sweat chloride concentration measurements demonstrated modest, statistically significant
improvements in VVX-809-treated subjects. This effect was dose dependent, sustained during
the treatment period and rapidly reversed following discontinuation of VX-809. This
suggests that VVX-809 increased the chloride transport function of CFTR in the sweat gland,
and supports the idea that VVX-809 is bioactive in the sweat gland of patients homozygous
for the F508del-CFTR mutation. These results also support the hypothesis that small
molecule correction of F508del-CFTR is feasible. The results provide support for the use of
previously obtained CFTR biomarker data sets for study planning of new CFTR modulators.
Using this paradigm, the treatment effects on sweat chloride reported with the CFTR
potentiator VX-770 in patients with CF with the G551D-CFTR mutation were successfully
used to power the current study to detect improvements in sweat chloride (within-group
comparisons and with placebo). It is not clear if the reductions in sweat chloride in this study
achieved a peak effect (figure 1), and this raises the question of whether higher doses of
VX-809 may produce greater effects on F508de/-CFTR. The peak corrective effect of
VX-809 on F508del-CFTR in primary HBE cells has been estimated at 3 uM (F. Van Goor,
personal communication, 2011). Such concentrations of VX-809 were observed in the
plasma of patients in the 100 and 200 mg dose cohorts at steady state. However, the drug
exposure levels achieved in patient target tissues at these doses of VX-809 is not known.

The other biomarkers of CFTR activity (NPD, immunaoblot from rectal biopsy tissue) failed
to demonstrate changes over the course of VX-809 treatment. This may reflect the trial’s
lack of power to detect a predicted change in these measurements based on in vitro results
with VX-809 in F508del/F508del primary HBE cells (maximum of ~15% of wild-type
CFTR function).1” The intrinsically greater variability of NPD measurement (potentially
compounded by the large number of NPD sites used in this trial (n=19)) led to a greater
likelihood of Type 2 error in analysing biomarker responses. To minimise a Type 2 error

Thorax. Author manuscript; available in PMC 2013 August 19.
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and attain an 80% power to detect a chloride-free isoproterenol response approximating 30%
of that seen with VX-770 in patients with CF with the G551D-CFTR mutation, the current
study would have required >50 subjects per study group undergoing the NPD.1722

In vitro studies also suggest that measurement of the effect of VX-809 on CFTR may be
below the lower limits of sensitivity of immunoblot assays performed on small biopsy
samples.1” Pretrial studies indicated that the assay developed here was capable of detecting
~10% of C-Band CFTR relative to wild-type levels (ex vivo dilution experiments using
human rectal biopsy specimens obtained from non-CF study subjects; see online
supplement, figure 2B). The sensitivity of this assay to detect F508de/-CFTR correction
relative to functional measurements in vivo is unknown, but in vitro studies in a variety of
model systems suggest that biochemical detection of F508de/-CFTR correction may be less
robust than functional measures in intact epithelia.1’23 The failure to detect \VX-809 effects
on F508del-CFTR outside of the sweat gland could also reflect tissue-specific differences in
V' X-809 bioavailability and/or F508del-CFTR responsiveness to VX-809 treatment.

No improvements in clinical outcomes, including lung function and quality of life (CFQ-R),
were observed over the course of this study. The trial was not powered to detect such
improvements in these measures, and longer or larger trials of VX-809 (alone or in
combination with CFTR potentiators) may be necessary to determine the clinical effect of
these CFTR modulators.

Previous trials of systemically dosed CFTR modulators have frequently described discordant
effects on CFTR-dependent biomarkers and pulmonary outcome measures. For example,
PTC124 has been shown to have detectable bioactivity by NPD over 2 weeks of treatment in
patients with CF possessing premature termination codons in CFTR, while sweat chloride
measurements remained unchanged.24 Improvements in lung function and cough frequency
were not observed until months of treatment were completed.2> Systemic gentamicin has
also been shown to suppress PTCs2® and improve NPD parameters in two pilot studies, but
effects on sweat chloride were predominantly limited to a subset of patients with the Y122X
mutation.2728 Using a separate CFTR modulator strategy, Rubenstein and colleagues treated
F508del-CFTR homozygous patients with CF with the F508de/-CFTR modulator 4-phenyl
butyrate. Improvements in NPD-dependent chloride secretion were seen, but there were no
effects on sweat chloride.2® The reasons for discrepancies in CFTR biomarkers across
different CFTR modulator strategies are not clear, but suggest that organ effects may vary
due to tissue drug availability, CFTR regulation in different cell types or the responsiveness
of mutant CFTR across different tissue compartments and modulator strategies. These
uncertainties should be considered in future study planning, as should the selection and
continued development of CFTR biomarkers to demonstrate study drug bioactivity.

In conclusion, the results provide support for the continued evaluation of VVX-809 in patients
with CF with the F508de/-CFTR mutation. This study demonstrated that VVX-809 has an
acceptable safety profile. It also provided evidence of the effect of VX-809 on improving
CFTR function based on dose-dependent reductions in F508del-CFTR activity in the sweat
gland using a CFTR corrector administered orally to subjects with CF, and further
investigation is warranted to evaluate the potential of this therapeutic strategy to increase
F508del-CFTR activity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

(A)Change in sweat chloride measurements from baseline for placebo- and VX-809-treated
subjects. Mean values are shown (£95% Cl, based on analysis of covariance (ANCOVA)
analysis) predose, at weekly intervals over the course of treatment, and 1 week following
discontinuation of study drug. (B) Sweat chloride change from baseline to day 28 treatment,
difference versus placebo (mean (95% ClI, based on ANCOVA analysis)). Sweat CI~
changes were seen as early as day 7 of treatment (data not shown), and reached statistical
significance for the 100 and 200 mg dose groups (p<0.05 and p<0.01, respectively).
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Figure 2.

Percentage change from baseline in forced expiratory volume in 1 s (FEV1) % predicted
(95% ClI, based on analysis of covariance (ANCOVA) analysis). No significant changes in
FEV; compared with baseline or placebo were seen for any of the VX-809 dose groups over
the course of the study.
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