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Abstract
A highly selective method for the synthesis of asymmetrically substituted carbocycles and
heterocycles from unactivated aldehyde–olefin precursors has been achieved via enantioselective
SOMO-catalysis. Addition of a catalytically generated enamine radical cation across a pendent
olefin serves to establish a general asymmetric strategy towards the production of a wide range of
formyl-substituted rings with alkene transposition. Conceptually, this novel mechanism allows
direct access to “homo-ene” type products.

Carbocyclic and heterocyclic ring systems bearing asymmetric substitution patterns are
widely distributed among medicinal agents and bioactive natural products.1 A preeminent
goal of organic synthesis is the development of technologies to enable the rapid and
enantioselective construction of these high–value cyclic substructures from simple starting
materials.2 Along these lines, the powerful carbonyl-ene cyclization delivers
stereochemically complex small ring systems from achiral aldehyde–olefin precursors in a
routine and predictable fashion through a mechanism that does not require pre-
functionalization of the olefin component.3 This fundamental transformation has been
widely studied and a number of catalytic enantioselective carbonyl-ene protocols have been
developed.4,5 Expanding upon this general concept, we sought to invent a one-carbon
extended, “homo-ene” variant, wherein unactivated substrates undergo asymmetric α-
carbonyl cyclization through a SOMO-activation mechanism, to stereoselectively generate
cyclic adducts bearing synthetically useful aldehyde and olefin functional handles. We
describe herein the development of the first asymmetric “homo-ene” cyclization, a
transformation we anticipate will be of significant value to the chemical synthesis
community.

Design Plan
In 2007, our laboratory introduced a mode of asymmetric activation termed SOMO (singly
occupied molecular orbital) organocatalysis.6 Subsequent to our initial discovery, we have
established SOMO organocatalysis as a remarkably robust and versatile activation platform,
capable of facilitating a range of previously elusive transformations, including direct
enantioselective α-allylic alkylation,7 α-enolation,8 α-vinylation,9 α-chlorination,10 and α-
arylation,11 as well as polycyclization12 and cycloaddition13 to generate cyclohexyl rings
and pyrrolidines. Recently, we questioned whether the SOMO platform might be leveraged
for the development of an asymmetric α-carbonyl “homo-ene” cyclization of unactivated
aldehyde-olefin substrates. While the traditional carbonyl-ene cyclization proceeds through
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a LUMO-lowered 2π-electron pathway, the SOMO activation mode is distinguished by an
electrophilic 3π-electron species (1-he). Based on precedent from our lab,6–13 we
anticipated that this enamine radical cation would add stereoselectively from the unshielded
Re-face to the pendent olefin, thus generating a transient alkyl radical. Operation of a
radical-polar crossover mechanism14 would serve to oxidize the radical to the corresponding
carbocation (2). Finally, deprotonation and hydrolysis would regenerate the amine catalyst
and deliver the enantioenriched cyclized product. Central to the proposed strategy was our
expectation that cyclization would proceed via a highly ordered chair-E transition state15 (1-
he) to deliver the product with trans diastereoselectivity in a fashion that is highly analogous
to the venerable ene 2π-electron pathway (1-ene). Notably, this study would require only
simple olefins as the tethered SOMO-phile component, a substantial expansion of the scope
and utility of this enantioselective oxidation pathway.16

Results
The proposed transformation was first evaluated in the context of the amine-tethered prenyl
aldehyde substrate 3. As presented in Table 1, treatment of this aldehyde with base and
Fe(III)trisphenanthroline in the presence of an imidazolidinone catalyst (5, 6, or 7) led to the
stereoselective formation of piperidine 4 with high levels of trans diastereoselectivity and
enantiocontrol. Optimal selectivities were obtained with the naphthyl-bearing amine catalyst
7, presumably due to enhanced facial shielding of the SOMO intermediate (1-he). Variation
of the counterion (X−) in the Fe(III)trisphenanthroline salt revealed the soluble
trisbistriflamide salt to be most effective (entry 6).

Having identified optimal conditions for the organocatalytic “homo-ene” reaction, we next
explored the scope of the reaction with respect to the tethering moiety. As shown in Table 2,
the method was found to readily accommodate significant structural diversity in the linker,
offering enantioselective access to a wide range of 5- and 6-membered carbocyclic and
heterocyclic ring systems. Under our conditions, achiral substrates were cyclized to generate
piperidine, pyrrolidine, tetrahydropyran, tetrahydrofuran, cyclopentane, and cyclohexane
motifs with good to excellent diastereoselectivity (>20:1), enantioselectivity (85–99%) and
yield (62–95%). Notably, the formation of tetrahydrofuran and pyrrolidine adducts was
achieved without β-oxy or β-amino elimination from the corresponding aldehyde precursors
(entries 2 and 3), demonstrating the mild conditions employed in generating the 3π-electron
activated intermediate. The products depicted in Table 2 represent important structural
motifs that are widely encountered throughout natural product synthesis and drug
discovery.1

The reaction is also tolerant of a broad array of olefin systems as suitable π-nucleophiles for
this homo-ene type cyclization. As highlighted in Table 3, alkylidene cycloalkanes of
various ring sizes readily undergo enantioselective C–C bond formation to generate the
corresponding bicyclic products in good yield and with excellent stereocontrol (entries 1–3).
In addition, α-carbonyl cyclization using styrenyl olefins is readily accomplished (entry 4).
Importantly, non-symmetrical 1,2,2-trisubstituted alkenes, e.g. bearing methyl and
cyclohexyl groups, can generate the purported carbocation intermediate (2) before
undergoing selective deprotonation to generate single olefin-transposition regioisomers
(entry 6, >98:2 rr). We note that, at this stage, unfunctionalized 1,2-disubstituted olefins are
not effective substrates for this transformation, presumably due to the higher oxidation
potential for conversion of secondary radicals to secondary cations in comparison to their
tertiary radical counterparts.17 Despite this current limitation in scope, cycloadducts bearing
monosubstituted olefin substituents are nonetheless readily accessible from allyl silane
precursors (entry 5).
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We next sought to examine the ability of the amine catalyst to override the influence of
stereochemical information already present on the intramolecular cyclization substrate. We
recognized that if catalyst-controlled stereodifferentiation could be achieved, it should be
possible to selectively generate a diverse array of highly complex cyclic systems bearing
three or more contiguous stereocenters. As shown in Table 4, enantioenriched aldehyde
substrates incorporating β-methyl substitution (99% ee) were subjected to our ring-closing
conditions with either the S,S-7 or R,R-7 catalyst. Remarkably, catalyst-mediated
cyclization in both enantiomeric series successfully delivered ring systems bearing three
contiguous stereocenters, with excellent selectivity for the trans-stereochemical relationship
across the newly forming bond. In each case, the amine catalyst strongly dictated the
diastereochemical outcome, effectively overriding the influence of the substrate β-methyl
stereocenter with either catalyst antipode. Presumably, the steric demand of the amine
catalyst provides a major conformational lock, enforcing a chair-E transition state (see 8 and
9) and thereby matching or overriding the inherent substrate bias.

Finally, in an extension of the findings shown in Table 4, we have developed a simple two-
step organocatalytic protocol by which to achieve the overall conversion of simple achiral
aldehydes to stereochemically complex cyclic adducts. As shown in Scheme 1, substrates 10
and 11 were subjected to sequential enantioselective organocatalytic transfer hydrogenation
(using catalyst 12) followed directly by asymmetric homo-ene cyclization (using either
enantiomer of catalyst 7) to generate the observed products in good overall yield and with
excellent selectivity. The transformations depicted in Scheme 1 serve to highlight the ability
of the SOMO-mediated homo-ene technology to effect the rapid production of
stereochemical complexity in cyclic architectures.

In summary, enantioselective SOMO-organocatalysis has been leveraged for the
development of a potentially general approach toward the synthesis of stereochemically rich
carbocycles and heterocycles from achiral precursors. This protocol bears analogy to the
venerable carbonyl-ene cyclization, yet provides access to a differentiated array of complex
cyclic scaffolds incorporating valuable aldehyde and olefin functional handles. We
anticipate that this method will find broad application among practitioners of organic
synthesis.
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Figure 1.
Impetus and design elements of home-ene reaction
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Scheme 1.
Sequential organocatalytic hydrogenation-cyclizationa
Conditions: Step 1) 2.5 equiv. 13, 20 mol% 12, CHCl3, −50 °C, 24 hours. Step 2) 2.5 equiv.
Fe(phen)3(Tf2N)3, 2.5 equiv. Na2HPO4, 20 mol % 7, −30 °C, DME, 12
hours. aDiastereoselectivities determined by 1H-NMR analysis. Enantiomeric excess
determined by chiral HPLC analysis of the corresponding alcohol or terephthalic acid
monomethyl diester.
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Table 1

Effect of catalyst structure and counterion on cyclization

entry catalyst (R) X− yield (%)a ee (%)b

1 5 (H) SbF6
− 41% 89%

2 6 (Ph) SbF6
− 41% 97%

3 7 (1-naphthyl) SbF6
− 43% 99%

4 7 (1-naphthyl) ClO4
− 12% 99%

5 7 (1-naphthyl) PF6
− 73% 99%

6 7 (1-naphthyl) Tf2N− 95%c 99%

a
Determined by 1H NMR using internal standard. Diastereoselectivity >20:1 in all cases.

b
Determined by chiral SFC analysis of the corresponding alcohol, absolute configuration determined by chemical correlation.

c
Isolated in 93% yield.
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Table 2

Scope of the enantioselective homo-ene ring products

a
Determined by chiral HPLC analysis of the alcohol or aryl ester.

b
Determined by 1H-NMR analysis.

c
Determined by 1H-NMR analysis using an internal standard.
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Table 3

Scope of π-nucleophile, selectivity of olefin transposition

a
R = 1-naphthyl.

b
Determined by chiral HPLC analysis of the alcohol or aryl ester. Diastereoselectivities determined by 1H-NMR analysis.

c
Determined by 1H-NMR analysis using an internal standard.
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Table 4

Production of rings with three contiguous stereocentersa

a
Diastereoselectivities determined by 1H-NMR analysis.

b
Determined by 1H-NMR analysis using an internal standard.
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