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Abstract
There has been growing interest in the use of resting-state functional magnetic resonance imaging
(rsfMRI) for the assessment of disease and treatment, and a number of studies have reported
significant diseaserelated changes in resting-state blood oxygenation level dependent (BOLD)
signal amplitude and functional connectivity. rsfMRI is particularly suitable for clinical
applications because the approach does not require the patient to perform a task and scans can be
obtained in a relatively short amount of time. However, the mechanisms underlying resting-state
BOLD activity are not well understood and thus the interpretation of changes in resting state
activity is not always straightforward. The BOLD signal represents the hemodynamic response to
neural activity, and changes in resting-state activity can reflect a complex combination of neural,
vascular, and metabolic factors. This paper examines the role of neurovascular factors in rsfMRI
and reviews approaches for the interpretation and analysis of resting state measures in the
presence of confounding factors.
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Introduction
Measures of resting-state functional connectivity based on the blood oxygenation level
dependent (BOLD) signal have the potential to significantly enhance the diagnosis and
treatment of disease (Fox and Raichle, 2007). Because they do not require the performance
of a task, resting state BOLD measures can be more readily integrated into clinical protocols
as compared to more traditional task-related BOLD measures. Indeed, a growing number of
resting-state functional magnetic resonance imaging (rsfMRI) studies are demonstrating that
resting-state connectivity measures may serve as a sensitive marker of disease. For example,
with Alzheimer's disease, a range of studies has found reduced connectivity in various
resting-state networks (Allen et al., 2007; Greicius et al., 2004; He et al., 2007; Li et al.,
2002; Liu et al., 2008; Sorg et al., 2007; Wang et al., 2006, 2007). These decreases in
resting-state BOLD connectivity are typically interpreted as an impairment of the neural
connections between functionally related brain regions. However, it is critical to note that
the interpretation of such studies is complicated by the fact that some diseases, such as
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Alzheimer's disease, are likely to lead to changes in both neural connectivity and
neurovascular coupling (Iadecola, 2004). As the BOLD signal reflects the hemodynamic
response to neural activity (Buxton et al., 2004), factors that reduce the neurovascular
coupling between neural fluctuations and the BOLD signal can diminish the amplitude of
BOLD signal fluctuations, leading to a decrease in the correlation between resting-state
BOLD fluctuations from different brain regions without a concomitant decrease in the
neural connectivity. The overall situation is depicted in Fig. 1, in which the correlation r
between the measured BOLD fluctuations from regions 1 and 2 depends on both the
correlation ρ between neural power fluctuations in these regions and the neurovascular
coupling between neural and BOLD fluctuations. There are also additional noise
components that will be discussed in a later section. In addition to disease, other factors,
such as drugs, anesthesia, medication, and variations in individual physiology, can cause
changes in neurovascular coupling and modulate measures of resting-state connectivity
(Greicius et al., 2008; Khalili-Mahani et al., 2012; Kiviniemi et al., 2005; Li et al., 2000;
Peltier and Shah, 2011; Wong et al., 2012).

The goal of this paper is to provide an overview of the role of neurovascular coupling in
rsfMRI studies. The paper will primarily review studies involving pharmacological factors
in which the relatively well controlled modulation of the neurovascular state facilitates
interpretation. After a brief review of the basic BOLD signal model and the normalization
and calibration approaches that have been previously developed for task-related fMRI, I will
discuss how these models and approaches can be extended to the analysis and interpretation
of rsfMRI studies. I will also touch upon the controversial role of global signal regression in
rsfMRI studies and discuss the use of multimodal measures for better understanding the
relative contributions of neural and vascular factors to rsfMRI measures of connectivity.

Neurovascular coupling and the task-related BOLD signal
Before addressing the issues with the interpretation of rsfMRI studies, we briefly review the
role of neurovascular coupling within the context of task-related fMRI, where the issue has
been extensively considered by a number of investigators. The term neurovascular coupling
is used to broadly describe the link between neural activity and the hemodynamic changes
that give rise to the BOLD signal. To date, most functional magnetic resonance imaging
(fMRI) studies have implicitly interpreted the blood oxygenation level dependent (BOLD)
signal as a measure of neural activity. However, the BOLD signal does not directly measure
neural activity, but rather reflects the complex interplay of neural, vascular, and metabolic
processes (Buxton et al., 2004). Specifically, neuronal activation gives rise to changes in
cerebral blood flow (CBF), the cerebral metabolic rate of oxygen (CMRO2), and cerebral
blood volume (CBV). These factors then modulate the deoxyhemoglobin (dHb) content of
the brain microvasculature, perturbing the magnetic field within and around blood vessels
and thus altering the local magnetic resonance signal.

Although the mechanisms that underlie the BOLD signal are still under investigation, most
task-related fMRI studies interpret differences (e.g., between conditions, subjects, or
populations) in the BOLD signal as differences in neural activity. While this interpretation is
reasonable for studies of a specific brain region in healthy young subjects, the validity of the
BOLD signal as a measure of neural activity is less well established when comparing the
signal across brain regions, subjects, or conditions in which there may be significant
variations in physiology. Indeed, there has been a growing appreciation that changes in
neurovascular coupling, due to factors such as disease, age, and medication, can
significantly alter the task-related BOLD response (Carusone et al., 2002; D'Esposito et al.,
2003; Iannetti and Wise, 2007; Lindauer et al., 2010). For example, Cohen et al. (2002)
demonstrated that changes in baseline cerebral blood flow could significantly alter both the
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amplitude and shape of the BOLD response. In subsequent work Behzadi and Liu (2005)
demonstrated that the observed changes in the BOLD response could be accounted for by
changes in the biomechanical dynamics of the vascular system without any underlying
change in neural activity.

In an effort to address variations in neurovascular coupling, two main approaches have been
proposed for making the task-related BOLD signal a more accurate reflection of neural
activity within the context of human fMRI studies. The first approach uses normalization to
remove variability in the BOLD signal that is primarily due to differences in baseline
vascular and metabolic factors. In this approach, an additional measure that is considered to
be unrelated to neural activity is acquired and used to account for the variability in the
BOLD signal. For example, the functional BOLD response amplitude can be normalized
(typically through division) by the BOLD response to hypercapnia (Biswal et al., 2007;
Cohen et al., 2004; Handwerker et al., 2007; Thomason et al., 2007) or measures of baseline
CBFand venous oxygenation (Liau and Liu, 2009; Lu et al., 2010). Of particular relevance
in this paper, resting-state BOLD amplitudes have also been used to normalize task-related
BOLD response amplitudes (Biswal et al., 2007; Kannurpatti and Biswal, 2008).

In the second main approach, combined measures of BOLD and CBF signals are used to
estimate functional changes in CMRO2. In animal models, CMRO2 measures have been
shown to strongly reflect changes in neuronal firing rates, even in the presence of large
modulations of the baseline neural and vascular states (Maandag et al., 2007; Smith et al.,
2002). For human studies, a practical approach uses the BOLD signal model described by
Davis et al. (1998) and based on the seminal work of Ogawa et al. (1993). As compared to a
typical fMRI experiment which requires only measures of the task-related BOLD response,
this approach requires the additional acquisition of the task-related CBF response (obtained
using arterial spin labeling MRI) as well as measures of the BOLD and CBF responses to
gas manipulations, such as hypercapnia and hyperoxia (Gauthier et al., 2012).

In the BOLD signal model, the fractional BOLD signal change (δ/S0) is related to the
underlying changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen
(CMRO2) through the following equation:

(1)

where f = CBF/CBF0 and m = CMRO2/CMRO2,0 represent the physiological quantities
normalized by their respective baseline values. The unitless parameter M defines the
maximum possible BOLD signal change for a brain region and can be written as M = A ·

CBV0 · TE ·  where A is a multiplicative factor that depends on magnetic field
strength, CBV0 is the baseline blood volume, TE denotes echo time, and [dHB]0 is the
baseline concentration of deoxyhemoglobin (Hoge et al., 1999a). The additional parameters
are determined empirically but are well approximated as α ≈ 0.4 and β ≈ 1.5 (Buxton et al.,
2004). To characterize how the balance of changes in CBF and CMRO2 affects the BOLD
signal, it is also useful to define a ratio n = (f –1)/(m – 1) that reflects the strength of the
coupling between the CBF and CMRO2 changes (Hoge et al., 1999b).

The original Davis approach uses measurements of the BOLD and CBF responses to a
hypercapnic challenge (e.g., inhalation of 5% CO2) to estimate the parameter M and then
uses the functional BOLD and CBF responses to estimate the functional CMRO2 response.
More recent developments of the method include additional gas challenges, such as
hyperoxia and simultaneous hyperoxia and hypercapnia (Chiarelli et al., 2007; Gauthier and
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Hoge, 2012; Gauthier et al., 2012). These newer methods also enable the quantification of
resting state CMRO2 levels and the estimate of absolute changes in the functional CMRO2
responses, whereas the Davis method is limited to estimates of relative CMRO2 changes.

Although calibration approaches have the potential to offer a deeper interpretation of fMRI
studies, their application has been somewhat limited by the added experimental and
technical complexities of the method. In contrast, normalization approaches have the
advantage of being easier to apply and integrate into existing studies, but offer more limited
information. An extensive review of the application and limitation of normalization and
calibration approaches for task-related fMRI is provided in Liu et al. (2013).

Neurovascular coupling in the resting state
Although there are limited studies on the subject, the dependence of the BOLD signal on
changes in flow and metabolism in the resting state appears to be similar to the relation
observed for evoked responses. Fukunaga et al. (2008) examined the ratio of the root mean
square (RMS) amplitudes of BOLD and CBF fluctuations in the visual cortex and found
similar values of the ratios during visual stimulus and rest, suggesting a similar metabolic
component in the two states. Rack-Gomer (2011) examined the relation across subjects
between BOLD and CBF RMS amplitudes during both a motor task and rest. Using the
calibrated fMRI approach of Davis et al. (1998) to estimate the relative coupling ratio n
between CBF and CMRO2 changes (described in greater detail below), she found evidence
for tighter coupling during the rest state as compared to the motor task state. The lower
coupling ratio estimated for the rest state was similar to the ratios observed for cognitive
paradigms and brain regions with relatively weak task-related responses, such as the
memory encoding response in the medial temporal lobe (Restom et al., 2008). Wu et al.
(2009) used the Davis model to estimate resting-state CMRO2 time courses and
demonstrated that the resulting functional connectivity maps were similar to those obtained
using BOLD and CBF time courses. It should be noted that because the resting state BOLD
amplitudes were much smaller than the assumed maximal BOLD response parameter M
used in the model, the CMRO2 estimates were dominated by the CBF responses (Restom et
al., 2008), resulting in a strong spatial similarity between the CMRO2 and CBF functional
connectivity maps.

The prior studies suggest that the Davis model serves as a reasonable framework for
understanding the effect of the neurovascular state on both task-related and resting-state
BOLD signals. In the signal model of Eq. (1), the BOLD signal dependson both the baseline
parameter M and the balance between functional changes in CBF and CMRO2, with the
BOLD signal amplitude rising with increases in CBF and decreases in CMRO2. As noted
above, the balance between CBF and CMRO2 changes is often characterized by the CBF/
CMRO2 coupling ratio n. Changes in baseline blood volume or oxygenation can alter the
parameter M and thereby modulate the amplitude of the BOLD response. Panel (A) of Fig. 2
shows examples of the BOLD versus CBF response amplitudes for different values of the
parameter M and an assumed coupling factor of n = 2.5. For each curve, the BOLD response
increases monotonically with the CBF response, with the parameter M acting as an overall
scaling factor. Panel (B) of Fig. 2 shows the BOLD versus CBF response amplitudes for
several coupling factors and an assumed scaling factor of M = 8.0%. For finite and positive
values of the coupling factor, decreases in the coupling factor indicate a tighter coupling
between the CBF and CMRO2 responses. For any given percent CBF increase, this results in
a relatively greater CMRO2 response and hence a smaller BOLD signal, as evidenced by the
downward shift in the curves with decreasing values of n. The curve associated with n = ∞
reflects the response to a hypercapnic challenge, which is assumed to induce an increase in
CBF without affecting CMRO2.
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Using the BOLD signal model to interpret changes in resting-state BOLD
amplitude

As an example of how the BOLD signal model can be used to interpret rsfMRI results, we
first consider the effects of caffeine, which has been shown to reduce both the amplitude and
connectivity of resting-state BOLD fluctuations (Rack-Gomer et al., 2009; Wong et al.,
2012). Caffeine is a widely used stimulant that affects both the neural and vascular systems
of the brain through its antagonism of adenosine receptors (Fredholm et al., 1999; Pelligrino
et al., 2010). The administration of caffeine significantly reduces cerebral blood flow (Wong
et al., 2012) and there is some evidence that it also increases baseline oxygen metabolism
(Griffeth et al., 2011). When combined, these changes will tend to decrease baseline blood
oxygenation, increasing the parameter M and thus the BOLD response to neural input.
However, caffeine also appears to reduce the CBF/CMRO2 coupling ratio n, which would
decrease the BOLD signal response to neural activity (Chen and Parrish, 2009; Griffeth et
al., 2011). These two opposing effects have been found to result in either no change or a
slight increase in the BOLD response to stimulus (Chen and Parrish, 2009; Griffeth et al.,
2011; Laurienti et al., 2002; Liau et al., 2008; Mulderink et al., 2002). By taking into
account the prior results within the framework of the BOLD signal model, we could
conclude that it seems unlikely that caffeine's effects on baseline CBF, CMRO2, and the
coupling between CBF and CMRO2 would lead to a decrease in the amplitude of the
resting-state BOLD signal.

Hypercapnia has also been shown to reduce the amplitude of resting-state BOLD signals
(Biswal et al., 1997; Xu et al., 2011). It is well known that hypercapnia increases CBF, and
it is generally assumed that mild hypercapnic stimuli have a minimal effect on neural
activity and oxygen metabolism (Chen and Pike, 2010; Jain et al., 2011), although there is
some evidence that hypercapnia may decrease CMRO2 (Xu et al., 2011). Both factors (e.g.
CBF increase and no change or a slight decrease in CMRO2) will tend to increase baseline
venous oxygenation, as has been confirmed through MRI oximetry (Xu et al., 2011). The
increased oxygenation will in turn decrease the M factor and reduce the BOLD response. In
addition, elevations in baseline CBF tend to reduce the amplitude of CBF responses (Liau
and Liu, 2009), resulting in smaller percent BOLD fluctuations. Thus, to first order, the
decreases in resting-state BOLD amplitude can be explained by hypercapnia's effect on the
baseline vascular state.

Application of normalization and calibration methods to rsfMRI amplitude
measures

In addition to using the BOLD signal model to determine how various neurovascular factors
modulate the resting-state amplitude, we can adapt the normalization and calibration
methods that were originally developed for task-related fMRI, such as division of the
resting-state BOLD time courses by the BOLD response to a hypercapnic stimulus. When
normalization methods are used, the resulting amplitude estimates will be a scaled version of
the original estimates, where the scaling factor varies across subjects and conditions to
account for differences in baseline neurovascular states. In the case of the calibrated fMRI
approach, the resulting metric of interest (CMRO2 amplitude) is fundamentally different
than the original metric (BOLD amplitude), but the overall effect on amplitude estimates can
still be viewed as a scaling operation.

As an example of the application of a normalization approach, Xu et al. (2011) normalized
the resting-state BOLD amplitudes in the default mode network by the task-related BOLD
responses in the visual cortex to more fully probe the effects of hypercapnia. Given that
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prior work Zappe et al. (2008) had indicated that hypercapnia had a minimal effect on visual
evoked EEG responses, any decrease in the visual evoked fMRI response was treated as a
vascular effect. If hypercapnia led to the same percentage decrease in the visual and resting-
state amplitudes, then the normalization process would result in identical values for the pre
and post-hypercapnia normalized resting state amplitudes, indicating that the decrease in the
resting state was completely accounted for by vascular effects. Xu and colleagues found a
decrease in the normalized amplitudes (i.e. the relative decrease in resting-state amplitudes
was greater than the relative decrease in the visual responses) and interpreted this as
evidence for a neuronal component to the reduction in resting-state activity. The specific
interpretation is somewhat mitigated by the fact that the authors' specific definition of
resting-state amplitude depended on both the amplitude of the fluctuations and the
correlation between the seed region and the voxels of interest, thus leading to a possible
overestimation of the decrease in resting-state amplitude. In addition, the normalization of
the responses in one brain region (e.g. the medial prefrontal cortex) by the task-related
responses in another region (visual cortex) may be confounded by inter-regional differences
in vascularity (Hendrikse et al., 2010; Mark and Pike, 2012). Nonetheless, the use of task-
related responses as a normalization factor represents a promising approach for
distinguishing between neural and vascular effects in the resting state and warrants further
study.

As noted in a previous section, resting-state measures have also been proposed for the
normalization of task-related responses (Biswal et al., 2007; Kannurpatti and Biswal, 2008).
The implicit assumption when using either a resting-state measure or task-related response
as the normalization reference is that variations in the reference quantity are a reflection of
factors (e.g. vascular differences) that also affect the quantity of interest (i.e. the task-related
response or resting-state amplitude, respectively), but are not directly related to neural
activity. Thus, normalizing by the reference quantity removes the influence of a common
non-neural factor. However, as discussed in further detail in Liu et al. (2013), there is
growing evidence in support of a significant neural contribution to variations in measures
(e.g. task-related BOLD responses, hypercapnic BOLD responses, resting-state BOLD
activity, baseline cerebral blood flow) that have been used for normalization approaches. As
a result, normalization methods that use these measures to remove variability in the either
resting-state or task-related BOLD measures run the risk of removing differences that are of
neural origin. Further work is needed to better understand these confounds. In the mean
time, it would be prudent for researchers to take into account this potential effect when
normalizing their BOLD fMRI data.

Interpreting changes in resting-state connectivity
There are a number of ways in which neurovascular factors can alter measures of
connectivity: (1) reducing the amplitude of the fluctuations of interest relative to the
amplitude of nuisance signals; (2) changing the relative shape of the hemodynamic
response; and (3) changing the relative delay of the hemodynamic response. To better
understand these effects, we consider a simplified model (depicted in Fig. 1) in which the
measured responses from two brain regions are denoted as: x1(t) = s1(t) + n1(t) and x2(t) =
s2(t) + n2(t), where si(t) and ni(t) represent the signal of interest and noise signal (including
both random and structured noise) in the ith brain region, respectively, and it is assumed that
the signal is uncorrelated with the noise signals and that the variance of the signal (or noise)

terms is independent of region (i.e. ) With these simplifying
assumptions, the correlation coefficient may be written in the following form:
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(2)

where rs = corr(s1,s2) is the correlation between the signal terms, rn = corr(n1,n2) is the

correlation between the noise terms,  denotes the signal-to-noise-ratio, and 

and  are the signal and noise variances, respectively (see Appendix A for derivation). The
form of Eq. (2) enables us to distinguish between effects that alter SNR versus those that
alter the correlation between signal terms.

Changes in connectivity measures due to decreases in BOLD signal
amplitude

The simplest case to consider is one in which a neurovascular factor reduces the amplitude
of the signals of interest while not affecting either the amplitude of the noise terms or the
correlation rs between the signal terms of interest. For example, this could be a factor such
as hypercapnia that reduces the M parameter in the BOLD signal model for the response to
neural fluctuations but does not alter the amplitude of structured noise signals due to cardiac
fluctuations or motion. The main effect of this factor is to reduce the SNR term. From the
form of Eq. (2), the measured correlation tends towards the signal correlation value rs as the
SNR increases, but approaches the noise correlation value rn as the SNR decreases. For the
case that rs > rn, a SNR decrease will reduce the measured correlation value r as shown by
the green dashed line in Fig. 3A, which shows the dependence of r on SNR when it is
assumed that rs = 0.5 and rn = 0.3. The blue solid line in Fig. 3A shows the dependence on
SNR when rn = 0.7 is greater than the assumed rs = 0.5—here decreases in SNR can lead to
an increase in the measured correlation as the noise term dominates. For long-range
functional connections, where it is likely that signal correlations will be greater than noise
correlations, it is expected that rs > rn and so SNR decreases will in general lead to
reductions in the measured correlation. For example, the connectivity decreases observed
with hypercapnia (Biswal et al., 1997; Xu et al., 2011) could be viewed as reflecting the
SNR decrease caused by a neurovascular reduction in the amplitude of the BOLD signal
fluctuations of interest. Fig. 1 provides a schematic description of this effect. In this figure,
the measured BOLD signals are calculated under two conditions: (1) full amplitude
hemodynamic responses, indicated by the blue and red responses and (2) reduced amplitude
(scaled by 0.33) hemodynamic responses, indicated by the black and green responses. For
the full amplitude responses, the signal and noise correlations are rs = 0.70 and rn = 0.38,
respectively, the SNR is equal to 1.0, and the measured correlation is 0.54. For the reduced
amplitude responses, the signal and noise correlations remain unchanged, but the SNR drops
to 0.33 and the measured correlation decreases to 0.41. This decrease is consistent with the
theoretical predictions as shown by the red square and black diamond symbols for the full
and reduced amplitude responses, respectively, in Fig. 3B.

Changes in connectivity measures due to alteration of the hemodynamic
response

Neurovascular factors that alter the shape of the hemodynamic response can affect both the

signal variance term  and the signal correlation term rs. Because the measured BOLD
fluctuations can be viewed as the convolution of the underlying neural power fluctuations
convolved with the hemodynamic response (de Munck et al., 2007), a significant change in
the temporal shape (or equivalently the frequency response) of the response can affect the
amplitude of the fluctuations. For example, a temporal broadening of the response would
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result in a smaller passband in the frequency domain, leading to an attenuation of higher
frequency fluctuations. A reduction in signal amplitude due to a change in the response
shape can decrease the measured correlation r through reducing the SNR, as discussed
previously. In addition, inter-regional differences in the response shape can affect the
measured correlation through modulation of the signal correlation term rs. For example, if a
pharmacological factor, such as alcohol (Luchtmann et al., 2010), significantly alters the
temporal width or delay of the response in one region but not another, this will alter the
temporal relationship between the signals more than if both responses had been similarly
altered. A schematic representation of these types of effects is shown in Fig. 4. A slowing
down of the hemodynamic responses (shown as the black and green responses) in both brain
regions, results in a decrease in the correlation between the measured BOLD responses. An
even greater decrease in correlation occurs when the response in region 1 remains
unchanged (blue response) while the response in region 2 (green response) slows down.

To assess the effect of hemodynamic shape changes on connectivity, one can use either prior
knowledge of the changes, such as prior work measuring and modeling the effect of
hypercapnia on the shape of the BOLD response (Behzadi and Liu, 2005; Cohen et al.,
2002) or obtain estimates of the hemodynamic response under varying conditions, similar to
approaches developed for task-related fMRI (Handwerker et al., 2004). Using the expected
changes in shape, an investigator could use simulations to model their effect on connectivity
measures. For example, the resting-state data from one condition could be further filtered to
reflect an additional broadening in the hemodynamic response in another condition and the
resulting effects on connectivity could be assessed. One of the key challenges in
implementing this type of approach is the difficulty and added experimental complexity in
obtaining reliable estimates of the hemodynamic responses. While it is straight forward to
obtain these estimates in the visual and motor areas, it is considerably more challenging to
obtain such estimates over the entire brain. The use of a breath holding task (which induces
hypercapnia) has been presented as a means to obtain estimate of variations in the
hemodynamic delays across the brain (Chang et al., 2008), but it is not clear whether the
delays in response to a hypercapnic stimulus are the same as those in response to neural
activity.

In addition to complexities described above, it is expected that in general the overall effects
of changes in the shape of the hemodynamic response will be small due to the significant
amount of lowpass filtering that is common in most rsfMRI studies. For example, the
temporal shifts caused by hypercapnia are on the order of 1 to 2 s, whereas the time constant
of the low-pass filtering operation is typically on the order of 10 s. With this difference in
temporal scales, the lowpass filtering operation will tend to blur out the dynamic changes
due to hypercapnia. An important caveat is that with advances in acquisition and analysis
methods (Feinberg et al., 2010), there is a trend towards acquiring resting data with higher
temporal resolution (e.g. whole brain coverage in less than 1 s) and less aggressive filtering.
With these emerging methods, the effect of changes in the temporal response dynamics may
become more pronounced.

Other approaches for interpreting connectivity changes
In addition to specific arguments based on SNR or changes in the shape of the hemodynamic
response, more general arguments have been used to assess the potential effect of
neurovascular factors on connectivity. For example, Boveroux et al. (2010) argued that
propofol induced decreases in frontoparietal network connectivity were unlikely to reflect
the hemodynamic effects of the anesthetic as prior studies had shown that propofol at
sedative concentrations did not modulate either the magnitude of the CBF response to
stimulus or the coupling of flow and metabolism (Johnston et al., 2003; Veselis et al., 2005).
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In addition, because connectivity was preserved in auditory and visual networks, the authors
concluded that it was unlikely that their findings were due to either a global reduction in
SNR or a global alteration in neurovascular coupling. In a similar study, Stamatakis et al.
(2010) found that propofol increased the connectivity of the posterior cingulate cortex with
brain regions, such as the motor cortex, that are not typically considered part of the default
mode network. While also citing the prior work of Johnston et al. (2003), and Veselis et al.
(2005) as evidence against a neurovascular explanation for the effects, the authors further
argued that the propofol-induced shift in the predominant temporal frequencies of the
resting-state fluctuations were unlikely to have a vascular origin.

Applying normalization and calibration methods to connectivity estimates
The normalization and calibration methods that were discussed above for the resting-state
amplitude estimates can also be applied to estimates of connectivity, but the effects are not
as straightforward. Normalization methods will primarily lead to a scaling of the measured
time courses, and this scaling will not alter the correlation estimate, as the correlation
coefficient is invariant with respect to amplitude scaling. On the other hand, for calibration
approaches that combine CBF and BOLD time courses to form an estimate of the CMRO2
time courses, the correlation between the CMRO2 time courses can be significantly different
than the correlation between the BOLD time courses. For example, the resting-state CMRO2
fluctuations estimated in Wu et al. (2009) were essentially scaled versions of the CBF
fluctuations, due to the relatively small amplitude of the BOLD fluctuations as compared to
the parameter M (Restom et al., 2008). As a result, the CMRO2 correlation maps were
similar to the CBF maps but were qualitatively different from the BOLD correlation maps. It
should also be noted that the validity of applying the calibrated fMRI approach to resting-
state fMRI data has not yet been fully established. Because the Davis approach assumes a
causal dependence of BOLD on CBF, the effective estimation of the CMRO2 response
requires that both the BOLD and CBF responses are measured with sufficient sensitivity
such that a relation between the two quantities can be firmly established. While there is
typically a strong correlation between the BOLD and CBF responses for task-related
paradigms (especially for strong sensory stimuli), this is not necessarily the case for resting-
state data in which the correlation between the BOLD and CBF time courses can be quite
low (Wu et al., 2009), due primarily to the low inherent sensitivity of the arterial spin
labeling MRI method that is used to estimate CBF (Liu and Brown, 2007). The sensitivity of
the resting state CBF measures can be improved with the use of background suppression
methods, such as those as used in Fukunaga et al. (2008), but the quantitative accuracy of
CBF measures obtained with these methods is still an area of active investigation (Garcia et
al., 2005; Shin et al., 2011).

Global signal regression and physiological noise correction
One of the methodological issues that complicates the interpretation of resting-state studies
is the inconsistent use of global signal regression (GSR) in the pre-processing of the data.
GSR refers to the removal of a global mean signal component (computed as the average of
all the BOLD time series in the brain) prior to the computation of the correlation
coefficients. This step has been shown to be beneficial for improving the predictive power of
correlation measures (Fox et al., 2009). When global signal regression is not used, a strong
global component often dominates the computation of the correlation coefficients, leading to
significant variations between functional connectivity maps acquired from different
experimental scans or subjects. The validity of global signal regression has recently come
under question because the mathematics of the regression process causes the distribution of
correlation coefficients to be centered about zero, thereby forcing the existence of negative
correlations (Murphy et al., 2009; Weissenbacher et al., 2009). In particular, Murphy et al.
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(2009) argued that the anti-correlations between the default mode network (DMN) and the
task positive network (TPN) reported by Fox et al. (2005) were an artifact of global signal
regression.

To circumvent the potential issues with global signal regression, alternate methods have
been developed to remove global signal components that are of physiological origin (i.e. due
to either respiratory or cardiac activity). These include (1) the use of mean signals from
white matter and cerebral spinal fluid regions to estimate the physiological components and
(2) the formation of regressors from external measures of cardiac and respiratory activity
(Birn et al., 2006; Chang and Glover, 2009; Fox et al., 2009). However, at present, there is
not a clear consensus with regards to the best approach for addressing global signal
confounds, with many studies still continuing to use global signal regression, while a
growing number of studies have begun to adopt one of the alternate methods (Chai et al.,
2012). This lack of agreement makes it difficult to compare resting-state fMRI studies, as
differing approaches can yield significantly different interpretations of the data. For
example, in their study of the effects of caffeine on resting-state connectivity, Wong et al.
(2012) compared functional connectivity maps obtained using GSR with maps obtained
using only physiological regressors (motion, cardiac and respiratory activity, white matter
and cerebral spinal fluid signals). They found that the effects of caffeine were greatly
diminished with the application of GSR, with strong anti-correlations between the DMN and
TPN observed both prior to and after the administration of caffeine. In contrast, when only
physiological regressors were used, the anti-correlations between the two networks were
only weakly visible in the pre-dose state but significantly enhanced after the intake of
caffeine. In interpreting their findings, Wong et al. concluded that the main effect of caffeine
was consistent with the reduction of an additive global signal component (He and Liu,
2012), most likely of neural origin. Since GSR had already eliminated this additive
component in the pre-dose state, it masked caffeine's attenuation of this component in the
post-dose state. Until the controversy about the validity of GSR is settled, it would be
prudent for most investigators to analyze their data with and without the application of GSR,
especially when interpreting studies in which neurovascular factors may affect the global
signal component. An alternative approach is to compare connectivity results based on
correlation analysis and GSR with those obtained using an independent components analysis
approach (Boveroux et al., 2010).

In addition to GSR, the application of other physiological noise correction methods has been
shown to affect estimates of BOLD signal variance and resting-state connectivity (Khalili-
Mahani et al., 2013). This problem can be especially pronounced for studies in which the
physiological noise regressors are themselves modulated by the experimental factor, such as
the modulation of respiration and heart rate by morphine. In a detailed study of the effect of
various physiological noise correction approaches, Khalili-Mahani et al. (2013) reported
greater sensitivity in brain regions that were either close to large vessels or involved in
physiological regulation, such as the posterior cingulate cortex, and found that the effects
were greatest when including physiological rates in higher level statistical analyses.

EEG and MEG measures of resting-state activity
While the use of the BOLD signal model and associated normalization and calibration
approaches provides an important starting point for assessing the effect of neurovascular
factors on resting-state amplitudes and connectivity, the ability to definitively determine
relative changes in neural and vascular components of resting state activity is limited when
only fMRI measures are available. For example, while arguments based on the BOLD signal
model suggest that the reduction in resting-state BOLD amplitude due to hypercapnia is
consistent with an increase in the baseline deoxyhemoglobin content, there still remains the
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possibility that the amplitude reduction might also reflect a decrease in the underlying neural
power fluctuations. The acquisition of additional electroencephalographic (EEG) or
magnetoencephalographic (MEG) measures can be employed to address this ambiguity.
Non-invasive simultaneous EEG/fMRI recordings in humans have shown that resting-state
BOLD fluctuations are significantly correlated with fluctuations in the power of EEG
activity in the alpha band (de Munck et al., 2007; Goldman et al., 2002; Laufs et al., 2003a;
Moosmann et al., 2003; Ritter et al., 2008), the beta band (Laufs et al., 2003b), and the theta
band (Scheeringa et al., 2008). Using independent component analysis, Mantini et al. (2007)
found that the BOLD time courses associated with various resting-state networks (identified
as independent components) exhibited strong correlations with the power in more than one
EEG band. A number of studies have focused on examining the inter-regional connectivity
between MEG resting-state power fluctuations and have demonstrated a striking similarity
between MEG and fMRI resting-state networks (Brookes et al., 2011a, 2011b; de Pasquale
et al., 2010; Liu et al., 2010; Mantini et al., 2011).

With respect to the effects of hypercapnia on resting-state activity, Xu et al. (2011) found
EEG power decreases in the alpha band and increases in the delta band, while Hall et al.
(2011) found MEG power decreases in the alpha, beta, and low gamma bands. Given the
relation between resting-state alpha power and BOLD fluctuations, these observations
suggest that the decrease in resting-state BOLD amplitude is not just due to a reduction in
baseline deoxyhemoglobin but may also reflect an attenuation of the neural power
fluctuations.

Boly et al. (2012) used source localized EEG and dynamic causal modeling (Kiebel et al.,
2009) to demonstrate the effect of the anesthesia propofol on corticocortical backward
connectivity and thalamocortical connectivity in the EEG measures. These findings
extended the group's prior findings of a decrease in cerebral resting state BOLD
connectivity, which the previous study had included were unlikely to reflect vascular effects,
as discussed in a previous section (Boveroux et al., 2010).

In considering the effects of caffeine, we noted in a previous section that it was unlikely that
baseline vascular and metabolic changes could cause the observed decrease in resting-state
BOLD amplitude, suggesting instead a reduction in the level of neural power fluctuations.
Indeed EEG studies have demonstrated a decrease in alpha power due to caffeine (Barry et
al., 2008; Siepmann and Kirch, 2002). In a recent simultaneous EEG-fMRI study, Wong et
al. (2013) focusedon the shape of the EEG power spectra and founda caffeine-induced shift
from lower (delta and theta) frequency bands to higher (alpha) bands, consistent with a
transition to higher levels of vigilance (Horovitz et al., 2008; Klimesch, 1999; Olbrich et al.,
2009). In addition, increases in the EEG measures of vigilance (defined as the ratio of the
power in the alpha band to the power in the delta and theta bands (Horovitz et al., 2008))
were shown to be related to decreases in the resting-state BOLD global signal amplitude.
Furthermore, using the MEG beamformer analysis approach developed by Brookes et al.
(2011a, 2011b), Tal et al. (2013) found that fMRI and MEG measures of connectivity
exhibited similar decreases across the entire brain. Overall, the EEG and MEG measures
provide strong evidence that the caffeine-related decreases in both resting-state amplitude
and connectivity reflect changes in the neural power fluctuations.

Conclusion
While there is a growing appreciation for the role of neurovascular factors in rsfMRI, the
development of approaches to address neurovascular confounds is still in its infancy.
Methods developed to deal with these confounds in task-related fMRI can serve as a useful
starting point, but the validity and accuracy of these methods are still an active area of
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investigation even for task-related studies, and not all of the methods are applicable to
rsfMRI. In addition, the analysis and interpretation challenges are greater in rsfMRI because
the temporal evolution of the resting-state BOLD signal is not determined by an external
stimulus. As a result, the continued application of multimodal approaches, such as
simultaneous EEG-fMRI, will be critical for furthering our understanding of the relative
contribution of neural and vascular factors to rsfMRI measures. In this paper, we have
focused on pharmacological modulations of the neurovascular state, where the ability to
modulate the state in a controlled fashion facilitates the design and interpretation of the
studies. However, there is a great need for additional studies that can help to further our
understanding of disease-related factors. Improvements in our ability to address
neurovascular confounds will be especially critical for the robust application of rsfMRI in
clinical environments, where alterations in neural activity and neurovascular coupling due to
disease, medication, and age are both widespread and diverse.
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Appendix A. Derivation of Eq. (2)
Let r denote the correlation between x1(t) = s1(t) + n1(t) and x2(t) = s2(t) + n2(t). We assume
that the signals si(t) are uncorrelated with the noise signals ni(t), and that the variance of the

signal (or noise) terms is independent of region (i.e ). Then the
correlation may be written as:

where rs = corr(s1,s2) is the correlation between the signal terms, rn = corr(n1,n2) is the

correlation between the noise terms, and  denotes the signal-to-noise-ratio.
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Fig. 1.
The correlation r between the measured BOLD time series (x1 and x2) from two different
brain regions depends on the neurovascular coupling pathway. The measured BOLD time
series in each region can be viewed as the sum of a BOLD component (s1 and s2 for regions
1 and 2, respectively) and a noise component (n1 and n2, respectively), where the BOLD
component is obtained by convolving the neural power fluctuations (blue and red time
courses on the left) with the hemodynamic response functions. The correlation between the
underlying neural power fluctuations is designated as ρ. For the blue and red hemodynamic
responses, the resultant BOLD components and measures are shown by the blue and red
time series, respectively, with a correlation value of r = 0.54 between the measured BOLD
time series. For a change in neurovascular coupling that reduces the amplitudes of the
hemodynamic responses by one third (indicated by the black and green hemodynamic
responses), there is a decrease (by one third) in both the amplitudes of the BOLD component
time series and the SNR of the measured BOLD time series (black and green lines). With the
SNR decrease, the correlation of the measured BOLD time series drops to r = 0.41.
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Fig. 2.
Plots of the percent BOLD versus percent CBF response amplitudes computed with the
BOLD signal model presented in Eq. (1). (A) Percent BOLD versus percent CBF responses
for different values of the parameter M and a fixed coupling parameter of n = 2.5. As the
parameter M increases, the BOLD signal increases more rapidly for a given change in CBF.
(B) Percent BOLD versus percent CBF responses for different values of the coupling
parameter n and a fixed M parameter value of 8.0%. As the coupling parameter decreases,
the CBF and CMRO2 responses become more tightly coupled and the BOLD response
decreases.
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Fig. 3.
(A) The measured correlation r = rs(SNR + (rn/rs))/(SNR + 1) exhibits a dependence on SNR
that depends on the relative relation between the source correlation rs and the noise
correlation rn. As SNR increases the measured correlation approaches the source correlation
value rs, and as SNR decreases the measured correlation approaches the noise correlation
value rn. The dashed green line and solid blue line show the dependence when the noise
correlation is lower (rn = 0.3) or higher (rn = 0.7), respectively, than the source correlation
(rs = 0.5). (B) Correlation as a function of SNR for the signals shown in Fig. 1. For the
larger hemodynamic responses (blue and red responses in Fig. 1), the SNR is equal to 1 and
the measured correlation of r = 0.54 is indicated by the red square. With a reduction in the
amplitude of hemodynamic responses(black and green responses in Fig. 1), the SNR drops
to 0.33 and the measured correlation of r = 0.41 is indicated by the black diamond.
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Fig. 4.
Effect of changes in the shape of the hemodynamic response on the correlation between the
measured BOLD time series. The blue and red hemodynamic responses and the
corresponding BOLD component and measured time series (also in blue and red) are
identical to those depicted in Fig. 1. For this condition, the signal and noise correlations are
rs = 0.70 and rn = 0.38 and the measured correlation is r = 0.54. With an overall slowing
down of the hemodynamic responses (shown in black and green), the BOLD component
time courses become delayed and smoother (black s1 and green s2) as compared to the
original time courses (blue s1 and red s2), and the signal correlation drops to rs = 0.63. The
noise time courses remain unchanged, but the measured BOLD time series (black x1 and
green x2) are altered, with a correlation value of r = 0.34. The decrease in correlation is even
more pronounced if the hemodynamic response from one region changes while the other
remains the same. For example, if the region 1 response is unchanged (blue hemo-dynamic
response) while the region 2 response slows down (green hemodynamic response), the
correlation value drops to r = 0.17 (reflecting the correlation between blue x1 and green x2).
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