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Estimation of effective population size in continuously
distributed populations: there goes the neighborhood

MC Neel1, K McKelvey2, N Ryman3, MW Lloyd1, R Short Bull4, FW Allendorf4, MK Schwartz2

and RS Waples5

Use of genetic methods to estimate effective population size (Ne) is rapidly increasing, but all approaches make simplifying
assumptions unlikely to be met in real populations. In particular, all assume a single, unstructured population, and none has
been evaluated for use with continuously distributed species. We simulated continuous populations with local mating structure,
as envisioned by Wright’s concept of neighborhood size (NS), and evaluated performance of a single-sample estimator based on
linkage disequilibrium (LD), which provides an estimate of the effective number of parents that produced the sample (Nb).
Results illustrate the interacting effects of two phenomena, drift and mixture, that contribute to LD. Samples from areas equal
to or smaller than a breeding window produced estimates close to the NS. As the sampling window increased in size to
encompass multiple genetic neighborhoods, mixture LD from a two-locus Wahlund effect overwhelmed the reduction in drift LD
from incorporating offspring from more parents. As a consequence, N̂b never approached the global Ne, even when the
geographic scale of sampling was large. Results indicate that caution is needed in applying standard methods for estimating
effective size to continuously distributed populations.
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INTRODUCTION

The concept of effective population size (Ne) provides a way to
quantify the evolutionary changes caused by random processes in
finite populations (Charlesworth, 2009). Since its formal definition by
Wright (1931) as the size of an ideal population that has played the
same rate of genetic drift as an actual population of interest, Ne has a
central role in studies of evolution and ecology. In addition to directly
affecting the rates of loss of neutral genetic variability and frequency
change of neutral alleles, Ne mediates the effectiveness of migration
and selection, which are predictable in large populations but can be
overwhelmed by drift in small ones.

The original concept of Ne envisaged a single population or a series
of semi-discrete populations connected by limited migration. In many
species, however, individuals are distributed more or less continuously
across large landscapes, and matings occur more frequently among
spatially proximal individuals. This type of demography produces a
pattern of ‘isolation-by-distance’ (IBD; Wright, 1943), in which
genetic differentiation increases with distance, but there are no
distinct breaks or discrete subunits within the global population.
Species distributed in this fashion pose a particular challenge in
applying the concept of effective population size. For example, recent
research using the coalescent (for example, Barton and Wilson, 1995;
Wilkins, 2004) has shown that evolutionary processes in continuously
distributed populations exhibit both a short-term dynamic that is
strongly dependent on the location of the samples and a long-term

dynamic that is largely location independent. As a consequence, we
expect at least two types of complications in estimating effective size
in IBD systems: (1) estimators of short-term and long-term effective
size might produce different results and (2) estimators of short-term
(contemporary) effective size might be sensitive to the geographic
scale of sampling.

For continuously distributed populations, Wright (1946) intro-
duced the concept of a genetic ‘neighborhood’ that describes the local
area within which most matings occur. In a two-dimensional land-
scape, Wright’s neighborhood size (NS) is

NS¼ 4ps2D; ð1Þ

where D is density (number of individuals per unit area) and s
(mean squared distance along one axis between birthplaces of parents
and their offspring) is a measure of dispersal (see Table 1 for notation
and Appendix A for details). NS can be thought of as the number of
reproducing individuals in a circle of radius 2s. Assuming that
dispersal is Gaussian, a circle of this size would include B87% of the
potential parents of individuals at the center (Wright, 1946).

When matings occur preferentially within neighborhoods that
are small relative to the global population distribution, genetic
differentiation can build up across the landscape as a function of
‘isolation-by-distance’ (Wright, 1943). Local genetic differences within
continuously distributed populations can be substantial under some
circumstances (Rohlf and Schnell, 1971), and this non-random
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mating affects rates of loss of diversity. Maruyama (1972) showed
that, if s2D41, the global rate of loss of genetic variability is given
approximately by 1/(2N), where N is the number of ideal individuals
in the global system—that is, if dispersal is sufficiently high, the whole
system loses genetic variability at the same rate as would a panmictic
population of N ideal individuals. When dispersal rates are low
enough that s2Do1, however, the rate of loss of genetic variability is
reduced to approximately s2D/(2N). Thus, if breeding only occurs
within small local neighborhoods, genetic variability in the global
system is lost at a lower rate than would occur with a single panmictic
population. This result is the continuous-distribution analogue of the
familiar result for Wright’s island model: population differentiation
increases global diversity as subpopulations become fixed for different
genetic variants.

Because Ne is difficult to measure directly in natural populations, a
number of indirect genetic methods have been developed (Luikart
et al., 2010; reviewed in Schwartz et al., 1998; Wang, 2005), and their
use has surged in recent years with the increasing availability of large
numbers of molecular markers (Palstra and Fraser, 2012). These
methods can utilize information from a sample taken at one point in
time (single-sample methods; for example, Tallmon et al., 2008;
Waples and Do, 2008; Zhdanova and Pudovkin, 2008; Wang, 2009),
or from allele frequency change between two or more samples (the
temporal method; Nei and Tajima, 1981; Anderson, 2005). All these
methods depend on simplifying assumptions, with one of the more
important being that the focal population is randomly mating and
closed to immigration. Although some estimators of contemporary
Ne have been tested for robustness to violations of some underlying
assumptions (Waples and Yokota, 2007; Waples and England, 2011),
none has been tested for consequences of continuously distributed
species with localized breeding. This lack of testing creates a
serious data gap, given that spatial structure is known to affect
other population genetic estimators such as those that attempt to
define clusters of individuals (Novembre and Stephens, 2008;
Frantz et al., 2009; Schwartz and McKelvey, 2009), detect bottlenecks
(Leblois et al., 2006) or estimate demographic parameters (Leblois
et al., 2004).

Here we consider how localized breeding within continuously
distributed populations affects the most widely used single-sample
estimator, which is based on LD (Hill, 1981). This analysis is timely,
as use of single-sample estimators has increased exponentially in the
last few years, whereas applications using the temporal method have
remained flat (Palstra and Fraser, 2012). The LD method quantifies
associations of alleles at different loci and assumes those associations
are due to genetic drift caused by a finite number of parents. Results
from applying the LD method are most easily interpreted in terms
of the effective number of parents (EPs) that produced the sample
(Nb; Waples, 2005). With random sampling from a single, unstruc-
tured population, N̂b should be an unbiased estimate of Ne for the
population as a whole. However, with localized sampling in a
continuously distributed species, that will not generally be the case.
We expect that as the geographic scale of sampling becomes large
relative to the local breeding unit, two contrasting factors should
affect genetic estimates based on LD. On one hand, a larger
geographic sample should include progeny with more total parents,
which should tend to increase N̂b. On the other hand, if a sample
includes progeny that result from local breeding within geographic
areas separated by distances greater than typical parent–offspring
dispersal, the amalgamation of genetically divergent individuals would
create mixture LD (Nei and Li, 1973; Sinnock, 1975) that would tend
to reduce N̂b. It is not clear a priori whether one factor is generally
more important or if their relative importance might vary with
aspects of experimental design. To examine the consequences of using
the LD method to estimate effective size in continuously distributed
populations with local mating, we use simulated data to evaluate the
following questions:

(1) What are the relationships between N̂b and the parameters NS
and global Ne in a continuously distributed population?

(2) How do these relationships vary as a function of the relative sizes
of the genetic neighborhood and geographic sampling scales?

(3) What errors of inference can result from a mismatch between the
quantity one wants to estimate and the quantity that is actually
estimated by N̂b?

(4) Can we identify indicators in the data to alert researchers to
potential biases?

MATERIALS AND METHODS
Model description
We modified an individual-based model of a continuously distributed,

constant-size population that has been used in other studies (Schwartz and

McKelvey, 2009; Landguth et al., 2010) to comprise 90 000 diploid individuals

distributed evenly (one per cell) across a 300� 300 cell grid. This large grid

allowed us to focus on local drift effects in small breeding neighborhoods

within a 150� 150 cell central area where edge effects were minimized. Diploid

genotypes in the initial generation were assigned independently at each locus

by randomly choosing among 99 equally likely alleles. This approach is

equivalent to initialization with a K-allele model, with subsequent evolution

occurring in absence of mutation. Choice of initial K¼ 99 was arbitrary, but at

the time of sampling yielded levels of per-locus allele richness and hetero-

zygosities similar to those typically seen in microsatellite studies in natural

populations (see Results; Tallmon et al., 2002; Schwartz et al., 2003; Purcell

et al., 2006, 2009). Because the LD method uses information only on allelic

state and not the evolutionary relationships among alleles, we did not try to

mimic an explicit microsatellite mutation model. In addition, because we were

primarily interested in evaluating bias rather than precision, we employed a

high degree of replication of genetic drift by tracking 100 loci in each

individual. Thus, the per-locus diversity reflects microsatellite variation, but

our level of precision exceeds that of most studies in natural systems.

Table 1 Notation and terminology

Abbreviation Description

BW Breeding window—the square area, centered on the focal cell, within

which mating occurs at random

Focal cell The cell at the center of a breeding window where offspring are

produced

b Number of cells on one side of a breeding window; the total BW

includes b2 cells

SW Sampling window—the square area from which individuals are

sampled

s Number of cells on one side of a SW; the total SW includes s2 cells

Ne Effective population size

Nb Effective number of breeders responsible for the sample

N̂b An estimate of Nb

NS Wright’s neighborhood size

s2 Mean squared axial parent–offspring distance; that is, the mean

squared distance along one axis between birthplaces of parents and

their offspring

D Density—individuals per unit area. D was fixed at 1 in our model
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Parents were limited to a spatial area (which we call a breeding window

(BW)) centered on a focal cell that represents the location of the offspring

(Figure 1). We used four different square BWs with sides of b¼ 3, 5, 7 and 9

cells. These BWs extend 1, 2, 3 and 4 cells ((b�1)/2 units) out in each

direction from the focal cell, yielding BWs of BW¼ 9, 25, 49 and 81 cells.

Matings in each focal cell were simulated by randomly choosing one multi-

locus gamete with independent assortment from each of two individuals in the

BW (selfing was not permitted) until a total of 101 offspring were produced.

The window was then moved to an adjacent cell and the process was repeated

for all 90 000 cells. Focal cells less than (b�1)/2 units from the edge of the

matrix had fewer than b2 potential parents. In these cases, parents were drawn

from the truncated neighborhood lying within the matrix. Individuals from

these edge-affected focal cells were not directly used in any analysis, but they

did contribute indirectly to breeding neighborhoods of more centrally located

individuals. To reduce the consequences of edge effects, we collected data only

from a centrally located 150� 150 cell area that was at least 75 cells away from

each edge. Cells directly influenced by edge effects occur only in the outer 1–4

rows depending on the BW size, and the total number of affected cells varied

between 1% (BW9) and 5% (BW81) of the global population. Our boundaries

are functionally equivalent to the reflecting boundary described by Leblois

et al. (2006), who found that different boundary conditions had little influence

on their results.

When the breeding process was complete for all focal cells, all existing

individuals were simultaneously replaced with one randomly selected offspring

from the same cell, and the remaining 100 progeny individuals were set aside

for sampling. Hence, population size was constant, breeding was simultaneous

and generations were discrete. This process created a Wright–Fisher-like

process within each BW and allowed for sample sizes that exceed the local

effective size (as might occur for populations with Type III survival, or for

which effective size is substantially less than census size).

We allowed the model to run for a 2000-generation burn-in period to

establish quasi-stable genetic structure within the grid surface before sampling.

We selected this burn-in period after evaluating the time necessary for spatial

autocorrelation of genetic distance to stabilize (Appendix B). We considered

the structure stable if spatial autocorrelation and Hedrick’s (2005) standardized

Fst (G0ST) did not change appreciably between sampled generations. At each

time point and for each BW size, we calculated spatial autocorrelation of

genetic distances among all individuals (a) in a centrally located 25� 25 cell

area across lag distances of 1–21 cells, using the program SPAGeDI Version 1.3

(Hardy and Vekemans, 2002). For all BWs, spatial autocorrelation established

by no later than generation 50–100 and was relatively unchanged thereafter. We

used GENODIVE V.2.0b20 (Meirmans and Van Tienderen, 2004) to calculate G0ST

among four, 10� 10 cell sampling windows (SWs) located in the four corners

of the 150� 150 internal sampling grid. Change in G0ST values between

sampled generations reached asymptotes in B40 generations in all BWs, but

small increases in values through time were observed (Appendix B). We used a

2000-generation burn-in period that far exceeded the time needed for all

spatial patterns to become fully evolved and stable.

We also used the spatial autocorrelation patterns to determine the array of

SW sizes that would allow us to sample at scales below the spatial structure

generated by the breeding neighborhood, at the scale of the neighborhood and

across multiple neighborhoods. We chose square sample windows of size s2

where s¼ 1, 3, 4, 5, 7, 8, 10, 22, 44 and 66 units, yielding sample windows of

SW¼ 1, 9, 16, 25, 49, 64, 100, 484, 1936 and 4356 cells, respectively. These

windows yielded ratios of SW/BW ranging from 0.1 to 484.

In our model, the probability of being a parent of a new individual was

uniform within the BW, which produces a rectangular distribution of parent–

offspring distances constrained to be px (Appendix A). In contrast, most

isolation-by-distance models allow for some chance of long-distance dispersal.

To evaluate the consequences of this difference, for each BW, we sampled 1000

individuals at random from a central 200� 200 cell area of the matrix after a

burn-in period of 2000 generations. For each pair of individuals, we used the

program SPAGeDi Version 1.3 (Hardy and Vekemans, 2002) to calculate both

the Euclidean distance (x) and a measure of genetic differentiation (a) that is

the individual analogue to the index FST/(1�FST) commonly used to

characterize patterns of isolation-by-distance among samples (Rousset, 1997,

2000). We created bins of Euclidean distance values ranging from x¼ 0–1, 1–2,

y to x¼ 49–50 (see Hardy and Vekemans (1999) for another example using

this general binning approach). For each bin, we calculated mean x (�x) and

mean a (�a) for all pairs of individuals separated by that binned Euclidean

distance. Under the two-dimensional lattice model, theory predicts a linear

relationship between a and ln(x), with slope equal to 1/(4pDs2) (Rousset,

2000). We compared the empirical slope for �a vs ln(�x) with the theoretical

expectation. In calculating the empirical slopes, we excluded data for distances

xps, as suggested by Rousset (2000).

After the 2000-generation burn-in, we collected samples for 100 consecutive

generations. At each generation, we randomly sampled a total of 100

individuals from among the offspring that were set aside for sampling in each

of the cells. When the sample window was one cell, all 100 individuals from

that cell were used. When larger numbers of cells were sampled, individuals

were apportioned randomly across the sample window. For each parameter set,

we replicated the model runs 100 times and sampled at each of the 100

generations, producing 10 000 data points for each SW–BW combination. All

model runs and N̂e calculations were executed in parallel on the TerpCondor

pool of the University of Maryland’s distributed Lattice computing network

(Bazinet et al., 2007).

Estimation of effective size
We used the computer program LDNE (Waples and Do, 2008) to estimate

effective size from LD, using the Burrows method (Weir, 1996) from a sample

taken at a single point in time. Because our focus was on bias and the 100 loci

provided more than ample precision, we included only alleles at a frequency

40.05. This cutoff value has been shown to produce little bias from rare alleles

while maintaining moderate precision (Waples and Do, 2010). We took the

harmonic mean effective size of all 10 000 estimates in each parameter set as a

measure of central tendency of N̂b (see Discussion in Waples and Do (2010)

regarding the appropriateness of using the harmonic mean in this context). We

also calculated FIS for each sample as 1�Ho/He, where Ho is observed

heterozygosity and He is expected heterozygosity.

We compared N̂b to theoretically expected values for local (NS) and global

effective size, and to the total number of potential parents that contributed to a

given sample (Table 2; Figure 2a). The number of potential parents is equal to

the number of grid cells in a square with side dimension of sþ (b�1). For

example, for a 3� 3 sample window (SW9) nested in a 5� 5 BW (BW25),

there are (3þ 4)2¼ 49 potential parents (Figure 1). For the special case of

SW1, all samples are taken from a single focal cell, and the number of potential

parents is the BW size; these potential parents also represent ideal parents in

that they all have an equal chance of producing any given offspring. In this

Figure 1 Schematic depiction of a 3�3 SW (cross-hatched cells) nested

within a 5�5 BW (shaded cells; any individual within two cells in any

direction can be a parent of an offspring in a focal cell in the SW).

Individuals from the outer ring of unshaded cells are within two cells of the

sample window, and therefore all individuals within this 7�7 grid are

potential parents of individuals in the sample. The numbers in each cell are

the number of cells in the sample window to which a parent could

potentially contribute offspring; these numbers thus reflect the relative

probabilities of each cell being chosen as the parent of an individual in the

sample.
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situation, the realized variance in number of offspring produced per parent is

binomial and, on average, effective size equals the number of potential parents.

Because selfing was not allowed, in the scenarios with SW1, true Ne was

BWþ 0.5þ 1/(2BW) (Balloux, 2004), leading to effective sizes of 9.6, 25.5, 49.5

and 81.5 for the four BWs (Table 2).

When SW41, the probability of being a parent varied by location in the SW

because potential parents for individuals in cells at the edge of the window can

come from outside the sampling area itself, but those parents cannot

contribute to all cells in the sample (Figure 1). We use a value, we call the

effective number of parents (EP) to account for the effect of this unequal

probability on N̂b. We calculated EP for each BW–SW combination by

randomly choosing a cell within the sample window, and then randomly

choosing two parents for a new individual from within the BW centered on

that focal cell. We repeated this process until we had a sample of 100

individuals; we then recorded the mean (�k) and variance (Vk) of the number of

offspring (k) produced by each potential parent and used a standard formula

for a monoecious population without selfing (Crow and Denniston, 1988)

EP¼
�kN � 2

�k� 1þVk

�
�k

ð3Þ

to calculate an inbreeding effective size for the parents that produced the

sample (Figure 2b). These EP values were then compared with N̂b values from

the samples generated from the model.

RESULTS

The numbers of alleles per locus did not change appreciably over time
through the 100-generation sampling period but did increase
predictably with BW size (Table 3). At smaller BWs, numbers of
alleles per locus in the final generation of our sampling runs
(generation 2100) were consistent with levels found at microsatellite
loci in many natural populations (Table 3). The slightly higher allele
richness at larger window sizes than might be expected in natural
populations would yield higher precision, but this was somewhat
reduced by using a 0.05 frequency cutoff in LDNE estimates
(described below). Observed heterozygosity ranged between 0.66
and 0.76 in the smallest BW size and between 0.93 and 0.96 for the
largest BW size (Table 3). Mean FIS values from different model runs
for BW9 ranged from �0.06 for SW1 to 0.22 for SW4356. FIS for
BW81 ranged from �0.011 to 0.015 for the same SW sizes. The
sample window at which mean FIS values became positive increased
with increasing BW size from SW16 for BW9 to SW484 for BW81
(Table 3).

Model validation
Our model provided several opportunities for validation with
theoretical predictions. We calculated the observed fraction of
expected heterozygosity lost in the global population (90 000
individuals) after t¼ 5000 generations and compared that with
the fraction expected, based on the theoretical expectation that the
fraction 1/(2Ne) of original heterozygosity is lost each generation.
When the BW was 300� 300, the entire population was panmictic
and the fraction of heterozygosity lost was nearly identical to the
theoretical expectation for a panmictic population of 90 000
(observed/expected loss¼ 0.994). Maruyama (1972) predicted that
the rate of loss of heterozygosity should essentially follow the
panmictic expectation when s2D41 but should be reduced by the
fraction s2D when s2Do1; our results were also in good agreement
with this prediction. For BW81, s2D441 (6.667; Table 2) and the
rate of loss of heterozygosity was only slightly reduced relative to
the panmictic expectation (observed/expected loss¼ 0.941). For
BW9 (s2D¼ 0.667; Table 2), Maruyama’s theory predicts that the
ratio of loss of heterozygosity should be reduced by one-third, and
we found the observed rate to be 66% of that expected under
panmixia.

Harmonic mean N̂b for SW1 samples for the four BW sizes agreed
closely with theoretical expectations, as well as with the NSs

Table 2 Parent–offspring dispersal distance, neighborhood size (NS),

effective population size, and effective number of breeders for each

breeding window (BW) size

Regression of �a and ln(�x)

Expected Observed

BW s2 NS Ne N̂b Slope Slope Intercept

3�3 (BW9) 0.67 8.4 9.6 9.7 0.119 0.100 �0.043

5�5 (BW25) 2.00 25.1 25.5 27.0 0.040 0.038 �0.037

7�7 (BW49) 4.00 50.3 49.5 49.6 0.020 0.019 �0.025

9�9 (BW81) 6.67 83.8 81.5 75.7 0.012 0.012 �0.018

Notes: s2 is the mean squared axial parent–offspring distance; Wright’s NS¼4pDs2; Ne is the
true effective size of the BW based on Balloux (2004) (Equation 10); and N̂b is the harmonic
mean effective size estimated using LDNe. N̂b and Ne were calculated.
Expected and observed slopes of the regression of �a and ln(�x) provides information on
differences among individuals as a function of distance between our model and Wright’s
original concept of a genetic neighborhood.

Figure 2 Number of potential parents as a function of the sizes of the

sample window and BW. (a) Potential parent is an individual from any cell

in generation t that can potentially contribute offspring to a sample taken in

generation tþ1 and is defined as (sþ (b�1)2). (b) Number of effective

parents as a function of the sizes of the sample window and BW. Effective

parents accounts for the differential probability among potential parents of

contributing to offspring in the next generation.
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associated with these four BWs (Table 2). Confidence intervals and
root mean square error for N̂b for individual replicates are shown in
Appendix C.

Also in accord with theory, the relationship between �a and ln(�x)
was almost perfectly linear (correlation 40.99) for all four BWs, and
empirical slopes were close to the value of 1/(4pDs2) expected for
generalized dispersal models. The empirical slopes were within a few
percent of the theoretical slope for BW25, 49 and 81, but for the
smallest BW, the empirical slope was 16% lower than expected
(Table 2). Thus, for the three larger BWs, the increase in genetic
differentiation with distance was similar to expectations under
Wright’s neighborhood model, whereas for the smallest BW, genetic
differentiation increased more slowly with distance than predicted.
That is, although dispersal in our model was constrained to occur
within the BW (Figure 1a), effects of parent–offspring dispersal in
reducing genetic differentiation were equal to or slightly greater than
under lattice models that allow long-range dispersal. Theory does not
provide a general expectation for the intercept of the regression of a
and ln(x). We found that the intercept decreased with the size of the
BW (Table 2). In each case, the intercept was negative (range �0.018
to �0.043), which agrees with empirical data for the kangaroo rat
(Dipodomys spectabilis; intercept¼ �0.162) analyzed by Rousset
(2000).

Effects of sample and breeding window sizes
The number of potential parents increased nearly linearly as a
function of the sample window size and was relatively insensitive to
BW size (Figure 2a). However, not all potential parents have the same
probability of producing an offspring. Accounting for these unequal
contributions reduces the EP, and this reduction is most pronounced
for smaller BW sizes (Figure 2b). For example, for BW9, increases in
the sample window beyond 2000 cells produce only a small increase

in EP. If no other factors were involved, the values of EP shown in
Figure 2b would be the most reasonable a priori expectation for N̂b

produced by a single-sample estimator.
Analysis of our simulated data, however, showed that N̂b increased

much more slowly with increases in the spatial scale of sampling than
predicted based on EP (compare Figures 3a and 2b). N̂b showed a
pronounced asymptotic behavior, increasing with SW size until
reaching a value characteristic of each BW size, after which increases
in sample window size had relatively little effect. The most pronounced
asymptote was seen in BW9 and occurred at N̂bo50; for BW81, an
asymptote is suggested but never quite reached even for the largest
sample window. For each BW, the maximum N̂b values were only
B5–10 times larger than NS (Figure 3b), even though the sample
windows considered were as much as 484 times as large as the BWs.
For the largest SW BW81, N̂b for was only 20.6% of the EP (756
vs 3667); for BW9, N̂b was only 3.5% of the EP (45 vs 1276)
(Appendix C).

Two additional analyses help explain the discrepancy between N̂b

and EP. Plotting the ratio N̂b=EP as a function of the ratio SW/BW
yielded sigmoid curves with three distinct zones (Figure 4). For
SW/BWp1, N̂b from the model was in close agreement with the EPs
(N̂b=EPB1.0). As the sample window exceeded the size of the BW
(1oSW/BWo10), the ratio N̂b=EP rapidly declined from near unity
to 0.2–0.5. Finally, when the sample window was 410 times as large
as the BW, N̂bwas a small fraction of the EPs, as noted above.

A plausible biological explanation for the results shown in Figure 4
is that the ratio N̂b=EP is very sensitive to the inbreeding coefficient
for the sample (FIS; Table 2 and Figure 5). For FISp0 (as expected for
a randomly mating but finite population), N̂b and EP were
approximately equal. As FIS became positive (indicating heterozygote
deficit), N̂b=EP dropped sharply, particularly for larger BWs. For
example, for BW¼ 81, even a slightly positive FIS of 0.02 was

Table 3 Measures of genetic diversity as a function of the size of the breeding and sample windows

Sample window

Breeding window (BW) SW1 SW9 SW16 SW25 SW49 SW64 SW100 SW484 SW1936 SW4356

BW9 (Ho¼0.720)

Alleles/locus 5.08 6.86 7.50 8.04 9.02 9.47 10.31 14.65 21.65 28.13

He 0.674 0.674 0.729 0.743 0.766 0.777 0.791 0.849 0.900 0.926

FIS �0.064 �0.011 0.012 0.030 0.059 0.071 0.090 0.152 0.198 0.221

BW25 (Ho¼0.872)

Alleles/locus 12.16 14.07 14.76 15.39 16.56 17.09 18.09 22.97 29.75 35.37

He 0.850 0.859 0.863 0.867 0.874 0.878 0.884 0.909 0.931 0.944

FIS �0.025 �0.015 �0.011 �0.006 0.003 0.007 0.015 0.041 0.064 0.076

BW49 (Ho¼0.925)

Alleles/locus 20.99 22.55 23.12 23.72 24.82 25.36 26.38 31.35 37.67 42.44

He 0.911 0.914 0.915 0.917 0.920 0.922 0.925 0.937 0.949 0.956

FIS �0.015 �0.012 �0.010 �0.009 �0.005 �0.003 0.000 0.013 0.025 0.033

BW81 (Ho¼0.948)

Alleles/locus 29.44 30.58 31.03 31.50 32.39 32.84 33.72 38.19 43.67 47.54

He 0.938 0.939 0.940 0.940 0.942 0.943 0.944 0.951 0.958 0.963

FIS �0.011 �0.010 �0.009 �0.008 �0.007 �0.006 �0.004 0.003 0.011 0.016

Notes: Ho, mean observed heterozygosity; He, mean expected heterozygosity; and FIS, relative observed excess of homozygotes relative to Hardy–Weinberg proportions. Data are based on replicate
samples of 100 individuals from each combination of breeding and SWs.
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associated with a substantial depression in estimated effective size
(N̂b=EPp0.2; Figure 5). Thus, a deficiency of heterozygotes was
associated with unusually small N̂b values relative to the number of
parents contributing to a sample.

DISCUSSION

Continuous distributions represent a major violation of a key
assumption underlying most methods for estimating contemporary
Ne—that samples have been taken from a single, unstructured
population. Despite the fact that such distributions are common for
natural populations of many widespread animal and plant species, the
consequences for estimators designed for discrete populations have
not been examined. This is a specific example of a more general
problem with population genetics models and statistical tests that fail
to account for spatial autocorrelation in allele frequencies (Meirmans,
2012). We have demonstrated that the relative geographic scales of
sampling and local breeding in a continuously distributed population
can dramatically affect estimates of effective size using the LD
method, through interacting effects of genetic drift and population
mixture on LD. If the samples are drawn from an area that is
substantially larger than the area within which local, quasi-random
mating occurs, effects of population mixture on N̂bcan far exceed
effects of drift.

Two natural points of reference bracket the potential effective size
estimates and place them in context: a local effective size related to
Wright’s NS and a global effective size related to the total number
of individuals. We found that N̂b based on the LD method was close
to Wright’s NS when the SW was no larger than the area from which
parents can be considered to be approximately randomly drawn
(the BW). As the SW size increased relative to that of the BW, one
might expect that the estimates of effective size would approach or
reach the global effective size in proportion to the number of
potential parents. This, however, was not the case: N̂b did not
approach the number of potential parents. Alternatively, we could
expect estimates to increase proportionally with the EPs (Figure 2b),
given that the LD method primarily provides information about drift
disequilibrium in the pool of parents responsible for the sample
(Waples, 2005). We found, however, that N̂b increased much more
slowly than did even EP (compare Figures 3a and b with Figure 2b).
When the sample window was � 10 as large as the BW, N̂b was only
20–50% of the EPs that produced the samples, and the discrepancy
increased as SW size increased (Figure 4).

The primary factor that appears to be responsible for this deviation
from expectation is a type of Wahlund effect that arises when
genetically divergent individuals are included in a single sample. This
effect is a general property of IBD models, but the effect will generally
be small unless the size of the sample window exceeds the typical
parent–offspring dispersal distance. At a single locus, this effect
produces a deficiency of observed heterozygotes compared with
Hardy–Weinberg expectations. When pairs of loci are considered,

Figure 3 (a) N̂b as a function of the size of the sampling and BWs. N̂b is

the harmonic mean of estimates across 10000 replicates of 100

generations of simulated data. Sample size was 100 individuals. Ninety-five

percent confidence intervals for these estimates are provided in Appendix C.

(b) As in a, but with the N̂b values standardized by Wright’s NS for each

BW (see Table 2).

Figure 4 The ratio of harmonic mean N̂b to the EP as a function of the

ratio SW/BW.

Figure 5 The ratio N̂b=EP as a function of the inbreeding coefficient, FIS.

For each BW size, the data points represent, from left to right, SW1 through

SW4356.
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LD emerges due to mixture of offspring of genetically differentiated
parents. The LD method assumes these disequilibria are due to
genetic drift, and hence underestimates effective size.

The smallest SWs produced the opposite of the Wahlund effect—
an excess of observed heterozygotes and slightly negative FIS values
(Table 3 and Figure 5). When effective size is small, an excess of
heterozygotes arises from random differences in allele frequency
among parents of different sexes (Robertson, 1965); this phenomenon
is the basis for the heterozygote-excess method for estimating effective
size (Pudovkin et al., 1996). Balloux (2004) showed that an excess also
arises from a lack of completely random mating in monoecious
populations that lack selfing, as considered here. The slightly negative
FIS values became positive as sample window size increased relative to
BW size, indicating that the effect of a mixture of genetically divergent
individuals more than offsets the heterozygote excess from a small
number of local breeders.

Joint effects of drift and mixture on LD have been evaluated in
discrete subpopulations connected by equilibrium, island-model
migration (Waples and England, 2011). In that model, immigration
produced two counteracting effects analogous to those considered
here: it expanded the pool of parents and imported potentially
divergent genotypes. Empirical results showed that N̂b from the LD
method was close to the local effective size unless migration rate (m)
was 45–10%, at which point the estimate approached Ne for the
metapopulation as a whole (Waples and England, 2011). The lack of
an appreciable mixture LD effect presumably was due to basic
properties of migration-drift equilibrium in the island model: if m
is low, immigrants will be genetically divergent but rare, so they do
not have a large overall impact; if m is high, immigrants will be
genetically similar and thus produce little or no mixture LD.

The isolation-by-distance model considered here differed in
important ways from the island model considered by Waples and
England (2011). In the latter study, all sampling was from one local
subpopulation, and there is no way that equilibrium migration can
import appreciable fractions of genetically divergent individuals. In
the present study, in contrast, large SWs could include individuals
produced by non-overlapping sets of parents, and the resulting
mixture LD offset and eventually overwhelmed the reductions to
drift LD from expanding the EPs. When Waples and England (2011)
considered nonequilibrium, pulse migration at up to 10 times the
equilibrium rate in their island model, they found that N̂b could be
substantially depressed by mixture LD. This scenario somewhat
mimics what happens as the sample window in our model expands
beyond the BW size. In both cases, the sample includes genetically
divergent individuals in proportions that greatly exceed what would
occur locally under equilibrium conditions. We expect that a similar
effect would be seen in the equilibrium island model if more than one
subpopulation were included in a single sample.

Other Ne estimators
Two other single-sample estimators of contemporary Ne (the
Approximate Bayesian Computation program ONeSAMP (Tallmon
et al., 2008) and the sibship method of Wang (2009)) appear to have
considerable potential but are too computationally demanding to
easily evaluate in numerical studies like this one. Because the squared
correlation of alleles at different loci (r2) is the most important genetic
metric used by ONeSAMP (D Tallmon, personal communication), we
expect that its performance under isolation-by-distance might be
similar to that reported here. The sibship method should also be very
sensitive to the size of the local BW, as a small NS should produce

more full and half siblings than would occur in a large, randomly
mating population. Results for the heterozygote-excess method are
predictable; estimated effective size by that method is approximately
�1/(2FIS) (Pudovkin et al., 1996; Balloux, 2004). Based on FIS values
shown in Table 2, the estimates from this method would be close to
the NS for the smallest SWs but would rapidly rise to undefined
(infinite) values as the Wahlund effect erased the drift signal of
heterozygote excess. We expect that estimates using the temporal
method will also be sensitive to local breeding neighborhoods in
continuously distributed species, but effects could be qualitatively
different from those discussed here. This topic merits more detailed
consideration in a separate study.

Applications
These results have direct relevance for anyone interested in using
genetic methods to estimate effective size or study evolutionary
processes in natural populations. The degree to which the potential
biases resulting from a conflation of mixture and drift disequilibria
represent a serious problem will depend on the study objectives, as
well as on details of experimental design. In continuously distributed
populations, using single-sample methods to derive an estimate of the
global effective size is not likely to be feasible or appropriate unless
the global population is panmictic or nearly so. If breeding is
constrained to relatively small local areas (or, equivalently, if
parent–offspring dispersal distance is small compared with the scale
of the global population), then the LD method will underestimate
global Ne regardless how much of the geographic range of the
population is sampled. Even broad geographic sampling will produce
an estimate that is some small but unknown multiple of the NS, and
this can be a fraction of the total pool of parents that could have
contributed to the sample (Figures 2a and 3). As discussed above, we
expect that other single-sample estimators will produce qualitatively
similar results.

Our results show that the LD method provides a good approxima-
tion of the NS as long as the scale of sampling is commensurate with
the scale of local breeding. NS is a useful concept because it provides
information about the geographic scale over which short-term
evolutionary processes operate. A large number of empirical studies
(Bradbury and Bentzen, 2007; Watts et al., 2007) have taken
advantage of the increasing availability of numerous molecular
markers to estimate NS and parent–offspring dispersal distance,
using regression models (Rousset, 1997, 2000, 2008) that relate
genetic divergence and geographic distance. Theoretical evaluations
and modeling have demonstrated that this regression method is
generally robust to assumptions about mutational processes and
dispersal distributions, and empirical comparison of demographic
and genetic estimates of s2D for natural populations generally agree
within a factor of two (Guillot et al., 2009). Recent development of
maximum likelihood estimates based on the coalescent offer
potential for even better estimates (Rousset and Leblois, 2012).
On the other hand, Bradbury and Bentzen (2007) used simulations
and meta-analysis of published empirical papers and found
evidence for nonlinear patterns of isolation-by-distance in marine
species at both very small and very large distances. Those authors
suggested that these patterns might be common in species with
limited dispersal but large geographic ranges.

Our results illustrate the importance of understanding the spatial
structure of the target population to determine the optimal
sampling strategy for the particular question of interest. Although
researchers presumably match the geographic scale of sampling to the
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distribution of individuals in a population or species, they might have
little idea about breeding structure or parent–offspring dispersal
distances. Fortunately, it is possible to gain insights into the
appropriate sampling scale using an iterative approach. We suggest
that sampling initially occur based on multiple samples taken across a
range of spatial scales to include individuals separated by a range of
distances. These samples can first be used to test for positive spatial
autocorrelation in allele frequencies, which can occur at fine spatial
scales that can be missed if sampling is implemented only at large
scales (Schwartz and McKelvey, 2009). Samples can be aggregated
sequentially across different distance classes and used to estimate Nb

and FIS. Examining the shape of the curve relating N̂b and sampling
scale (as in Figure 3) can provide insight into the likely NS. The
dramatic drop in N̂b=EP that occurs as FIS values become positive
(Figure 5) indicates that the changing relationship between N̂b and FIS

across spatial scales is a sensitive indicator of the scale at which a
Wahlund effect and thus mixture disequilibrium occurs. It might also
be useful to combine genetic sampling with non-genetic approaches
such as global positioning system tracking of individuals to determine
dispersal distances, home range sizes and other biological attributes of
the sampled population.

Our evaluations have focused on bias, because to date there have
been no empirical evaluations of performance of any estimator of
contemporary effective size when applied to species with continuous
distributions. Precision also can be limiting for practical application;
fortunately, considerable empirical information regarding precision of
the LD method based on realistic samples of individuals, loci and
alleles is available (England et al., 2010; Tallmon et al., 2010; Waples
and Do, 2010; Antao et al., 2011; Waples and England, 2011). Results
of these evaluations can be summarized as follows: (1) As is the case
for all methods that estimate contemporary effective size, precision is
inversely related to true Ne; (2) When Ne is small (oB100), the drift
signal is strong and precision can be high with amounts of data
readily available from most field studies; (3) If Ne is large (4500–
1000), precise estimates generally cannot be achieved without large
sample sizes and large numbers of genetic markers; (4) The distribu-
tions of N̂e and N̂b can be highly skewed toward large values, so the
harmonic mean is the best measure of central tendency. Appendix C
provides empirical confidence intervals for the simulated data shown
in Figure 3 of this study.

The results presented here should be broadly applicable to a
wide range of patterns of individual isolation-by-distance in two
dimensions. The lattice model with one individual per node is
mathematically more tractable (Malécot, 1975; Rousset, 2000) and
avoids the problem of clumped groups of offspring that grow larger
over time that arise in other isolation-by-distance models (Felsenstein,
1975; Kawata, 1995). Although our implementation differs from that
of Wright and others in not allowing for long-distance dispersal, the
overall genetic differentiation patterns closely paralleled those found
in other models (Table 2) and met theoretical expectations. Further-
more, Rousset (2000) has shown that the theoretical results for the
lattice model were robust to highly leptokurtic dispersal distributions.
Rousset (2000) cautioned that theoretical expectations might be less
robust when individuals compared are separated by Euclidean
distances much larger than s, but we detected no change in the
slope of the regression of �a and ln(�x) for �x as large as 50 and
s¼ 0.67–6.67.

In summary, our results demonstrate that spatial variation in a
continuous population can severely bias estimates of Ne generated
with LD approaches, such that estimates are much closer to NSs than
to global population sizes. If this same effect holds true with other

approaches such as the temporal method, it might help explain why
the literature is replete with estimates of tiny Ne/Nc ratios (for
example, Hauser and Carvalho, 2008; Franckowiak et al., 2009;
Nikolic et al., 2009; Palstra et al., 2009). Possible biological reasons
for these discrepancies between estimated effective and census sizes
include historic bottlenecks (Nikolic et al., 2009), fragmentation
events, changing climate (Okello et al., 2008), fluctuating population
size (Boessenkool et al., 2010), sweepstakes dispersal and recruitment
(Hedgecock, 1994) and age structure (Palstra et al., 2009). However,
because these anomalous results might also result from sampling
issues, statistical artifacts or violations of assumptions, it is important
to more fully explore these other potential factors. Thus, we advocate
further performance testing of effective size estimators in continu-
ously distributed populations and better understanding of the true
structure of populations rather than assuming structure a priori.
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APPENDIX A

Dispersal, breeding window size and neighborhood size
Wright’s neighborhood size (NS) for a two-dimensional continuously
distributed population is

NS¼ 4ps2D, where D is density (number of individuals per unit
area) and s2 is a measure of dispersal, reflecting the difference in
location between birthplaces of parents and offspring. Specifically, s2

is the variance of the signed parent–offspring distance along one axis
(d). In Wright’s original neighborhood model, d is normally
distributed with a mean of 0 along both axes. Under those conditions,
NS can be thought of as the number of reproducing individuals in a
circle of radius 2s, and a circle of this size would include about 87%
of the parents of individuals at the center (Wright, 1946). The

remaining B13% of parents therefore would have been responsible
for relatively long-range dispersal of their offspring.

The model considered here has a number of similarities but also
some differences compared with Wright’s neighborhood model. Our
model involves a regular lattice with exactly one individual per cell, so
D¼ 1 and that term drops out. In our model, the parents of an
individual in a given focal cell are drawn with equal probability from
any of the cells in the square breeding window (BW) with sides (b) of
3, 5, 7 and 9 cells, yielding BWs of BW¼ 9, 25, 49 and 81. Parent–
offspring dispersal, therefore, is not Gaussian in our model, but rather
uniform within the range –n to þ n. For example, for n¼ 1, there are
3� 3¼ 9 potential parents in the square BW. Three of the potential
parents have an X coordinate 1 cell to the left of the focal cell (d¼ -1),
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three have an X coordinate the same as the focal cell (d¼ 0) and three
have an X coordinate 1 U to the right of the focal cell (d¼ þ 1). For
BW9, therefore, �d¼ 0 and s2¼ 0.667. In Wright’s model, a neighbor-
hood with the same density and same variance in dispersal would be
of size NS¼ 4p(0.667)¼ 8.4, which is close to the nine ideal
individuals in the comparable BW in our model. Table 2 shows that
for each of the other BWs considered here, the NS having the same
density and variance in dispersal is also quantitatively similar to the
number of individuals in the BW.

The major difference between the two models (distribution of
parent–offspring dispersal distances) is illustrated in Figure A1, which
compares patterns of dispersal for a 9� 9 BW in our model with that
expected under a neighborhood model with Gaussian dispersal. Both
models have the same density and the same mean and variance in
dispersal, but the neighborhood model has a higher fraction of long-
distance dispersers, as well as a higher fraction that do not disperse at
all.

APPENDIX B

Development of spatial autocorrelation and local differentiation in
the modeled landscape
To determine the burn-in period, we quantified the number of
generations necessary to establish genetic structure due to local
mating within the continuous grid surface for the four breeding
window (BW) sizes (BW9, BW25, BW49 and BW81). We used
Moran’s I to quantify spatial autocorrelation of genetic distance
among all individuals in a centrally located 25� 25 cell area across lag
distances of 1–21 cells at generations 0, 1, 10, 50, 100, 250, 500 and
1000, using the computer program SPAGeDI (Hardy and Vekemans,
2002). We used the program GENODIVE V.2.0b20 (Meirmans and Van
Tienderen, 2004) to calculate Hedrick’s standardized measure G0ST

(Hedrick, 2005), GST and Hs among four 10� 10 cell SWs that were
located in four corners of the 150� 150 internal sampling grid. We
sampled 100 individuals from each ‘population’ every 10 generations
up to generation 200, and then every 100 generations up to
generation 2000.

For all BWs, spatial autocorrelation was nonexistent at the start of
the simulation but began establishing in 1 generation and was well
established within 10 generations (Figure B1). The maximum

magnitude of Moran’s I was a function of the BW size, ranging from a
maximum of 0.029 for BW81 to B0.32 for BW9. Between 50 and
100, generations were required to reach at least 90% of the maximum
value of Moran’s I for all BW sizes. The maximum lag distance at
which Moran’s I crossed 0 was B11. The number of generations

Figure A1 Distribution of axial dispersal distances (along the horizontal or

vertical axis) for Wright’s neighborhood model (curved line, assuming a

normal distribution of dispersal) and our model (vertical bars) with BW81.

In both models, the density of individuals (D)¼1 and mean and variance of

parent–offspring dispersal are �d¼0 and s2¼0.667, respectively.
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required to reach this maximum decreased with increasing BW and
within all BWs, and differences in the lag distance decreased with
increasing generations. For BW9, the increases were minor after
B100 generations; for BW25 and BW49, there was little change in the
lag distance at which Moran’s I crossed 0 after 50 generations; and for
BW81, there was little change after 10 generations. Thus, the genetic
structure as measured by autocorrelation was well established by
generation 50–250 and then was relatively unchanged in subsequent
generations in all BWs (Figure B1).

Values of GST and G0ST also indicated rapid development of
population genetic structure in the grid surface, the magnitude of
which was a function of BW size (Figure B2). GST continued to
increase through time, and did so more rapidly than G0ST, especially
for BW9. G0ST reached an asymptote by B30 generations. This
differential increase was in large part due to continuing declines in HS

that were strongest for BW9 (Figure B2). This relationship displays
the expected interaction between HS and GST (MeirmgAans and

Hedrick, 2011) that can confound interpretation of this statistic and
illustrates how sampling from isolated locations within a continuous
population yields gyetic structure indicative of isolation.

APPENDIX C

Medians, 10th and 90th percentiles, and root mean squared error
(RMSE) for estimates of number of effective breeders (N̂b) from
10 000 replicates of all breeding window (BW)–SW combinations.
RMSE¼ sqrt[

P
((1/(2N̂b)�(1/(2NS))2] of the drift signal (1/(2N̂b)).

Bias of each estimate is assessed with respect to the true NS for each
BW. See Wang (2009) for comparable data for another single-sample
method.

N̂b

SW 2.5% 10% 50% 90% 97.5% NS 1/(2NS) RMSE

BW9 1 7.6 8.3 9.8 11.2 11.9 8.4 0.0595 0.00998

3 12.8 14.1 16.5 18.9 20.1 0.02899

4 14.7 16.1 18.8 21.6 23.1 0.03279

5 16.4 18.0 20.9 24.1 25.8 0.03548

7 19.6 21.2 24.2 27.5 29.3 0.03877

8 21.0 22.5 25.6 29.0 30.9 0.03988

10 23.1 24.7 27.9 31.4 33.4 0.04154

22 30.8 32.6 36.2 40.0 42.2 0.04566

44 36.5 38.5 42.4 46.5 48.9 0.04769

66 39.0 41.2 45.3 49.7 52.2 0.04845

BW25 1 23.8 25.0 27.2 29.3 30.4 25.1 0.0199 0.00184

3 32 33.9 37.7 41.7 43.9 0.00669

4 36.4 38.8 43.4 48.1 50.8 0.00839

5 41.5 44.2 49.7 55.5 58.6 0.00985

7 54.1 57.6 65.0 72.9 77.3 0.01220

8 60.0 64.2 72.6 81.6 86.8 0.01301

10 71.7 76.8 86.8 97.8 103.7 0.01414

22 110.8 118.3 134.1 151.7 162.2 0.01618

44 126.8 135.3 153.1 173.2 185.5 0.01664

66 126.8 135.3 152.8 171.9 183.5 0.01663

BW49 1 43.3 45.5 49.9 54.1 56.2 50.3 0.0099 0.00070

3 51.6 55.1 61.8 68.7 72.5 0.00193

4 56.1 60.0 67.9 76.2 81.1 0.00263

5 61.3 65.8 74.9 84.5 90.0 0.00328

7 74.9 81.0 93.3 106.6 114.0 0.00457

8 83.7 90.9 104.5 119.4 128.1 0.00514

10 103.7 112.5 130.0 149.6 161.3 0.00608

22 214.4 233.4 274.9 324.8 354.3 0.00811

44 296.2 323.8 382.4 455.9 500.5 0.00863

66 304.4 332.4 392.8 468.0 512.1 0.00866

BW81 1 63.8 68.0 76.3 84.2 88.5 83.8 0.0060 0.00085

3 72.9 78.0 89.0 100.4 106.7 0.00064

4 77.1 83.4 95.7 109.0 116.6 0.00090

5 82.0 89.0 102.8 117.9 126.7 0.00120

7 94.0 102.7 120.1 139.8 151.3 0.00184

8 99.3 111.3 131.1 153.3 165.8 0.00217

10 120.2 132.5 157.7 185.5 202.4 0.00279

22 277.2 306.7 375.5 466.6 521.1 0.00463

44 463.2 526.2 673.6 880.5 1028.3 0.00521

66 521.7 591.6 761.9 1031.9 1243.3 0.00531
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Figure B2 GST, Hedrick’s G0ST and HS for four 10�10 cell ‘populations’
sampled from the continuous landscape as a function of BW size and

number of generations in the modeled landscape.
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