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Eradication of an invasive species can provide significant environ-
mental, economic, and social benefits, but eradication programs
often fail. Constant and careful monitoring improves the chance of
success, but an invasion may seem to be in decline even when it is
expanding in abundance or spatial extent. Determining whether
an invasion is in decline is a challenging inference problem for two
reasons. First, it is typically infeasible to regularly survey the entire
infested region owing to high cost. Second, surveillance methods
are imperfect and fail to detect some individuals. These two
factors also make it difficult to determine why an eradication
program is failing. Agent-based methods enable inferences to be
made about the locations of undiscovered individuals over time
to identify trends in invader abundance and spatial extent. We
develop an agent-based Bayesianmethod and apply it to Australia’s
largest eradication program: the campaign to eradicate the red
imported fire ant (Solenopsis invicta) from Brisbane. The invasion
was deemed to be almost eradicated in 2004 but our analyses
indicate that its geographic range continued to expand despite
a sharp decline in number of nests. We also show that eradication
would probably have been achieved with a relatively small in-
crease in the area searched and treated. Our results demonstrate
the importance of inferring temporal and spatial trends in ongoing
invasions. The method can handle incomplete observations and
takes into account the effects of human intervention. It has the
potential to transform eradication practices.

Bayesian models | spread models | Markov chain Monte Carlo

Invasive species can cause economic, social, and environmental
losses (1), and eradication is therefore desirable. The duration

of successful eradication programs varies depending on bio-
logical and management factors (2). If the invasion is detected
early while it is confined to a small area, eradication can po-
tentially be achieved almost immediately by treating the entire
area. Black-striped mussels (Mytilopsis sallei) were eradicated
soon after being discovered in a northern Australian marina by
applying a highly toxic chemical to the entire marina (3). Such
“brute-force” treatment methods may not be available when
invasions have spread over a larger area owing to unacceptable
impacts on nontarget species or human health or because of fi-
nancial constraints. When large areas are potentially infested
and surveillance is required to determine where to apply treat-
ment, eradication can take many years. Some areas that might
be infested are not regularly surveyed owing to the high cost of
monitoring (observations are “incomplete”), and some indi-
viduals in surveyed locations are missed because surveillance
methods are imperfect (4). These two factors create uncertainty
about whether eradication efforts will succeed. An invasion may
seem to be in decline but in fact be expanding in spatial extent
and/or abundance, or declining more slowly than estimated, with
a high risk of “escaping” to unmanaged areas. Invasions that
expand in spatial extent or abundance over an extended period
are not under control and may eventually become ineradicable
without a change in management. Here, we focus on the problem
of determining spatial and temporal trends in biological invasions
with incomplete and imperfect observations obtained during an
eradication program.

Three critical decisions arise during the course of eradication
programs: whether to attempt eradication (5, 6), whether to
declare eradication successfully completed (7–9), and whether
to persist with the current eradication strategy. Decisions on
whether to attempt eradication and when to declare success are
made at the beginning and end of eradication programs and have
received substantial attention in the invasion management lit-
erature. Much less attention has been given to the problem
of determining whether to continue current eradication efforts
given spatial and temporal trends in invader abundance (see refs.
2 and 10 for reviews of recent studies).
Many biological invasions occupy a large area at low density,

with most individuals being in clusters that form as the result of
local dispersal. Long-distance “jumps” by a small number of re-
productive individuals create new clusters far from the founding
cluster, and such jumps often are human-assisted (11). In such
circumstances, there may be many unsurveyed sites that contain
individuals despite the fact that surrounding areas have none,
meaning that a large total area needs to be surveyed at high cost.
Hooten and Wikle (12) developed an invasion model moti-

vated by a reaction–diffusion partial differential equation. Their
main outputs are estimates of diffusion coefficients and param-
eters describing spatial variation in these coefficients. Although
this model is certainly useful for modeling and simulation, the
parameters estimated are abstract, and significant additional
work is required to translate them into answers to such pressing
questions as the number and location of undetected agents. A
second problem is that the model does not take into account the
effect of human intervention on the spread of the invasion. This
is a major deficiency when an intensive eradication or management
strategy is in place, because any effective strategy will affect the
observed range and density of the invasion. Third, diffusion
models implicitly consider the invasion to be composed of cu-
mulative local movements and therefore do not allow for long-
distance founding events. Such events can profoundly alter in-
vasion dynamics and patterns of distribution (11, 13). The model
of Schmidt et al. (14), codeveloped by one of the authors, most
closely resembles the model we present here. In particular, it
attempts to incorporate the effects of habitat suitability and hu-
man population density on the spread of the invasion and allows
for long-distance founding events. However, the method still
ignores the effect that the eradication effort has on the invasion.
In addition, the inclusion of long-distance jumps results in a time
complexity quadratic in the number of grid squares, greatly lim-
iting the potential spatial resolution of the model. None of the
existing methods has been used to determine whether an invasion
subject to eradication efforts is in decline and, if not, the likely
causes of failure.

Author contributions: J.M.K. and D.S. designed research; J.M.K. performed research; J.M.K.
analyzed data; and J.M.K. and D.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence may be addressed. E-mail: jonathan.keith@monash.edu or
daniel.spring@monash.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1216146110/-/DCSupplemental.

13428–13433 | PNAS | August 13, 2013 | vol. 110 | no. 33 www.pnas.org/cgi/doi/10.1073/pnas.1216146110

mailto:jonathan.keith@monash.edu
mailto:daniel.spring@monash.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1216146110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1216146110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1216146110


The latter two methods are both intrinsically grid-based. In
this paper, we present an entirely different approach that, unlike
these earlier methods, is agent-based. Agent-based models ex-
plicitly incorporate autonomous agents and their actions and
interactions to simulate systems or infer system-level parameters
(15). Individual agents (in this case, nests) are explicitly consid-
ered in the model, including their exact position, times of
founding and destruction, and phylogeny (tree of descent). The
interactions between nests are restricted to founding events,
making this a particularly simple agent-based model. The phy-
logeny of detected individuals is naturally considered only in
terms of individual nests and could not be included in a grid-
based model. Another advantage of an agent-based approach
is that it allows maximum resolution on spatial and temporal
scales, because there is no grid to limit resolution. The absence of
a grid also facilitates efficiency without sacrificing generality.
Although agent-based methods can be computationally expen-
sive, if the interactions between agents are limited in number they
require computational time linear in the number of agents. Grid-
based methods that consider discrete spatial cells that might
contain individuals, rather than considering individuals explicitly,
require interactions to be limited in spatial extent, rather than in
number, to achieve linear time complexity.
We apply the method to Australia’s largest eradication program,

the campaign to eradicate the red imported fire ant (Solenopsis
invicta) (RIFA) from Brisbane. The invasion was deemed to be
almost eradicated in 2004 but subsequent discoveries of new
infestations at ever-increasing distances from the invasion epicen-
ter in thePort of Brisbane have called into question the feasibility of
eradication. These new infestations also call into question whether
the invasion was under control at any stage and, if not, whether
corrective measures are available that can reverse the ongoing
spread of the invasion. These are the questions we address here.
The fire ant eradication program in southeast Queensland is

one of the larger eradication efforts to have been attempted in
terms of its spatial extent and the amount of data collected,
reflecting that over $250 million has been spent on the project to
date. Fire ants are one of the world’s 100 worst invaders (16) and
have the potential for extensive invasion worldwide (17). Our
model was applied to a study region ∼190 km by 200 km (see Fig.
5) and data collected over 11 y (2001–2011). The data are in the
form of point locations where detection of fire ant nests oc-
curred and where surveillance activity took place by Biosecurity
Queensland Control Centre (BQCC).

Results
Software implementing the method was validated using the
method of Cook et al. (18), using 100 small to medium-sized
simulated datasets, as discussed in Supporting Information (Fig.
S1). We found no evidence of errors in the software. We also
simulated a single large dataset, comparable in size to the real
dataset analyzed below. Starting with a single nest in an urban
area of Brisbane, we simulated unhindered expansion for 61 mo,
with nests founded at an average rate of 0.25 per nest per month,
and the distribution of founding distances shown in Fig. S2A.
Relative establishment probabilities were set to 1.0, 0.9, 0.6, and
0.3 for the four habitat classes. We then simulated an eradication
program lasting 95 mo, with a simple search and treatment
strategy, similar to the strategy used by BQCC. The probability
of passive detection in any given month was 0.02 for urban areas
and 0.01 for rural areas. Whenever a passive detection occurred,
a grid cell of side length 100 m containing the detected nest was
searched, as were the eight grid cells forming a square around
it. The 16 grid cells forming a larger square around those were
treated. Where a grid cell was selected for both search and
treatment, it was searched but not treated. Targeted search ef-
ficacy and treatment efficacy were both set to 0.8 (as suggested by
BQCC). For each nest, an initial maturation period of 8 mo was
imposed during which the nest cannot found other nests, and
also a simultaneous initial period of 6 mo during which the nest
cannot be detected by public or targeted search, although it can

still be killed by treatment. These periods were based on expert
opinion at BQCC supported by experimental studies (19) and
were also assumed in our analysis of real data below.
The method was then applied with additional constraints that

search and treatment efficacies be greater than or equal to 0.8
(prior probabilities for these parameters were thus uniform be-
tween 0.8 and 1.0), and the reproductive rate was fixed at 0.25
founded nests per nest per month on average (the true value).
Fig. 1 shows the actual trajectory of the simulated invasion in
terms of number of mature nests and the inferred trajectory with
95% credible intervals. Also shown is the trajectory inferred
without the additional constraints on search and treatment effi-
cacies and reproductive rate. Similar results were obtained for
immature nests (Fig. S2B). Fig. 2 shows the actual north, south,
east, and west boundaries of the simulated invasion and the
posterior median boundaries estimated with and without the
additional constraints. Credible intervals for the inference with
the additional constraints are also shown. Estimates of the es-
tablishment probabilities and passive detection probabilities are
shown in Fig. S2 C and D, respectively.
The method was then applied to the real data from the Brisbane

fire ant eradication program, using prior information supplied by
BQCC that the search and treatment efficacies were each greater
than or equal to 0.8 and the reproductive rate was between two
and four nests founded per nest per year. This prior information is
essentially expert opinion, although influenced by experiments
reported in the literature (19, 20). Separate inferences were per-
formed with the reproductive rate set to 0.15, 0.2, 0.25, and 0.3
nests founded per nest per month, to test the sensitivity of the
inference to this parameter.
Fig. 3 shows the estimated invasion trajectory from January

1996 (month 0) to December 2011 (month 191) in terms of
number of mature nests. The population declined sharply after
the eradication program began in February 2000, and eradication
was almost achieved by the end of 2003. However, the population
recovered, reaching a second peak in the early months of 2010.
Since then, the population again seems to be in decline. A similar
pattern is observed for immature nests in Fig. S3C. Note that most
of these trends are robust to variations in the prior information
supplied, the important exception being the decline in numbers
since 2010. This decline was observed for a range of values of the
reproductive rate λ. However, in the absence of constraints on
the search and treatment efficacies or reproductive rate, this
decline was not observed, highlighting the need for sound prior
information. Note also that at any specific time the number of
immature nests is greater than the number of mature nests,

Fig. 1. The number of mature nests existing in each month of a simulated
invasion consisting of 61 mo of unhindered expansion followed by 95 mo of
a simple management strategy (light gray, highest solid line), the posterior
median number of mature nests estimated using additional constraints that
α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.25 (black, center
solid line) with 95% credible intervals (black, dashed lines), and the posterior
median number of mature nests estimated without the additional con-
straints (dark gray, lowest solid line).
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indicating that most nests are killed by treatment before matu-
ration. If the eradication program were to cease, these nests
would reach maturity, and numerical expansion would dramati-
cally accelerate. It is also clear that search and treatment should
continue for at least 8 mo beyond apparent eradication of
mature nests.
Equally important is the evolution of the spatial extent of the

invasion. Fig. 4 shows trajectories of estimated posterior medians
of the north, south, east, and west boundaries of mature nests.
These estimates are almost unaffected by the inclusion of addi-
tional prior information. The boundaries of immature nests follow
similar trajectories, 8 mo earlier (Fig. S3 A and B). Only the north
boundary has been significantly pushed back, perhaps partly
facilitated by the Brisbane River, which inhibits northward ex-
pansion. The east boundary has remained relatively static, again
perhaps partly because the coastline bounds eastward expansion.
However, the invasion front has advanced west and south in a
steady, roughly linear manner, apparently unaffected by the sharp
drop in nest numbers from 2001, or the recovery from 2004.
Another way of visualizing the geographic expansion is via the

annual sequence of heat maps shown in Fig. 5. Each map indi-
cates the expected (i.e., posterior mean) number of mature
RIFA nests in grid squares 500 m square. (Note that a grid is
used here only for data presentation; it is not part of the model.)
The darkest colors (reds) represent the highest expected num-
bers and the lightest colors (yellows) represent the lowest. Color
bins are on a logarithmic scale, and the heat maps are overlaid
on maps of the infested area. The maps indicate two distinct
invasions in December 2000, with the smaller invasion near the
mouth of the Brisbane River being virtually eradicated by 2004.
The heat maps also illustrate that the decline and recovery of
nest numbers affected the density, but not primarily the geo-
graphic range, of the invasion. However, interpreting these heat
maps requires caution. Uncertainty about the location of nests
increases in later years, because there are fewer data from later
time points to inform the inference. Thus, the apparent rapid
expansion in the later maps in part reflects increasing uncertainty
rather than actual physical expansion. For this reason, the median
boundary trajectories shown in Fig. 4 may be more useful than the
heat maps for delineating the current extent of the invasion.
We also estimated the distribution of founding distances (Fig.

S3D), the relative establishment probabilities (Fig. S3E), and the
probabilities of detection by passive surveillance in urban and
rural areas (Fig. S3F).
Our focus in this paper is on reconstructing the historical tra-

jectory of an invasion to determine whether the current strategy
is likely to succeed. However, we anticipate that the model will
also be used to infer the likely locations of living nests, to inform
eradication efforts. To assess the adequacy of the model for this
purpose, we attempted to infer the number of nests and the lo-
cation of the north, south, east, and west boundaries at the end of
2008, using only the data that were available at that time. Again,
we used prior information that the search and treatment efficacies

were greater than or equal to 0.8 and that the reproductive rate
was 0.25 nests founded per nest per month (we did not investigate
alternative values, because the analysis above convinced us that
similar results would be obtained). The inferred numerical and
geographic trajectories are shown in Fig. S4, with 95% credible
intervals, and compared with the corresponding inferences using
all data. It is clear that had this method been available in 2008
accurate and useful assessments of these quantities could have
been made (although nest numbers would have been slightly
overestimated). However, the 2008 heat map obtained using only
the data available in 2008 differs substantially from that obtained
using all of the data (Fig. S5). This reinforces the point that data
from later time points reduce uncertainty about where nests were
in 2008. In general, we recommend that heat maps are useful for
identifying regions where nests are currently at high density, but
not for delineating invasion boundaries.
The 2001–2008 dataset was also used to check two potential

problems with the method. First, to investigate whether the
sampler becomes trapped in a local mode, we ran it five times
with different random starts. No evidence of an alternative mode
was found, and results obtained were barely distinguishable.
Second, we investigated the effect of raising the lower bound of
the search and treatment efficacies to 0.85. Only small differ-
ences in the inferences were observed. Numerical and geo-
graphic trajectories for these tests are shown in Fig. S6.

Discussion
Our investigations with simulated data demonstrate the ade-
quacy of the method for estimating the past trajectory and cur-
rent extent of an invasion, in terms of numerical abundance and

Fig. 2. (A) The northernmost and southernmost y
coordinates of all mature nests in the simulated
invasion, in each month (gray, solid lines), the
posterior median northernmost and southernmost
y coordinates of mature nests estimated using the
additional constraints (black, solid lines) with 95%
credible intervals (black, dashed lines), and the
posterior median northernmost and southernmost
y coordinates of mature nests estimated without
the additional constraints (also black, solid lines).
The trajectories inferred with and without the
additional constraints are so similar that no at-
tempt has been made to distinguish them. (B) The
corresponding trajectories of the westernmost and
easternmost x coordinates.

Fig. 3. The posterior median number of mature nests existing in each
month from January 1996 to December 2011, estimated using additional
constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.15,
0.2, 0.25, and 0.3 (four black lines, top to bottom), and corresponding esti-
mates without the additional constraints (gray line).
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geographic range. A major finding of our analyses was that the
estimated spatial extent of the invasion never declined. Fig. 4
suggests that if the strategies used thus far are not changed, the
invasion will continue to expand, eventually becoming too large
for affordable management. In fact, it may be that no strategy
can stop the advance of the invasion front until eradication is
almost achieved, which implies there is a limited time threshold
beyond which eradication becomes infeasible. This is perhaps
unsurprising, because the boundaries correspond to single nests,
and unless these specific nests are killed, the boundary will not
recede. Thus, even a highly effective management program faces
an increasingly difficult task as time passes. A critical manage-
ment decision that must be faced is whether to continue eradi-
cation efforts with improved strategies or to abandon the program
and adopt more modest objectives. This depends heavily on the
estimated increase in annual search and treatment area required
to remove all individuals. A comparison of Fig. 5 with a map of
the searched and treated areas in each year (Fig. S7) indicates
that a relatively small area of additional surveillance and treat-
ment was needed up until about 2005. The infested area has
approximately doubled between 2004 and 2010, according to
Fig. 4B.
The steady increase in the estimated area of required control

efforts over time implies that a larger area needs to be searched
or treated each year. This can be achieved by increasing program
resources and/or by changing program methods, including the
use of lower-cost methods that can be applied over larger areas.
The eradication program is currently evaluating remote sensing
as a new surveillance method, which has a much lower cost per
hectare than currently used ground surveillance methods when
applied over a large area. In addition to providing information
required for determining how large an area to search, our meth-
ods can potentially be used to determine the effective placement
of surveillance resources by identifying regions of high nest den-
sity and invasion boundaries. Periodically updating these esti-
mates with information provided by remote sensing and passive
surveillance and using the updated information to guide future
surveillance will increase the effectiveness of management and
may enable eradication.
Our model predicts a large number of immature nests, many

of which will be too small to be visually detected. This highlights
the importance of combining surveillance with treatment meth-
ods that do not rely on prior detection. Broadcast pesticide bait
is taken by foraging ants back to their nests, and therefore this
treatment method does not require prior visual detection of nests.
Two main forms of surveillance are applied to detect fire ants:

passive surveillance by private citizens and active surveillance by
trained personnel. Passive surveillance provides the first postb-
order line of defense against biological invasions and it is therefore
critical to determine its effectiveness. The importance of passive
surveillance is further emphasized by its large spatial coverage,
which potentially allows for larger areas to be searched each year
than do programs that rely solely on active surveillance. Previous

studies have estimated the probability of detection with active
surveillance using field experiments (20), but such experiments
will typically not be available for estimating passive surveillance.
No previous studies have estimated the probability of detection
with passive citizen monitoring over large areas. This is a chal-
lenging inference problem, the main difficulty being the need to
estimate the total number of nests in the region of interest. Our
agent-based inference method is in principle well suited to
addressing this problem and allowed us to make the first em-
pirical estimates of passive surveillance detection probabilities.
Our study provides a rigorous, quantitative basis for deter-

mining whether eradication programs are on track and for
diagnosing causes of eradication program failure. Our results
demonstrate the importance of methods that consider the in-
completeness and imperfection of observations for informing
invasive species eradication and control programs.

Materials and Methods
ThedatacollectedduringtheBrisbaneRIFAeradicationprogramisexceptionally
complete and detailed. For each nest i detected from 2001 to 2011, the precise
map location (xi, yi), time of discovery ti, and type of discovery diwere recorded.
The total number of nests detected was n = 7,068. Discovery times were
encoded as integers in the range 61–191 representingmonths February 2001 to
December 2011 and discovery types were encoded as 1 for targeted search and
0 for passive detection. Four maps were also available, precisely indicating (i)
areas thatwere searched, (ii) areas thatwere treated, (iii) human landuse types
(urban and rural, divided into four subcategories), and (iv) habitat suitability for
the ant (divided into four categories). The search and treatment maps were
encoded as functions I1(x, y, t) and I2(x, y, t), taking the value 1 if position (x, y)
was respectively searched or treated and 0 otherwise. The land-use and habitat
maps were encoded as functions S(x, y) and H(x, y), each returning integer
values in the range 1–4. Note that these latter two functions are in reality time-
dependent, but here we assumed no change over time.

We constructed a detailed likelihood model in terms of the following
unknown parameters: (i) the number U and locations (xi, yi) of all undetected
nests alive at any time during 1996–2011 (note that the model includes an
unhindered expansion phase 1996–2000); (ii) the mean number of nests
founded per nest per month λ; (iii) the phylogeny of all nests, rooted in
initial nests that existed at the beginning of 1996, and represented as
a vector pi identifying the parent nest for each nest i (pi =-1 for initial nests);
(iv) the time of founding fi for each nest encoded as integers in the range
0–190 representing months from January 1996–November 2011 (fi = −1 for
initial nests); (v) the founding type Ji for each nest (undefined for initial nests
and an integer in the range 1–4 for noninitial nests, representing four dif-
ferent scales of founding event); (vi) the proportion γj of founding events that
are of founding type j; (vii) the distribution of founding distances in the x and y
directions modeled as exponential distributions with parameters σXj and σYj,
respectively, for each jump type j; (viii) treatment success rate α0 and detection
probabilities by targeted search α1 and by passive search within each land use
type (α2–α5 for land-use types 1–4); and (ix) nest establishment probabilities
β2–β4 in each habitat suitability class 2–4, relative to the most suitable habitat,
for which the relative establishment probability is defined as β1 = 1.

The conditional dependencies among the known and unknown param-
eters of a noninitial nest are shown in Fig. 6 and for an initial nest in Fig. S8.
Parameters at the head of an arrow are conditionally dependent on

Fig. 4. (A) The posterior median northernmost
and southernmost y coordinates of all mature nests
in each month from January 1996 to December
2011 estimated using additional constraints that
α0 and α1 are both greater than or equal to 0.8 and
λ ≈ 0.25 (solid lines) with 95% credible intervals
(dashed lines). The trajectories inferred with other
values of λ or without the additional constraints are
so similar that they have not been plotted. (B) The
corresponding trajectories of the westernmost and
easternmost x coordinates.
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parameters at the tail. A conditional distribution was defined for each arrow
in these figures. Prior probabilities were defined for all unconditioned
parameters (those with no incoming arrows). The mathematical forms of the
prior and conditional distributions are provided in Supporting Information.

According to Bayes’ rule, the posterior distribution over the space of all
unknowns is proportional to the product of the prior and conditional dis-
tributions just described. This posterior distribution was sampled using
Markov chain Monte Carlo (MCMC). Each individual sample represents a
complete and detailed reconstruction of the entire invasion history 1996–
2011. We generated 10,000 such sampled histories. These can then be used
to estimate posterior marginal distributions for quantities of interest.

The MCMC technique used was the generalized Gibbs sampler (21). This
technique involves iteratively sampling conditional distributions over subsets
of the target space. It is a broad generalization of the conventional Gibbs
sampler: Whereas conventional Gibbs involves sampling from fixed co-
ordinate subspaces, the generalization enables sampling from arbitrary
subsets. In particular, it enables transdimensional sampling, that is, sampling
from distributions for which the number of parameters is not known, as
here. Most of the subsets selected for the sampler were one-dimensional,
fixed-coordinate subspaces, resulting in conventional Gibbs parameter

updates. Details of these are provided in Supporting Information. Here, we
describe two updates that are not conventional Gibbs. The first is a subtree
pruning and regrafting update, similar to updates used elsewhere in a phy-
logenetic context (22).

The sampler scans through a randomly ordered list of the nests, updating
the parent nest for each nest i. Undetected nests (di = 2) that never founded
a nest are not moved, but for all other nests, pi is updated by detaching nest

Fig. 5. Heat maps for the posterior expected number of nests in grid cells 500 m by 500 m in December of each year 2000–2011. Brighter cells (yellows) have
lower expected numbers of nests and darker cells (reds) have higher expected numbers. Color classes are on a logarithmic scale.

Fig. 6. Model parameters associated with noninitial nests.
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i with its descendents (pruning) and either selecting a new parent nest p
(regrafting) or making the nest an initial nest. At the same time, the time of
founding fi and the type of founding Ji are also updated to values f and j,
with all possibilities being considered except those that would violate nat-
ural constraints (for example, f must precede the month of founding for
each descendant of nest i). An ordered list of the nests founded by p in
month f is maintained, and nest i is added at a random position in this list.
The conditional posterior probability that nest i is an initial nest is

ðz+ λrÞ−ðn+λsÞ
ðxmax − xmin + 1Þðymax − ymin + 1Þðn+ λsÞ ,

where z is the total number of months after maturity summed over all nests
excluding nest i, n is the total number of noninitial nests excluding nest i,
xmin, xmax, ymin, and ymax are x and y bounds for initial nests, and λr and λs are,
respectively, the rate and shape parameters for the prior distribution of λ.
The conditional posterior distribution over the set of noninitial values (p, f, j)
is proportional to

γj

�
1

2σXj
e−jxi−xpj=σXj

��
1

2σYj
e−jyi−ypj=σYj

�
ðz+Nðf ; tÞ+ λrÞ−ðn+1+λsÞ

​ ​ ×

"
∏
f

k=61
ð1− α0ÞI2ðxi ;yi ;kÞ ∏

f + 5

61

h�
1− α1+ Sðxi ;yi Þ

�
ð1− α1ÞI1ðxi ;yi ;kÞ

i#−1

,

where N(f, t) is the number of months during which nest i is mature. These
expressions were obtained by conditioning the full posterior distribution
over subsets consisting of allowed updates to (p, f, j).

The second update that does not fit within the conventional Gibbs
framework involves adding or deleting undetected nests. It is similar to
a Metropolis–Hastings move but differs in the systematic way that additions
and deletions are considered and also includes a correction factor in the
acceptance ratio determined by the generalized Gibbs methodology. The
sampler scans through the list of nests, adding and deleting undetected
child nests to each nest. It begins by considering deleting an undetected
child of the first nest on the list. If there are no such undetected children,
no change is made, and the deletion is considered to have failed. The
sampler proceeds through the list of nests, deleting one undetected child
per nest until a deletion fails, either because that nest had no undetected
children or the proposed deletion was rejected. The sampler then attempts
to add an undetected child and keeps adding undetected children to that
same nest until an insertion fails, at which point it moves to the next nest
on the list and begins deleting as before. This process is continued until the
end of the list is reached.

Each time a deletion is attempted for nest i, the child k to be deleted is
selected uniformly and randomly from the undetected children of that

nest. If that child has children of its own, they become children of nest i.
The sampler maintains an ordered list of children founded by each nest in
each month; after a successful deletion, a random permutation of these
lists is performed for the child lists of nest i in each month of the mature
lifetime of the deleted nest. If nest i was killed by a treatment before the
founding of one of these new children, the deletion automatically fails.
Each time an insertion is attempted for nest i, the attempt fails immedi-
ately if i was not established or never reached maturity. Otherwise, a new
nest is proposed for insertion at a random location in the ordered list of all
nests and is given a founding month f selected randomly from the mature
lifetime of nest i. The new founding type j is selected with probability γj,
and the x and y coordinates are drawn from densities (1/2σXj)exp(−jx − xij/
σXj) and (1/2σYj)exp(−jy − yij/σYj), respectively. The nest is established with
probability βH(x,y) and if established the time of death t is determined by
scanning through the months after f considering each treatment occurring
at (x, y). Each treatment has probability α0 of killing the nest, and if the
proposed new nest survives all treatments then t = 9,999. Each child of nest i
that was founded during the mature period of the proposed new nest then
has probability 0.5 of becoming a child of the new nest. After a successful
insertion, a random permutation of the lists of children founded in each
month in the mature lifetime of the new nest is performed for both nest i and
the newly inserted nest.

The probability of accepting a deletion is determined by the ratio

ðz−Nðf ; tÞ+ λrÞ−ðn−1+λsÞ ∏
fm:pm=kg

eðjxk−xm j−jxi−xm jÞ=σXJm +ðjyk−ym j−jyi−ym jÞ=σYJm

×
1

2Ni+Nk

1
Nðfi ; tiÞ

1
4ðN+U− 1Þ+ 5

to

ðn+ λsÞðz+ λrÞ−ðn+λsÞ ∏
ti−1

k=maxff + 6;61g

h�
1− α1+Sðxi ;yi Þ

�
ð1− α1ÞI1ðxi ;yi ;kÞ

i 1
4ðN+UÞ+ 5

,

where Ni and Nk are the number of nests founded by nests i and k,
respectively, during the mature lifespan of nest k. If this ratio is greater
than 1, the deletion is accepted, otherwise the deletion is accepted with
probability equal to the ratio. For insertions, this ratio is inverted.
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