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Experimental and computational evidence suggests that HLAs
preferentially bind conserved regions of viral proteins, a concept
we term “targeting efficiency,” and that this preference may pro-
vide improved clearance of infection in several viral systems. To test
this hypothesis, T-cell responses to A/H1N1 (2009) were measured
from peripheral blood mononuclear cells obtained from a household
cohort study performed during the 2009–2010 influenza season. We
found that HLA targeting efficiency scores significantly correlated
with IFN-γ enzyme-linked immunosorbent spot responses (P =
0.042, multiple regression). A further population-based analysis
found that the carriage frequencies of the alleles with the lowest
targeting efficiencies, A*24, were associated with pH1N1 mortality
(r = 0.37, P = 0.031) and are common in certain indigenous popula-
tions in which increased pH1N1 morbidity has been reported. HLA
efficiency scores and HLA use are associated with CD8 T-cell magni-
tude in humans after influenza infection. The computational tools
used in this study may be useful predictors of potential morbidity
and identify immunologic differences of new variant influenza
strains more accurately than evolutionary sequence comparisons.
Population-based studies of the relative frequency of these alleles
in severe vs. mild influenza cases might advance clinical practices for
severe H1N1 infections among genetically susceptible populations.
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The pandemic A/H1N1 influenza virus (pH1N1) spread globally
during the influenza season of 2009–2010. An estimated 2,500–

6,000 pH1N1-related deaths occurred between April and October
17, 2009 in the United States (www.cdc.gov/h1n1flu/estimates/
April_March_13.htm). The pH1N1 virus was a triple-reassortant
virus that had not been reported previously in animals or humans
(1), and several epidemiologic characteristics differed substantially
between this andother circulatingH1N1 viruses. pH1N1-associated
hospitalization rates and mortality among the elderly population
were lower than those for seasonal influenza and higher for children
and young adults (1); they also were higher for Hispanic, African
American, Pacific Islander and American Indian/Alaska Native
populations than for those of European/Caucasian descent (2–10).
Early analyses found that vaccination with seasonal influenza vac-
cineswasunlikely toprovideprotection frompH1N1becauseof very
low levels of cross-reactive antibody responses (11). Structural
analysis showed that the pH1N1 HA protein antigenic regions are
more similar to the H1N1 1918 pandemic strain than to other
contemporary H1N1 strains (12, 13), and cross-reactive CD8+ T-
cell responses exist between these viruses (14).
Although protection against influenza virus infection appears

to be mediated by neutralizing antibodies directed at the HA
surface protein, considerable evidence indicates the importance
of CD4+ and CD8+ T-cell epitopes for controlling and clearing
influenza infections (15–18). Influenza infection in humans induces

proliferation of a large subset of HA-specific CD4+Thelper cells
(19), resulting in the development of heterotypic antibody
responses (20). Thus, both CD4+ andCD8+T cells appear to play
a role in the clearance of influenza (15, 21–23). Cross-reactive T-
cell responses, specifically CD8+ T-cell responses to conserved
influenza regions, appear to be an important factor in defining
the severity of disease, especially disease caused by emerging new
variants and subtypes (15, 17, 18, 24–28). A recent analysis
reported that 69%of the previously characterizedT-cell epitopes
for H1N1 were conserved in pH1N1, and that memory T-cell
responses to pH1N1 were present in the adult population with
a magnitude similar to those for seasonal influenza H1N1 (26).
HLA alleles display differences in antigen-binding preferences

and, in combination with the high diversity of viral sequences,
directly influence the potential set of targets that become T-cell
epitopes. Recently, we used both experimental and computa-
tional predictions of HLA binding to show that HLA alleles
preferentially bind to conserved regions of viral proteins, a con-
cept we term “targeting efficiency” (29). The HLA targeting
efficiency score is defined as the Spearman correlation co-
efficient of the binding score of a given HLA allele and the
conservation score for a given protein (or proteome) (SI Mate-
rials and Methods). A positive score indicates preferential tar-
geting of conserved regions, and a negative score indicates
preferential binding of variable regions. Efficiency score compu-
tation uses HLA binding predictors over a sequence of interest to
infer binding targets for a given protein and correlates these with
evolutionary conservation of the protein, computed using ho-
mologous sequence data (Fig. 1). In a previous analysis of 52
common human viruses, we found that HLA alleles preferentially
bind to conserved regions of viral proteomes (29). We further
showed that the efficiency scores of HLA alleles for the HIV Gag
protein predicted disease progression, in that alleles associated
with nonprogression had higher efficiency scores than alleles as-
sociated with rapid progression.
To expand on our previous studies, we assessed the relation-

ships between HLA targeting efficiency and pH1N1 outcome for
a cohort of individuals infected with pH1N1 who were enrolled
in a clinical trial examining T-cell responses in young children
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and their families. We found a correlation between T-cell responses
and the efficiency scores of these patients. We then conducted
a population-based analysis and found that the carriage frequencies

of the alleles with the lowest targeting efficiencies, HLAA*24, were
associated with pH1N1 mortality. Interestingly, these alleles are
common in certain indigenous populations in which increased
pH1N1 morbidity has been reported (2–10). These data suggest
that HLA alleles may be useful markers for assessing the risk of
potential pandemics.

Results
HLA Targeting Efficiency Correlates with CD8+ T-Cell Responses to
pH1N1. CD8+ T-cell responses to the pH1N1 variant differ
markedly from prior circulating H1N1 strains of influenza A
(30). We tested T-cell responses from a household cohort study
performed during the 2009–2010 influenza season at St. Jude
Children’s Research Hospital and Le Bonheur Children’s Hos-
pital in Memphis, TN. The basic design of the study involved the
enrollment of index cases that tested positive for pandemic in-
fluenza A infection by PCR, along with cohabiting family
members, most of whom were sampled every 3–7 d for a total of
28–35 d. Ninety-eight participants were enrolled during the
2009–2010 influenza season. Of these, 35 tested positive for
pH1N1 by RT-PCR. Peripheral blood mononuclear cell (PBMC)
samples at late time points were available from 13 individuals (12
individuals, days 27–35; 1 individual, day 9) (Table 1).
We computed the HLA targeting efficiency scores of 95 com-

mon HLA-A and HLA-B alleles over the entire pH1N1 virus
proteome (A/California/04/2009). Fig. 1 depicts the computed
HLA targeting efficiency scores using the representative protein
neuraminidase (NA) (SI Materials and Methods). We then ranked
all infected study participants based on their average HLA-A and
HLA-B allele targeting efficiency scores over the entire pH1N1
proteome (Table 1). This approach assumed that each allele
contributes linearly to the T-cell response to a given antigen.
To elucidate overall T-cell responses, we measured IFN-γ

secretion patterns from unfractionated PBMCs (from the 13 par-
ticipants) exposed to β-propiolactone–inactivated A/California/04/
2009 (pH1N1), A/Brisbane/59/2007 (2007–2008 seasonal H1N1),
or A/Brisbane/10/2007 (seasonal H3N2) virus by enzyme-linked
immunosorbent spot (ELISpot). We found that participants’ HLA
targeting efficiency scores correlated with IFN-γ spot-forming
units (SFUs) to pH1N1 (r = 0.54, P = 0.054) (Fig. 2); neither
enrollment age nor sex significantly correlated with SFUs. Previous
studies showed that vaccination increases the magnitude of in-
fluenza-specific T-cell responses (31, 32). We therefore computed
the correlation between the efficiency scores and ELISpot
responses after adjusting for receipt of the 2008–2009 in-
fluenza vaccine. We found that the frequency of IFN-γ–producing
cells was significantly related to efficiency score (r = 0.60, P =
0.042; multivariate regression). We found no evidence for an

Fig. 1. Computing HLA targeting efficiency scores for the NA protein of
pH1N1. (A) The HLA targeting efficiency score is defined as the Spearman cor-
relation coefficient between the conservation score and binding score of a given
HLA allele on a protein of interest. Scores for the pH1N1 proteome are com-
puted by concatenating the binding and conservation scores of all 10 individual
proteins (SI Materials and Methods). The conservation scores for pH1N1 NA are
plotted in blue against the amino acid position. HLA-B*27:05 binding scores are
plotted in magenta for the NA protein against the amino acid position. Areas
marked by black rectangles show the positions with the highest binding scores.
All these positions also have high conservation scores. (B) Comparison of the
conservation scores of positions that have high binding scores with those that
have low binding scores. The conservation scores for two sets of positions on the
NA protein of pH1N1 (blue, positions with high binding scores; red, positions
with low binding scores) are plotted as histograms. The distribution of conser-
vation scores for the two binding score distributions of B*27:05 (Left) differs
markedly. The two-tailed t test for the difference between the two binding
score distributions is highly significant (P < 1.7e−5). The distributions of A*24:02
(Right) are not statistically significantly different (P = 0.084), and positions with
high binding scores are less conserved than those with low binding scores.

Table 1. pH1N1 specific T-cell responses by ELISpot for pH1N1 clinical cohort

HLA efficiency Received vaccine?

Participant
Age at enrollment,

y, mo Sex Score ranking Score
ELISpot,

SFUs/million* 2006–7 2007–8 2008–9
2009
pH1N1

1 27, 4 F 1 0.029 56.67 No No No No
2 7, 10 M 2 0.0301 216.67 Yes Yes Yes No
3 14, 6 M 3 0.0316 120.00 Yes Yes Yes Yes
4 40, 6 F 6 0.0367 41.67 Yes Yes Yes No
5 19, 0 F 7 0.0371 60.00 No No No No
6 1, 6 M 8 0.0377 101.67 No No Yes No
7 9, 1 M 14 0.0486 201.67 No No No No
8 23, 6 F 15 0.0488 311.67 No No No No
9 44, 11 F 17 0.0517 313.33 Yes Yes Yes No
10 7, 10 F 18 0.0521 98.33 No No No No
11 55, 11 M 20 0.0533 81.67 No No No No
12 10, 10 F 23 0.0589 305.00 No No No No
13 34, 1 F 28 0.0719 251.67 No No No No

*ELISpot response to A/CA/04/09 pH1N1.
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interaction between the efficiency scores and vaccination status
(P = 0.34, multivariate regression).

HLA A*24 Allele Frequencies Correlate with pH1N1 Mortality Rates.
To assess the broader implications of targeting efficiency at the
population level, we evaluated whether HLA binding affinities
for conserved viral regions could influence pH1N1 disease se-
verity. Because it is not feasible to characterize HLA-A and -B
haplotypes in individuals across large populations, we instead
ranked HLA alleles individually based on targeting efficiency.
These scores were computed for the 95 most prevalent HLA
class I alleles against a wide variety of influenza subtypes, in-
cluding pH1N1 (2009), previously circulating H1N1 and cur-
rently circulating H3N2 subtypes, H5N1, and the 1918 H1N1
subtype (Table S1). Although most alleles had positive target-
ing efficiency scores, indicating a preference to bind to con-
served regions of pH1N1, those for A*24 alleles (A*24:01,
A*24:02, A*24:07, and A*23:01) were negative, forming the tail
of the efficiency distribution (Fig. 3A). This tendency is not
unique to pH1N1; it also was observed for the A/Brevig Mis-
sion/1/1918 (H1N1) strain (Fig. 3B), as well as for other circu-
lating strains (Fig. S1).
If the relatively poor ability of A*24 alleles to target conserved

regions of pH1N1 results in less efficient viral control and
clearance upon infection, we reasoned that populations enriched

in A*24 frequency may have a higher risk for developing severe
pH1N1 disease.We therefore compared the average A*24 carriage
frequencies to thepH1N1mortality rates computed for 34 countries
(33, 34) (Fig. 4A). We found that the average A*24 carriage fre-
quency was positively correlated with mortality rate (Fig. 4B, r =
0.37, P = 0.031 and Fig. S2A). Our analysis is supported by several
reports following the pH1N1 outbreaks in the spring of 2009 in
North America and in Australia and New Zealand (2–11).
Todeterminewhetherwe couldfindanassociationwithmortality

for any other HLA allele, we computed the Spearman correlation
coefficient for all two-digit HLA families within the set of 95 HLA
alleles previously analyzed; this was done without correction of P
values for multiple comparisons to maximize our ability to detect
other associations. Only 3 of the 95 additional two-digit families—
A*68, B*39, and A*32—had a statistically significant correlation
with pH1N1mortality data, indicating that the association between
HLA type and influenza mortality is relatively uncommon.
Further analyses showed that A*68 carriage frequencies pos-

itively correlated with pH1N1 mortality (r = 0.35, P = 0.044).
Our HLA dataset contains two A*68 alleles that are known to
belong to different supertypes: A*68:01 to the A3 supertype and
A*68:02 to the A2 supertype (35). Interestingly, A*68:01 fre-
quency was strongly associated (r = 0.45, P = 0.0096, Fig. 4C and
Fig. S2B) and A*68:02 was not significantly associated (P = 0.77)
with pH1N1 mortality (Fig. 4C). A*68:01 also is highly prevalent
in some Native American groups (33) (Table S2) and has a low
targeting efficiency score, supporting the hypothesis that low
efficiency scores correlate with pH1N1 mortality.
B*39 carriage frequencies also positively correlated with

pH1N1 mortality rates (r = 0.36, P = 0.044, Fig. 4D and Fig.
S2D). B*39 alleles are highly prevalent in Taiwan and Japan
(B*39:01) and numerous Native American populations (B*39:01–
B*39:10) and are found in unison with A*24:02 (Taiwan) and
A*24:02–B*39:01 (Native American) (Table S2) (33). Although
the two B*39 alleles in our dataset (B*39:01 and B*39:06) possess
high targeting efficiency scores (ranked 69 and 80 of 95, re-
spectively), they are in linkage disequilibrium with A*24:02, and
as such we cannot exclude the possibility that the HLA-B*39
correlation with mortality is driven by HLA-A*24:02.
One allele, HLA-A*32, was negatively correlated with pH1N1-

associated mortality (r = −0.37, P = 0.047, Fig. 4E and Fig. S2C),
suggesting that carriers of this allele may develop less severe
pH1N1 disease. The efficiency score of A*32:01 is the sixth
highest score among the 95 alleles examined.

HLA A*24 Alleles Are Highly Prevalent in Indigenous Populations,
Which Had Higher Hospitalization and Mortality Rates During the
pH1N1 Pandemic. Although indigenous populations represent
less than 5% of the general population, during the 2009 pan-
demic they accounted for 17.6% of all pH1N1 hospitalized cases
in Canada and 17.5% in Arizona (2). A follow-up analysis by the
Centers for Disease Control and Prevention in 12 states in which
more than 50% of the American Indian/Alaska Natives reside

Fig. 2. pH1N1 T-cell response correlates with HLA targeting efficiency.
PBMCs were collected from 13 study participants who had confirmed pH1N1
infection, stimulated with A/California/04/09 (H1N1), and analyzed by ELI-
Spot (SFUs per million PBMCs; x-axis). The y-axis depicts HLA targeting effi-
ciency for each subject based on their HLA-A and HLA-B alleles. After
controlling for vaccination status in multivariate regression, the P value for
the correlation between targeting efficiency and the ELISpot response is
reduced to 0.042.

Fig. 3. A*24 alleles have the lowest HLA targeting
efficiency scores for pH1N1. (A) Histogram of HLA
targeting efficiency scores for 95 alleles analyzed in
this study on pH1N1. HLA-A*24 alleles all lie in the
tail of this distribution, and all have negative tar-
geting efficiency scores, indicating an overall slight
preference for binding to variable rather than con-
served regions on the pH1N1 proteome. (B) HLA tar-
geting efficiency scores for A/Brevig Mission/1918
(H1N1) (y-axis) plotted against scores for the pH1N1
2009 strain (x-axis). A*24 alleles are marked by red□.
A*24 alleles have the lowest targeting efficiency
scores for both viruses, as well as for circulating H1N1
strains, suggesting an overall tendency of these alleles
to target the less-conserved regions of H1N1 viruses.
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found an H1N1 mortality rate four times higher than for persons
in all other racial/ethnic populations combined (4). Another study
reported higher rates of increased disease severity and intensive
care unit admission in First Nation residents. Mortality rates were
three to eight times higher for indigenous populations in Australia
and New Zealand (3). Importantly, these aboriginal populations
have an unusually high prevalence of A*24 alleles (33) (Table 2).
Interestingly, indigenous populations also had a high case-fatality
rate compared with the general population during the H1N1
1918–1919 pandemic (8.5% vs. 2.5%, respectively) (2).

Using HLA Targeting Efficiency Scores to Measure the Similarity of
pH1N1 to Other Influenza A Strains. The HLA targeting efficiency
score of a given allele can be computed for an entire viral

proteome, measuring the overall ability of that HLA to target the
conserved regions of a given viral strain, or for a specific protein of
interest. We computed efficiency scores of the 95 alleles for the
HA and NA proteins of the influenza strains analyzed in this study
(Fig. S3 A and B and Table S1). The efficiency profile of a set of
alleles for a given protein may be used as a representation of that
strain in an HLA-specific immunological space. It measures sim-
ilarity as viewed through the prism of HLA binding preferences. In
generating phylogenetic trees of the HA and NA proteins based
on this distance measure (Fig. 5 A and C), we found for HA that
the pH1N1 strains are related more closely to the human H5N1
and to the H3N2 2008 strains than to recently circulating H1N1
strains. As previously shown, the H1N1 1918 strain is closer to
pH1N1 than to circulating H1N1 strains. This immunological as-
sessment differs markedly from classical genetic alignment (Fig. 5
B and D), in which pH1N1 is more homologous to circulating
H1N1 than to all other strains (36). We also found that the NA
protein of pH1N1 is more similar to an H5N1 avian isolate than it
is to previously circulating seasonal H1N1 strains.

Discussion
In this study, we used the HLA targeting efficiency score to
analyze the 2009 pandemic influenza A strain (pH1N1) and to
compare it with other influenza strains, including circulating H3
and H1 strains, several historical strains of interest, and an avian
H5 strain. We analyzed data from a household cohort study of
pH1N1-infected children and their family members and found
that ranking individuals by their HLA targeting efficiency scores,
based on their HLA alleles, was correlated with the magnitude of
CD8+ T-cell responses, as measured using an ELISpot assay. We
then ranked a set of 95 common HLA-A and HLA-B alleles by
their efficiency scores to the pH1N1 virus and identified a set of
alleles that had poor efficiency scores, all from the HLA A*24
family. We found that the prevalence of HLA A*24 alleles
correlated with mortality rates from pH1N1.
Our analyses provide a potential immunological explanation

for the observed differences in mortality from recent pH1N1
outbreaks and a framework for several testable predictions re-
garding the evolution and immunogenetics of influenza A. In
seasonal influenza infections, B cells can provide sterilizing im-
munity, with T cells playing a less accentuated role. However,Fig. 4. Comparisons between HLA allele frequencies and mortality from

pH1N1 for various populations. (A) World map overlaying pH1N1 mortality
ratios per million and HLA-A*24 frequencies for 34 countries. Analyses were
performed on all countries for which both types of information, allele fre-
quency and mortality from pH1N1, are publicly available. (B) pH1N1 mor-
tality rates (y-axis) plotted against average HLA-A*24 frequencies (x-axis) for
34 countries. Mortality rates correlate with A*24 frequencies (r = 0.37, P =
0.031). (C) pH1N1 mortality rates (y-axis) are plotted against average HLA-
A*68:01 (blue ×) and HLA-A*68:02 frequencies (magenta ○) (x-axis) for 32
and 22 countries, respectively. Mortality rates are correlated with A*68:01
frequencies (r = 0.45, P = 0.01), but not with A*6802 frequencies (P = 0.77).
(D) pH1N1 mortality rates (y-axis) are plotted against average HLA-B*39
frequencies (x-axis) for 31 countries. Mortality rates correlate with B*39
frequencies (r = 0.36, P = 0.044). (E ) pH1N1 mortality rates (y-axis) are
plotted against average HLA-A*32 frequencies (x-axis) for 30 countries.
Mortality rates negatively correlate with A*32 frequencies (r = −0.37,
P = 0.047).

Table 2. Comparison of HLA frequency and increased risk
factors for pH1N1 as reported by La Ruche et al. (2) for
indigenous populations of the Americas and Australia

Population
A*24 frequency (%)

(28)

Indigenous/
nonindigenous
risk factors

(odds ratio) (2)

Americas
USA Alaska Yupik Native 0.603 3.4
USA Arizona Pima 0.360 4.3*
USA New Mexico Canoncito

Navajo
0.318 4.3*

USA North American Native 0.305 4.3*
USA South Dakota Lakota

Sioux
0.235 4.3*

USA Hawaii Okinawa 0.343 N/A
Australia

Australian Aborigine Cape
York Peninsula

0.223 5.1

Australian Aborigine Groote
Eylandt

0.293 5.1

Australian Aborigine
Kimberly Australian

0.097 5.1

Aborigine Yuendumu 0.329 N/A

N/A, not applicable.
*American Indians.
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during the initial spread of a pandemic strain, which differs
significantly from circulating strains and to which large segments
of the population have no cross-reactive antibody responses, the
ability of memory T cells to expand and reduce or control viral
titer until novel antibodies are generated becomes an important
factor in controlling infection (37). Indeed, we found that A*24
alleles have low targeting efficiency scores for a wide range of
H1N1 viruses, including the 1918 Brevig Mission strain as well as
seasonal circulating H1N1 strains (Fig. 3B and Fig. S1), but this
may have clinical relevance only in pandemic settings in which
there is a lack of cross-reactive antibody responses.
We hypothesized that in such settings, individuals who make T-

cell responses to the variable regions of influenza viruses are likely
to have less cross-reactive memory T-cell responses to the pan-
demic strain, which may allow for increased viral loads and more
severe clinical symptoms. We found that ranking pH1N1 patients
from the 2009–2010 pandemic by their ability to target conserved
regions of pH1N1 correlated with the magnitude of their T-cell
responses to this virus. Considering the small sample size (n = 13),
the correlation coefficient obtained was relatively high (r = 0.54),
suggesting that the patients’ overall HLA targeting efficiency may
be a critical factor for determining the magnitude of ensuing T-cell
responses. However, additional follow-up studies are required to
further assess the power of the HLA targeting efficiency scores for
predicting T-cell responses following influenza infection.
Alleles important for the control of HIV infection, such as

B*57:01, bind to several conserved epitopes in Gag; viral escape
by mutation in these conserved regions likely would incur a high
fitness cost (38, 39). Previously, we showed that the efficiency
scores of HLA alleles for the HIV Gag were associated with
disease progression, in that alleles associated with nonprogression
had higher efficiency scores than alleles associated with rapid
progression (29). Recent work on human T-lymphotropic virus
type 1 (HTLV-1) found that the strength of HLA binding to
a specific HTLV-1 protein was associated with a reduced risk of
developing chronic inflammatory syndromes and reduced proviral
load, and that this was not restricted to a small set of alleles
previously associated with disease status in HTLV-1 infection
(40). In other diseases, such as HIV and dengue, HLA alleles
have been associated with increased susceptibility or disease
progression (38, 41). Several other studies have shown that
viruses mutate in regions that contain HLA binders (42–44),
and in some specific cases, such escape from T-cell responses
has been shown to affect viral fitness (45, 46). Although the
mechanisms of HLA-associated protection or susceptibility to
disease have not been fully elucidated yet, these studies demon-
strate that HLA binding properties may have a multifarious effect

on disease progression and viral control, as well as other prop-
erties of the T-cell receptor (TCR) repertoire.
In our previous work, we found that HLA alleles preferentially

target the conserved regions of double-strandedDNAviruses (HLA-
A) and RNA viruses (HLA-B) (29). We found that for pH1N1,
HLA-B alleles had efficiency scores significantly higher than those of
HLA-A alleles (P< 0.005, Fig. S4), indicating an improved ability to
target conserved regionsofpH1N1.Thisfinding is inaccordancewith
a previous study that found that CD8+ T-cell responses to influenza
infection that were restricted by HLA-A alleles, in comparison with
HLA-B, tended to be monofunctional (47).
Our data suggest that HLA A*24 and HLA A*68 alleles are

risk factors associated with severe pH1N1 infection and other
common circulating influenza strains from recent years and co-
incide with an ecological analysis that found pH1N1 mortality
correlated with the frequency of these HLA alleles. This also
provides a potential explanation for the increased pH1N1 dis-
ease severity and morbidity in indigenous populations worldwide
(2–10), populations that are all enriched for A*24 alleles despite
their widespread geographic divergence.
We note that other factors associated with increased pH1N1

mortality most likely exist, including demographic, metabolic,
and immunological elements. Associations between metabolic
diseases such as diabetes and the A*24 allele have been re-
ported, indicating that certain HLA alleles may influence pH1N1
mortality directly and indirectly (48–51). Furthermore, indigenous
populations have a high prevalence of comorbidities such as lung
and heart disease, which are directly related to influenza severity.
These are mediated predominantly by environmental factors and
may strongly confound the ecologic association reported here. One
additional limitation of these analyses is that the mortality rates are
based on the number of laboratory-confirmed deaths reported by
ministriesofhealth.Arecent report estimated thatpH1N1mortality
rates might be 15 times higher than the confirmed deaths (52). In
countrieswithdifferentHLAA*24prevalence, variations between
testing and reporting may result in biased mortality estimates.
Using the HLA targeting efficiency scores, we suggested a

unique representation of viral strains defined by an HLA-specific
embedding into an immunological space based on potential
T-cell epitopes. We then defined a sequence similarity measure
in this space. Our analysis is in agreement with a previous finding
showing that the functional activity of the H5N1 NA protein is
lower than that of several circulating H1N1 strains (53). In-
terestingly, the immunological distance between the two H3N2
strains (H3N2 2004 New York and H3N2 California 2008) is
distinctly separate, unlike in the evolutionary alignment tree (Fig. 5
A and B). This is in agreement with the unusually severe influenza
that a novel H3N2 strain caused in 2003 (54). Our computational

Fig. 5. A comparison of efficiency-based phylogenetic trees to sequence-based phylogenetic trees. A phylogenetic tree based on targeting efficiencies of the
HA (A) and NA (C) proteins of influenza strains analyzed in this study, clustered using the neighbor-joining method, based on sequence distances computed
using the HLA targeting efficiency profiles of the 95 class I alleles used in this study. See Table S1 for strain names. pH1N1 strains are closer to the H3N2 2008
strain and the human H5N1 strain (A) and the H5N1 avian strain (C) than to the circulating H1N1 2007 and 2008 strains. The H3N2 2004 strain from New York
shows a distinct separation from the H3N2 California 2008 strain. In 2004, the circulating strain in New York was the Fujian strain, which caused an unusually
severe influenza season in 2003–2004 (A). A phylogenetic tree based on genetic sequences of HA (B) and NA (D) proteins of the influenza strains analyzed in
this study clustered using the neighbor-joining method based on alignment distances computed using the Needleman–Wunsch global alignment algorithm.
As previously shown, the H1N1 1918 strain is closer to the pH1N1 strains than it is to circulating H1N1 strains (B). The pH1N1 strains are more similar to the
H1N1 1918 strain and to the H5N1 strain than to circulating H1N1 strains from 2008 and 2007 (D).

13496 | www.pnas.org/cgi/doi/10.1073/pnas.1221555110 Hertz et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221555110/-/DCSupplemental/pnas.201221555SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221555110/-/DCSupplemental/pnas.201221555SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1221555110/-/DCSupplemental/pnas.201221555SI.pdf?targetid=nameddest=ST1
www.pnas.org/cgi/doi/10.1073/pnas.1221555110


approach may be applied to any influenza strain, and the limited
number of strains chosen for this study is a mere demonstration of
the ability to identify components of the host immune response
important to containing viral infections, as reflected by changes in
the HLA binding patterns to these influenza strains.
Our analysis suggests that appropriately designed population-

based studies of the relative frequency of select alleles in severe
cases or deaths associated with influenza A compared with mild
cases or asymptomatic infections might lead to more directed
clinical treatment practices for severe H1N1 influenza infections
among genetically susceptible populations and guide public health
interventions. Additional studies using larger cohorts and testing
other pathogens are warranted, but these data suggest that HLA
targeting efficiency might be a useful clinical correlate in emerging
pandemics and an effective tool for determining the pathogenic
potential of emerging variant viruses.

Materials and Methods
Information on the followingmay be found in SI Materials andMethods: HLA
predictor accuracy, T-cell enrichment, IFN-γ ELISpot assay, statistical analyses,
conservation scores, binding scores, viruses, HLA allele determination, se-
quence similarity measures, pH1N1 mortality rates, HLA frequency data, HLA
targeting efficiency, and participants.
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