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Annual influenza vaccinations aim to protect against seasonal
infections, and vaccine strain compositions are updated every
year. This protection is based on antibodies that are produced by
either newly activated or memory B cells recalled from previous
encounters with influenza vaccination or infection. The extent to
which the B-cell repertoire responds to vaccination and recalls
antibodies has so far not been analyzed at a genetic level—which
is to say, at the level of antibody sequences. Here, we developed
a consensus read sequencing approach that incorporates unique
barcode labels on each starting RNA molecule. These labels allow
one to combine multiple sequencing reads covering the same RNA
molecule to reduce the error rate to a desired level, and they also
enable accurate quantification of RNA and isotype levels. We val-
idated this approach and analyzed the differential response of the
antibody repertoire to live-attenuated or trivalent-inactivated in-
fluenza vaccination. Additionally, we analyzed the antibody rep-
ertoire in response to repeated yearly vaccinations with trivalent-
inactivated influenza vaccination. We found antibody sequences
that were present in both years, providing a direct genetic mea-
surement of B-cell recall.

Every year, influenza viruses cause the deaths of an average of
36,000 individuals in the United States alone (1). Although

the immunological memory created through vaccination can
confer decade-long protection against a particular viral strain,
antigenic drift in the original strain and the occurrence of distinct
viral strains can enable the virus to evade the immune system (2).
As a result, influenza vaccination formulations have to be re-
evaluated, adjusted, and administered annually to best match
the annual influenza strain. Vaccine-induced immunity against
influenza is primarily antibody-based, and as such, it relies on the
activation of naive B cells or the reactivation (recall) of memory
B cells to produce high levels of antibody specific to the vaccine
strain. Prior studies approached recall memory responses by
measuring plasma antibody levels and specificity or sequencing
antibody loci of isolated B cells, with one study concluding that
the response to influenza vaccination is pauciclonal (i.e., com-
posed of only a few distinct clones) (3, 4). However, this study
and others were limited in the number of B cells that they were able
to analyze and not able to show that the same clone recurs during
recall. The strength of the recall response, the isotype distribution,
and the clonal relationship to others have been unclear.
Recently, methods to sequence antibody repertoires of whole

organisms and human blood samples were developed and ap-
plied to investigate several features of B-cell repertoires (5, 6).
This approach has been used to investigate a variety of phe-
nomena, including effects of influenza vaccination, residual dis-
ease in leukemia, effects of immune suppression, and differences
between memory and naive B-cell compartments (5–11).
Analyzing vaccine recall response requires the detection of

antibody sequences shared between separate blood samples
taken over 12 mo apart. Because of the limited throughput and
high error rate of next generation sequencing approaches, it is
challenging to query a human blood sample exhaustively and
accurately identify these shared sequences. To address these
problems, we developed a highly accurate high-throughput ap-
proach that relies on the labeling of individual RNA molecules
(12–14). We used these labels to generate multiple sequencing

reads for each RNA molecule and compose a consensus read for
each molecule. First, we validated this approach by sequencing
the immunoglobulin heavy chain (IGH) repertoire of a blood
sample. We found that this approach was highly accurate,
quantitative, and reproducible. Second, we used the consensus
read approach to estimate the size of the B-cell repertoire, de-
termining a refined estimate for different B-cell populations.
Third, we dissected immune responses to live-attenuated (LAIV)
and trivalent-inactivated (TIV) influenza vaccines. LAIV and
TIV are known to show distinct immune responses, and we
could clearly distinguish the effects of the two vaccine types on
the antibody repertoire. Finally, we analyzed the nature of the
recall response of individuals to TIV administration in two con-
secutive years. We found hundreds of unique antibody lineages
originating from distinct B-cell memory clones that were activated
by vaccination in both consecutive years.

Results
Labeling of RNA Molecules with Random Nucleotide Unique Iden-
tifiers. The sequencing approach that we used relied on label-
ing each RNA molecule during cDNA synthesis and preserving
this nucleotide label throughout PCR amplification. Using these
labels, we could identify group reads originating from the same
RNA molecule. Therefore, both isotype- and V segment-specific
primers were designed to include a stretch of 8 random nt fol-
lowed by a partial paired-end adapter sequence on their 5′
end (Fig. S1). We used total RNA extracted from the B cell-
containing peripheral blood mononuclear cells (PBMCs) as in-
put; reverse transcription and subsequent primer extension
resulted in a pool of double-stranded cDNA, in which initial
IGH RNA molecules were labeled with a 16-nt unique identifier
(UID). This pool was then amplified in a PCR where the primers
completed the sequencer adapter sequences (Fig. S1). The re-
sulting libraries were multiplexed and sequenced on the Illumina
HiSeq2000 Sequencer. We used a paired-end sequencing pro-
tocol, sequencing 100 bp on the first read and 120 bp on the
second read to cover the whole amplicon. The sequencing reads
included the 16-nt UID, making it possible to retrieve the unique
labels of the initial IGH RNA molecules. The high raw read
number enabled us to sequence uniquely labeled IGH RNA
molecules multiple times and build a highly accurate consensus
before downstream analysis (Fig. S2A).
IGH molecules with the same nucleotide sequence were

grouped into IGH sequences. The abundance of an IGH se-
quence is defined by the number of unique UIDs that share the
same consensus sequence (Fig. S1). Biologically, the abundance
of an IGH sequence is determined by the number B cells that
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express this sequence convolved with the distribution of expres-
sion levels across all these cells and represents a proxy for overall
antibody abundance.

Characterization of the Consensus Read Approach. To validate the
sequencing protocol, a blood sample was collected from a young
adult individual (L1) taken 7 d after vaccination with the LAIV
vaccine. A sequencing library (L1 D7) (Fig. 1A) was prepared
and then sequenced. We determined the reproducibility of this
IGH sequence abundance information by preparing a second
sequencing library (Lib. Rep.) (Fig. 1A) from a separate aliquot
of the same RNA extraction and sequenced it on an independent
run. We leveraged the exceptional accuracy of our approach to
find IGH sequences shared between the sequenced libraries (L1
D7 and Lib. Rep.) and compare their abundances (Fig. 1 B and
C); 36,308 of 66,307 IGH sequences were shared between L1 D7
and Lib. Rep. and showed very strong similarity in their abun-
dance (R2 = 0.96) (Fig. 1C), illustrating the robustness of the
approach. The overlap between the libraries was almost com-
plete when we focused on abundant sequences, defined to be
those sequences with more than 5 IGH molecules per IGH se-
quence (abundance ≥5); 5,351 of 5,637 abundant sequences in
L1 D7 were shared by Lib. Rep. (Fig. 1B).

The lower rate of sharing among sequences that were not
abundant was caused by either subsampling from the total RNA
pool during library construction or insufficient raw read coverage
during the sequencing reaction and data analysis quality filtering.
To identify the main cause, we resequenced the initial se-
quencing library (Seq. Rep.). We then visualized the rate at
which sequences were shared between these samples as a func-
tion of their abundances (Fig. 1 D–H). The rates at which
sequences were shared between L1 day 7 and either Lib. Rep. or
Seq. Rep. were very similar and clearly dependent on sequence
abundance, ranging from ∼50% for sequences with abundance of
one to almost 100% for sequences with an abundance more than
five (Fig. 1 E and F). The fact that the construction of a separate
library (Lib. Seq.) had only a small effect on the rate of shared
sequences implicated raw read coverage and quality filtering, but
not library construction, as the main cause for the reduced
sharing rates among low-abundance sequences. IGH sequences
represented by fewer IGH molecules have a higher chance that
none of their molecules meet the raw read coverage or quality
thresholds and are consequently dropped completely.
The resequencing of the initial library (Seq. Rep.) also allowed

us to measure the sequencing accuracy of our approach. The
unique labeling of molecules enabled us to use discrepancies
between IGH molecules with barcodes that appeared in both L1

Fig. 1. Consensus read approach validation. (A)
Experimental setup. Blood is drawn from an in-
dividual. Two separate PBMC aliquots are prepared,
and RNA is extracted. Several sequencing libraries
are prepared and sequenced. (B) Venn diagrams il-
lustrating the IGH sequence overlap between L1 D7
and Lib. Rep. for all IGH sequences or only abundant
IGH sequences represented by more than 5 IGH
molecules. (C) The abundances of IGH sequences
shared between L1 D7 and Lib. Rep. are shown as
a scatterplot. (D–I) IGH sequences in L1 D7 are or-
dered by abundance. (D) Abundance (IGH mole-
cules/IGH sequence) of sequence. In bins of 300
sequences from left to right, percents of shared
sequences between L1 D7 and indicated samples
[(E) Seq. Rep., (F) Lib. Rep., and (G) Bio. Rep.] are
shown. (H) Isotype distribution of sequences. (I)
Mutation rate (%) of L1 D7 sequences separated by
isotypes (IgM, IgG, and IgA).
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D7 and Seq. Rep. to determine the sequencing error of con-
sensus reads to be ∼1/50,000 errors per 1 bp or Q47 (Fig. S2B).
We used discrepancies between raw reads in UID groups in L1
D7 to determine the raw Illumina sequencing error to be ∼1/500
errors per 1 bp or Q27. This 100-fold higher raw error rate
would, in the absence of barcodes, dramatically inflate the ap-
parent number of unique IGH sequences (Fig. S2C), thereby
illustrating the problem of determining the complexity of the
antibody repertoire using a large number of error-prone raw se-
quencing reads.
These experiments showed that the consensus read approach

that we developed is highly accurate and quantitative and detects
practically all abundant sequences in a PBMC sample.

Identifying the Activated B-Cell Compartment. To determine how
representative a PBMC sample is of the complete peripheral
blood and whether the abundance of an IGH sequence might
help us identify sequences expressed by memory B cells and
plasmablasts, we generated an additional sequencing library
from a PBMC sample purified from blood taken at the same visit
as L1 D7 (Bio. Rep.) (Fig. 1A).
Recapturing an IGH sequence in two separate PBMC aliquots

requires at least two cells of the same B-cell clone expressing this
IGH sequence to exist and partition into the separate aliquots.
Because activated B cells have undergone clonal expansion, we
expected the sequences shared between L1 D7 and Bio. Rep. to
be enriched for sequences expressed by memory B cells and
plasmablasts, which are known to make up ∼30% and 2% of
peripheral B cells, respectively (15).
The Bio. Rep. sample shared 1,401 of 5,637 (25%) of its abun-

dant sequences (>5 IGH molecules/IGH sequence) but only 974
of 66,307 (1.5%) low-abundance sequences (<5 IGH molecules/
IGH sequence) with L1 D7.
We again visualized the rate at which sequences were shared

between L1 D7 and Bio. Rep. as a function of their abundances.
This visualization showed that the sequences shared between
different PBMC samples were heavily biased to more abundant
sequences (Fig. 1G). This bias to more abundant sequences was
much more pronounced than in the Lib. Rep. sample, which was
constructed from the same PBMC RNA as L1 D7.
Abundant sequences also showed a distinct isotype distribu-

tion. Although low-abundance sequences were mostly IgM,
abundant sequences were mostly IgG and IgA (Fig. 1H). Fur-
thermore, although abundance did not correlate with the mu-
tation rate of class-switched IgG and IgA sequences, the
mutation rate of IgM increased in abundant sequences to levels
only slightly lower than IgG and IgA mutation rates (Fig. 1I).
The enrichment for IgG and IgA as well as mutated IgM in

abundant sequences together with the heavily biased recapture
by the Bio. Rep. sample indicated strongly that the abundant
IGH sequences are heavily enriched for sequences expressed
by activated B cells. Together, this data shows that we could use
isotype and abundance information to identify activated B-
cell sequences.

Estimating Repertoire Size. Next, we used this isotype and abun-
dance information to refine capture–recapture analysis and es-
timate the number of distinct activated B-cell clones present in
the peripheral blood at any given time. We first combined highly
similar but distinct IGH sequences into IGH lineages that are
highly likely to originate from the same original B-cell clone
(Materials and Methods and Fig. S1B). We then performed cap-
ture–recapture analysis (Materials and Methods) on replicate
pairings of four individuals at day 0 (before vaccination). Pre-
vious studies have estimated the overall size of the B-cell rep-
ertoire without taking abundance or isotype into account in the
range of 2–9 million sequences (5, 10).
When we neglect isotype differences and abundance effects,

the peripheral IGH lineage repertoire seems to be 1,514,640 (±
922,827), which is very close to what previous studies have esti-
mated. However, as with IGH sequences (Fig. 1G), the rates at

which IGH lineages were shared between the replicates were
much higher for abundant lineages (at least 5 IGH molecules/
IGH lineage), which was shown when we visualized the lineages
shared between samples normalized by subsampling to 50,000
IGH molecules (Fig. 2A). These uneven sharing (recapture)
rates are likely to skew repertoire size estimation. To take these
uneven recapture rates into account, we separated lineages
according to isotype and abundance (low <5 IGH molecules/
IGH lineage ≤abundant) and repeated the analysis. This ap-
proach resulted in an estimation of, on average (±SD), only
18,169 (±11,130) IgM, 5,998 (±2,972) IgA, and 3,359 (±1,412)
IgG abundant lineages in contrast to 5,102,725 (±3,279,203) low-
abundance IgM lineages in the peripheral blood (Fig. 2B).
The estimate of ∼1,500,000 lineages when neglecting isotype

and abundance is, therefore, the skewed result of a mixture of two
distinct populations: thousands of activated B cells and millions of
naive B cells. These data also suggest that only several thousand
activated B-cell clones are circulating in the peripheral blood at
any given time, which is far lower than previously thought.

Shared Sequences Between Samples and Individuals. Interestingly,
lineages were shared between individuals at a very low level
(Fig. 2A). To test whether this very low level of lineage sharing
was an effect of the process of clustering similar sequences into
lineages, we additionally compared samples taken at different
time points of several LAIV and TIV recipients on the amino acid
level. Although different samples of the same individual shared
∼1,100 sequences, samples of different individuals shared ∼25
(of ∼100,000) sequences (Fig. S3 A and B). These sequences
shared by different individuals were almost entirely of IgM iso-
type with low-abundance and -mutation levels (Fig. S3 C–E) and
short complementarity determining region 3 (CDR3) (Fig. S3 F
and G), suggesting that interindividual overlap is likely caused by
the chance overlap of naive sequences; similar behavior was re-
cently shown for T cells (16).

Identifying Vaccine-Induced Lineages. Next, we wanted to inves-
tigate whether the analysis of the abundant lineages (at least
5 IGH molecules/IGH lineage) representing the activated B-cell
compartment might allow us to identify lineages activated by
seasonal influenza vaccines. We analyzed the IGH repertoire of
14 LAIV and 14 TIV recipients at three time points. Blood was
collected at day 0 (right before vaccination) and days 7 and 28
after vaccination. Day 7 is known to show the most pronounced
vaccine response (3); 84 resulting samples were prepared and
analyzed as described above. To directly compare vaccine effects

Fig. 2. Repertoire size estimation. (A) Visualization of lineages shared between
replicate sample pairs (R1 and R2) from individuals (L1, T6, T7, and T8). Datawere
subsampled to 50,000 IGH molecules to normalize for variability in sampling
depth. Lineages of each timepoint are plotted on the circumferenceof the circle,
with the gray area representing abundance of the respective lineages (loga-
rithmic). Lineages present in two time points are connectedwith lines colored
according to their isotype. (B) Capture–recapture estimation of different IGH
lineage populations. Average (±SD) of four individuals is shown.
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on the number of abundant lineages between samples, we limited
the analysis to 50,000 randomly selected IGH molecules.
TIV is known to trigger a strong hemagglutinin inhibition

(HAI) antibody response, IgG plasmablast release, and isotype
class switching, whereas the effects of LAIV are less pronounced
(8, 17, 18). We showed that TIV vaccination indeed strongly
increases numbers of abundant IgG lineages (Fig. 3A). LAIV
vaccination caused a much weaker response and on average, did
not increase the numbers abundant lineages of IgG, IgA, and
IgM isotypes (Fig. 3A).
To visualize these effects in more detail, we ordered the IGH

lineages of one TIV recipient (T4) by rank and then plotted
abundance (height) and isotype (color). Distinct patterns of vaccine
response become clear in the day 7 sample, where several highly
abundant IgG lineages and hundreds of moderately abundant IgG
lineages dominate the TIV response (Fig. 3B and Fig. S4, inlets). A
closer look at the most abundant lineages reveals that they can

consist of thousands of IGHmolecules grouped into hundreds IGH
sequences often from more than one isotype (Fig. S4).
Overall, focusing on abundant lineages revealed isotype dis-

tributions distinct to TIV, with the highly abundant IgG lineages
observed at day 7 likely corresponding to memory-derived IgG
plasmablasts known to be released into the periphery at that time
(3, 18).

Recall Response to TIV Vaccination. We went on to analyze the
recall response to repeated TIV vaccination. Because of its more
pronounced effect on individuals (Fig. 3A), we chose to inves-
tigate the recall response to TIV. The individuals T1–T5 were
vaccinated again with TIV in the year after their initial vacci-
nation. The formulation of TIV was changed for the influenza A
(H3N2) and influenza B strains, with only the A(H1N1)pdm09
strain remaining unchanged. Blood samples were again collected
at days 0, 7, and 28 (Y2 D0, Y2 D7, and Y2 D28) relative to the
second year vaccination.
In all individuals, any pair of samples shared hundreds of line-

ages. Overall, the highest number of lineages was shared between
samples taken in the same year, probably because of lineages that
persist in the periphery during the duration of the blood draws.
Fewer lineages were shared between samples taken in different
years (Fig. 4A). When normalized to the overall number of line-
ages, the Y1 D7/Y2 D7 pair of samples showed the highest rate of
shared lineages of IgG, IgA, and IgM isotypes (Fig. 4A). Addi-
tionally, compared with Y1 D0/Y2 D0 and Y1 D28/Y2 D28 pairs,
the shared IgG lineages but not the shared IgA and IgM lineages
were more abundant in all individuals (Fig. 4B). This finding
highlighted two interesting findings. First, in the Y1 D0/Y2 D0
prevaccine sample, pairs were collected 12mo apart but still shared
IGH lineages, suggesting that the B-cell clones expressing these
lineages either are reactivated by recurrent infection unrelated to
influenza or persisted unchanged in the periphery for up to 12 mo
in the absence of antigen, which would be consistent with the recent
finding that germinal center reactions can persist for over 8 mo in
mice (19). Second, highly abundant IgG lineages are preferably
shared in the Y1 D7/Y2 D7 postvaccine sample pairs, likely rep-
resenting vaccine-induced recalled lineages.
We visualized the shared lineages between time points in the

individual with the strongest putative recall response (T5) (Fig. 5
A and B). These connection plots clearly show a surplus in
shared highly abundant IgG lineages in the Y1 D7/Y2 D7 pair.
This trend is also visible in the other individuals, albeit to a lesser
extent (Fig. S5). If these shared IgG lineages had arisen in-
dependently in the 2 y sampled, one would expect IgG lineages
to also be shared between individuals, assuming that different
individuals have the same chance of generating the same anti-
body. The fact that IgG lineages show practically no overlap
between individuals (Fig. 5C) suggests that our data provide
direct genetic evidence for memory B-cell recall.

Discussion
Here, we present a method to investigate the IGH antibody
repertoire in blood samples that is highly accurate, quantitative,
and reproducible. This consensus read method allows us to de-
termine the abundance, sequence, and isotype of IGH mRNA.
Using this approach, we have shown that we can identify all
abundant sequences in a blood sample. These abundant se-
quences are enriched for IgG, IgA, and mutated IgM, and they
likely correspond to the activated B-cell compartment. The
identification of compartments (naive vs. memory/plasmablasts)
and isotype distributions of IGH sequences directly from PBMCs
obviates the distortion and additional work associated with cell-
sorting procedures. We used this compartment information to
refine capture–recapture analysis to estimate the activated pe-
ripheral B-cell compartment to the surprisingly low number of
∼25,000 B-cell clones.
In a recent study, we outlined the age-dependent differential

effects of TIV and LAIV vaccines on the IGH repertoire,
showing that overall TIV causes a stronger class switch response

Fig. 3. Influenza vaccination response. (A) Change in the number of
abundant lineages (containing at least 5 IGH molecules) in response to
vaccination by LAIV or TIV is shown for 14 individuals each. Data were
subsampled to 50,000 molecules to normalize for variability in sampling
depth. Data are shown for each isotype separately. P value is determined by
a Mann–Whitney u test. (B) IGH repertoire at days 0, 7, and 28 for individual
T4. Each sample was subsampled to 50,000 IGH molecules to normalize for
variability in sampling depth. Sequences were ordered by abundance, and
each sequence is shown as a vertical bar [the height depicts its abundance
(logarithmic)]. The color of each bar indicates the isotype of the sequence.

Fig. 4. TIV recall response. (A) Number of lineages shared between indicated
time points normalized to the overall amount of lineages. Average of five
individuals is shown as heatmaps for IgG, IgA, and IgM. (B) Median abun-
dance of IgG, IgA, and IgM lineages shared between the indicated time
points.
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than LAIV (8). Focusing on the analysis of the abundant lineages
in the present study enabled us to create an even more detailed
fingerprint of the B-cell response to influenza vaccine TIV, in
which tens of highly abundant B-cell clones are accompanied by
hundreds of moderately abundant B-cell clones.
Although TIV is a mix of inactivated viral proteins that is

injected, LAIV is an attenuated live virus that is administered by
nasal spray. Therefore, the absence of a measurable peripheral B-
cell response is likely explained by a local response in the upper
respiratory tract. Comparing these vaccine responses with WT
influenza infections might help explain the differential protective
mechanisms and effects of TIV and LAIV (4, 17, 20). The high
IgG levels in response to TIV vaccination correlate well with the
release of IgG plasmablasts around day 7 after vaccination. Be-
cause of their fast appearance and high mutation levels, these
plasmablasts are thought to be recalled from B-cell memory (3).
Immunological memory is an area of great interest for the de-

velopment of effective vaccinations that provide lifelong protection.

For decades, B-cell memory has been analyzed using methods
based on antibody affinities (21, 22). Although these methods
can detect the recall of B cells with specific affinities, they do not
provide insight into the composition of these recalled cells. In-
deed, distinct B-cell clones expressing antibodies with similar
affinities cannot be distinguished by these methods. A direct
measurement and quantification of B-cell recall require the
repeated identification of B-cell clones in separate immune
responses to an antigen. The sequencing depth and accuracy
of our approach enabled us to provide this direct genetic mea-
surement of memory B-cell recall. We detected IGH lineages,
enriched for abundant IgG lineages, that were shared by IGH
repertoires after but not before two annual influenza vaccination,
clearly showing that the B-cell clones expressing these sequences
were recalled from B-cell memory as a response to two substan-
tially different vaccine compositions. Sequences found at high
levels in response to distinct vaccines present prime targets for
the identifications of cross-specific antibodies.

Fig. 5. Lineage recall. (A and B)
Visualization of lineages shared
between time points. Data were
subsampled to 50,000 IGH mole-
cules for each time point to nor-
malize for variability in sampling
depth. Lineages of each time
point are plotted on circumfer-
ence of the circle, with the gray
area representing the abundance
of the respective lineages (loga-
rithmic). Lineages present in two
time points are connected with
lines colored according to their
isotype. All shared lineages are
shown in A, and shared IgG, IgA,
and IgM lineages are shown
separately in B. (C) Shared IgG
lineages between Y1 D7 and Y2
D7 time points of three individ-
uals are shown as in A.
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Materials and Methods
Study Volunteers, PBMC Isolation, and RNA Extraction. All study protocols were
approved by the Institutional Review Boards at Stanford University. Informed
consent was obtained from participants. Blood was taken before (day 0), 1 wk
after (day 7), and 1 mo after (day 28) vaccination in the first year (2011) and
after vaccination (day 7) in the second year (2012). Volunteers were 28 young
adults (18–30 y) in generally good health and vaccinated with one dose of
either seasonal LAIV (FluMist intranasal vaccine; MedImmune) or TIV (Fluzone;
Sanofi-Pasteur); 60 mL peripheral blood were taken from individuals and
heparinized. PBMCs were extracted from 10 mL blood using a Ficoll-Gradient
and frozen in 10% (vol/vol) DMSO/40% (vol/vol) FBS according to the Protocols
of the Stanford Human Immune Monitoring Center (HIMC). After thawing,
total RNA was extracted from 5 million PBMCs using the Qiagen AllPrep Kit.

Library Preparation. Five hundred nanograms total RNA were used as input
for library preparation. Reverse transcription was performed according to the
manufacturer’s instructions using SuperScript III Enzyme (Life) and primers
for all five isotypes containing 8 random nt and partial Illumina adapters
containing Illumina barcodes (Table S1). Second-strand synthesis was done
using Phusion Polymerase (NEB) and primers containing 8 random nt and
partial Illumina adapter sequences covering all V segments with a maximum
of one mismatch (Table S1) (98 °C for 2 min, 52 °C for 2 min, and 72 °C for
10 min). Double-stranded cDNA was purified two times using Ampure XP beads
at a ratio of 1:1. Double-stranded cDNA was amplified with Platinum Hifi
Polymerase (Life) with two primers completing Illumina adapter sequences
(95 °C for 2 min, 27 cycles of 95°C for 30 s, 65 °C for 30s, and 68 °C for 2 min,
and 68 °C for 7 min). Final sequencing libraries were generated by purifying
the PCR product using Ampure XP beads at a ratio of 1:1.

Sequencing and Data Analysis. Libraries were sequenced on the Illumina
HiSeq2000 using a custom 100 × 120-bp protocol. The sequencing runs yielded
3 and 15 million raw reads per sample. Raw reads were split into UID groups
with unique 16-bp identifiers, and a consensus read was built for each UID
group with at least two raw reads.

For the generation of consensus reads, raw bases with an Illumina Quality
Score under 20 were discarded. Each base in the consensus read was de-
termined by a majority call of raw bases, which was weighted by quality
scores. UID groups containing any majority base making up <66% of all bases
at that position were discarded. This requirement avoided draws and dis-
carded UID groups with only two raw reads if they were not completely
identical. Final quality filtering discarded low-quality consensus reads.
Alignments to variable (V), diversity (D), and joining (J) segments as well as
mutation analysis were then performed by the pipeline described in ref. 23
using IMGT references for V, D, J, and C segments. Furthermore, bases
templated by V-segment primers as well as most of the constant region were

truncated. This process generated ∼50,000–500,000 high-quality consensus
reads per sample. Each consensus read represents one initial IGH molecule.

Identical IGH molecules were grouped into IGH sequences, which were then
clustered into IGH lineages as described below (Fig. S1B). Abundance was then
defined as the number of IGH molecules that an IGH sequence or IGH lineage
contained. IGH sequences or lineages were defined as abundant if they con-
tained at least 5 IGH molecules. For the determination of shared IGH
sequences (Fig. S3), sequences shared by more than two people were removed
from the analysis, because they might represent possible cross-contamination.

Lineage Clustering. IGH sequences were clustered into IGH lineages according
to similarity in their junctional region. Lineageswere created according to the
following steps.

A lineage is formed and populated with one IGH sequence (seed). Then, all
IGH sequences in the lineages (initially only the seed) are compared with all
other IGH sequences of the same length using the same V and J segments. If
their junctional regions (untemplated nucleotides and D segments) are at
least 90% identical, the IGH sequence is added to the lineage. This process is
repeated until the lineage does not grow.

Subsampling. For some figures, data were subsampled randomly to 50,000
IGH molecules/sample. These 50,000 IGH molecules were then grouped
into IGH sequences and clustered into IGH lineages as for the nonsub-
sampled data.

Capture–Recapture Analysis. Capture–recapture analysis was done using the
following Chapman–Estimator formula: R = (((S1 + 1)(S2 + 1))/(C + 1)) − 1,
where R = estimate of repertoire, S1 = total number of IGH sequences in
sample 1, S2 = total number of IGH sequences in sample 2, and C = number
of IGH sequences shared between samples.

Additional analysis was done using custom Python scripts in a Unix en-
vironment. The SeqPrep tool (https://github.com/jstjohn/SeqPrep) was used
in the generation of consensus reads. Sequences were clustered into line-
ages if their junctional regions differed by less than one in 10 bases. Custom
scripts are available on request. Figures were generated using the matplotlib
Python library (24).
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