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This editorial refers to ‘HSPA12B attenuates cardiac dysfunc-
tion and remodelling after myocardial infarction through
an eNOS-dependent mechanism’ by J. Li et al., pp. 671–681,
this issue.

HSPA12B is amemberof anewly identified subfamilyof the Hsp70 family
of heat shock proteins and is predominately expressed in endothelial
cells.1,2 Blood pressure may play a role in its expression, as HSPA12B
is expressed in endothelial cells in heart, adipose tissue, brain, kidney,
and lung, but not in liver sinusoidal endothelial cells.1 In the heart and
brain, vessels of all sizes express HSPA12B, whereas in lung and
adipose tissue, expression is largely in capillaries. The cell-restricted ex-
pression of HSPA12B, which is otherwise not a feature of heat shock
proteins, alone presages its importance to endothelial cell function
and indeed studies have established that HSPA12B is required for angio-
genesis, specifically in the processes of adhesion, migration, and tube for-
mation.1,2 Endothelial cell HSPA12B expression seems to be dynamic
and is increased in confluent HUVECcultures kept in medium containing
endothelial cell-specific growth factors, by heat shock, and during tubule
formation.1– 3 Protein levels are likely regulatedbya post-transcriptional
mechanism as well.1 Twenty-two putative client proteins have been
identified for HSPA12B, including AKAP12 (A-kinase-anchoring
protein 12) and hPODXL (human podocalyxin-like), both of which
are implicated in cell adhesion, and aryl hydrocarbon receptor nuclear
translocator (ARNT).1

HSPA12B also has protective actions in endothelial cells. Transgenic
mice overexpressing the human hspa12b gene (including the endothelial
cell-specific promoter) were found to be remarkably protected against
endotoxin lipopolysaccharide (LPS)-induced cardiac dysfunction and in-
flammation.4 In addition, overexpression of human HSPA12B in mice
protected against cerebral ischaemia–reperfusion injury.5 In both
cases, phosphatidylinositide 3-kinase (PI3K)/AKT signalling, which
was either enhanced or preserved and is known to have protective
effect in endothelial cells,6,7 was implicated in the beneficial actions of
HSPA12B. The mechanism by which HSPA12B impacts on PI3K/AKT
signalling in endothelial cells is not known. One possibility may be in sup-
porting the formationof angiopoietin-1 (Ang-1), knowntoactivatePI3K/

AKT signalling and have protective actions itself in endothelial cells.4,8

HSPA12B overexpression attenuated the decrease in Ang-1 expression
in the heart induced by LPS, although levels were still significantly
lower than in saline-treated wild-type and transgenic mice. LPS-
induced decrease in eNOS protein levels was also attenuated by
HSPA12B overexpression. Altogether, these findings demonstrate
that HSPA12B overexpression has protective actions on endothelial
cells under stress.

Li et al.3 report that transgenic mice expressing human HSPA12B spe-
cifically in endothelial cells exhibited remarkable improvements in
cardiac function and remodelling (left ventricular enlargement, wall thin-
ning, and fibrosis) up to 4 weeks after myocardial infarction compared
with wild-type mice (Figure 1). Improvements were accompanied by
less cardiac myocyte apoptosis and an increase in capillary and arteriolar
densities. Transgenic hearts exhibited a further increase in levels of pro-
teins known to have survival actions on cardiac myocytes and endothe-
lial cells and/or to stimulate angiogenesis under conditions of ischaemic
stress, namelyeNOS, Ang-1,VEGF, and Bcl-2.9– 13 Inhibitionof eNOS by
L-NAME blocked the positive actions of HSPA12B on cardiac function
and remodelling, as well as cardiac myocyte apoptosis, VEGF produc-
tion, and capillary formation. Thus, these events are downstream of,
or sustained by, nitric oxide formation. Notably, L-NAME did not
prevent the infarct-induced up-regulation of Ang-1, supporting the con-
clusion thatAng-1production is aprimaryevent in theprotectiveactions
of HSPA12B. Moreover, the observation that HSPA12B overexpression
had no effect on eNOS levels in sham animals suggests that HSPA12B
impacts on a stress-induced protein rather than an endogenously pro-
duced protein.

One of the more remarkable features of the study by Li et al. is per-
haps its deceptive simplicity, which after all required the identification
and exploitation of a cell-specific protein involved in dealing with stress
or injury.That is no small feat. On the other hand, simplicity is oftentimes
the barometer of utility and is not easily attained. Given the apparent
lack of a phenotype of HSPA12B overexpression, it seems likely that
HSPA12B, acting as a chaperone protein, enhances a normal reparative
process that is ‘turned on’ in endothelial cells by injury. For instance,
functioning as a chaperone, HSPA12B may enhance the stress-induced
production of Ang-1 by cardiac endothelial cells.
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Therapeutic angiogenesis is a promising strategy for tackling chronic
myocardial ischaemia and repairing the infarcted heart.14,15 However,
delivery of angiogenic factors, in particular VEGF and Ang-1, is fraught
with certain difficulties, such as achieving an adequate concentration in
the heart, consistency, their short duration of action, and potential
adverse or off-site effects such as vascular inflammation and tumour
growth.14 –16 Targeting angiogenesis using gene therapy addresses
some of these concerns, particularly if expression is under control of a
promoter that can be turned on and off, such as by hypoxia. However,
safety issues remain with gene-based therapies. In addition, angiogenesis
is a complex process involving the co-ordinated and temporal actions of
a number of angiogenic factors.17 Getting it just right is no easy task. For
that reason, exploitation of an endogenous process as achieved in the
study by Li et al. is an attractive approach. Whether the formation of
mature and functional vessels17 was actually achieved by HSPA12B over-
expression will need to be determined.

A better understanding of the factors that regulate HSPA12B expres-
sion in the heart may lead to therapeutic strategies to exploit its protect-
ive and reparative actions. Li et al.3 did observe that infarction increased
HSPA12B expression in wild-type hearts. Like Hsp70, HSPA12B may
also have cytoprotective (e.g. anti-apoptotic) actions within endothelial
cell through protein–protein interactions.18 That possibility needs to
be investigated, as well as whether those intracellular actions are specific
to HSPA12B. Overexpressing any protein may introduce spurious
interactions.

In conclusion, Li et al. have elegantly demonstrated that enhancing
levels of a stress response protein expressed specifically in endothelial
cells can concomitantly nurture recovery and attenuate deterioration

following ischaemic insult to the heart, thus preserving heart function.
Theirs is a ‘simple’ finding that may have profound significance for how
ischaemic heart disease is treated.
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