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Abstract
The Euclidean distance matrix for n distinct points in ℝr is generically of rank r + 2. It is shown in
this paper via a geometric argument that its nonnegative rank for the case r = 1 is generically n.
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1. Introduction
Any given nonnegative matrix A ∈ ℝm×n can be expressed as the product A = UV for some
nonnegative matrices U ∈ ℝm×k and V ∈ ℝk×n with k ≤ min{m, n}. The smallest k that
makes this factorization possible is called the nonnegative rank of A. For convenience, we
denote the nonnegative rank of A by rank+(A). Trivially the nonnegative rank has bounds
such as

(1)

Determining the exact nonnegative rank and computing the corresponding factorization,
however, are known to be NP-hard [6, 18]. If the nonnegative matrix A is such that rank+(A)
= rank(A), then we say that A has a nonnegative rank factorization (NRF). Even in this case,
there is no known effective algorithm to compute the NRF.

It is shown recently that, if k < min{m, n}, then the probability that a matrix A with
rank+(A) = k should also have rank(A) = k is one. In other words, matrices which have an
NRF are generic. To put it more plainly, if A = UV where U ∈ ℝm×k and V ∈ ℝk×n are
randomly generated nonnegative matrices, then with probability one we have rank(A) = k.
The converse is nevertheless not true. Indeed, the question of computing the probability for
a 4 × 4 nonnegative matrix of rank 3 to have nonnegative rank 3 is not trivial at all. It is very
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much analogous to the Sylvester’s four-point problem which, to this date, does not admit a
determinate solution [14, 16]. For this reason, there has been considerable interest in the
literature to identify nonnegative matrices with or without NRF.

A necessary and sufficient condition qualifying whether a nonnegative matrix has an NRF
can be found in [17], but that result appears too theoretical for numerical verification. A few
sufficient conditions for constructing nonnegative matrices without NRF have been given in
[13, 15]. The simplest example is the 4 × 4 matrix

with rank( ) = 3 and rank+( ) = 4. Other known conditions for the existence of an NRF
are for more restrictive subclasses of matrices such as the so called weakly monotone
nonnegative matrices [12], λ-monotone [11], or matrices with nonnegative 1-inverse [4].
Still, given a nonnegative matrix, finding its (numerical) rank is computationally possible,
but ensuring its nonnegative rank is an extremely hard task. Thus far, we know very little in
the literature about nonnegative matrices which do not have NRF. This factorization has also
be studied in the literature under the notion of prime matrices [3, 15].

The purpose of this short communication is to add the important class of Euclidean distance
matrices to the list of matrices having no NRF. This note represents perhaps only a modest
advance in the field, but it should be of interest to confirm the precise rank and nonnegative
rank of a distance matrix.

2. Rank condition and standard form
Given n points p1, …, pn in the space ℝr, the corresponding Euclidean distance matrix
(EDM) is the n × n symmetric and nonnegative matrix Q(p1, …, pn) = [qij] whose entry qij
is defined by

(2)

where ||·|| denotes the Euclidean norm in ℝr. As an exhaustive record of relative spacing
between any two of the n particles in ℝm, the distance matrix Q(p1, …, pn) has many
important applications in distance geometry. See, for example, the discussions in [7, 8, 9,
10]. Our attention here is solely on the rank condition of Q(p1, …, pn).

Theorem 2.1
For any n ≥ r + 2, the rank of Q(p1, …, pn) is no greater than r + 2 and is generically r + 2.

Proof—(This is a classical and well known fact. There are many elegant ways to verify this
result, but for the sake of comparing the associated factorizations we find the following
equality representation is most constructive and straightforward.) Regarding each pℓ as a
column vector and qij = 〈pi − pj, pi − pj〉 with 〈·, ·〉 denoting the Euclidean inner product, we
can write [1]
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(3)

Note that U ∈ ℝn×(r+2) and V ∈ ℝ (r+2)×n. Unless the points p1, …, pn satisfy some specific
algebraic equations, such as ||pℓ|| = 1 for all ℓ = 1, … n, the matrices U and V are generically
of rank r + 2.

The fact that the rank of an EDM depends on r, but is independent of the size n, is very
interesting. The rank deficiency indicates that many entries in the matrix provide redundant
information. It is curious to know whether rank+(Q(p1, …, pn)) has similar property. Note
that the two factors U and V in (3) cannot be both nonnegative, so the (minimum)
nonnegative factorization of Q(p1, …, pn) is yet to be determined.

In a recent paper [1], it is estimated via an intriguing algebraic argument that for a
nonnegative matrix of rank 3 to have nonnegative rank 10, we would need a matrix of order
at least 252. The discussion in the sequel clearly indicates that the actual order can be much
lower.

Suppose that a nonnegative matrix A has two factorizations, A = BC and A = FG. We say
that these two factorizations are equivalent if there exist a permutation matrix P and a
diagonal matrix D with positive diagonal elements such that BDP = F and P⊤D−1C = G [1].
With this notion in mind, it suffices to consider the nonnegative factorization for an EDM in
a special form.

Lemma 2.1
Suppose n ≥ r + 2 ≥ 3. Then any nonnegative factorization of Q(p1, …, pn) is equivalent to
the form

(4)

where * stands for some undetermined nonnegative numbers and + stands for three
undetermined positive numbers.

Proof—Suppose Q(p1, …, pn) = UV is a nonnegative factorization. Then there must exist
an index 1 ≤ k1 ≤ n such that u1k1vk13 > 0. Permuting both the first and the k1th columns of
U and the first and the k1th rows of V simultaneously will not affect the product and will
place u1k1 at the (1, 1) position and vk13 at the (1, 3) position. After scaling u1k1 to unit,
rename without causing ambiguity the permuted matrices as U and V, respectively. The
corresponding v11 in the new V must be zero. Consequently, there must exist an index 2 ≤
k2 ≤ n such that u2k2vk21 > 0. Permuting the second and the k2th columns of U and the
second and the k2th rows of V simultaneously will not affect the product, will not alter the
first column of U or the first row of V, and will place u2k2 at the (2, 2) position and vk21 at
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the (2, 1) position. Again, after scaling u2k2 to unit and renaming the permuted matrices as U
and V, it must be u31 = v22 = 0. It follows that there exist an index 3 ≤ k3 ≤ n such that
u3k3vk32 > 0. Permuting the third and the k3th columns and rows and scaling u3k3 to unit
will give rise to the structure specified in the lemma.

It is important to note that the procedure described in the above proof cannot be continued to
the fourth or other rows or columns. For this reason, we refer to (4) as the standard
nonnegative factorization of Q(p1, …, pn).

When reference to the points p1, …, pn is not critical, we abbreviate a generic Q(p1, …, pn)
as Qn. The notion of nonnegative rank has an interesting geometric meaning [5] which will
be our main toll for verifying the nonnegative rank of Qn. Let the columns of a general
nonnegative matrix  be denoted by A = [a1, …, an]. Define the scaling factor σ(A)
by

(5)

where ||·||1 stands for the 1-norm in ℝm, and the pullback map ϑ(A) by

(6)

Each column of ϑ(A) can be regarded as a point on the (m − 1)-dimensional probability
simplex  defined by

(7)

Suppose a given nonnegative matrix A can be factorized as A = UV, where  and

. Because UV = (UD)(D−1V) for any invertible nonnegative matrix D ∈ ℝp×p, we
may assume without loss of generality that U is already a pullback so that σ(U) = In. We can
write

(8)

Note that the product ϑ(U)ϑ(V) itself is on the simplex . It follows that

(9)

(10)

In particular, if p = rank+(A), then we see that rank+(ϑ(A)) = p, and vice versa. The
expression (9) means that the columns in the pullback ϑ(A) are convex combinations of
columns of ϑ(U). The integer rank+(A) stands for the minimal number of vertices on  so
that the resulting convex polytope encloses all columns of the pullback ϑ(A).
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3. Nonnegative rank and factorization for linear EDM
Given a permutation σ of the set {1, 2, …, n}, define the permutation matrix Pσ:= [δiσ(j)]
where δst denotes the Kronecker delta function. Then it is easy to see that

(11)

In other words, the conjugation of an EDM by any permutation matrix remains to be an
EDM. In the one dimensional case, i.e., r = 1, we may assume without loss of generality that
the point are arranged is ascending order, p1 < … < pn. Define si:= pi+1 − pi, i = 1, …, n − 1.
Entries in the linear EDM has a special ordering pattern that radiates away from the diagonal
per column and row, i.e.

(12)

We shall exploit this particular ordering to help to obtain some initial insight into the
nonnegative rank of the EDM. Unless mentioned otherwise, the subsequent discussion is for
the case r = 1.

It is illuminating to begin the analysis with the case n = 4. For convenience, we adopt the
colon notation as in Matlab to pick out selected rows, columns or elements of vectors.
Denote the columns of Q4 by Q4 = [q1, …, q4]. The probability simplex  can easily be
visualized via the unit tetrahedron S3 in the first octant of ℝ3 if we identify the 4-
dimensional vector x by the vector [x1, x2, x3]⊤ of its first three entries. In this way,
columns of ϑ(Q4) can be interpreted as points ϑ(q1), ϑ(q2), ϑ(q3), ϑ(q4) depicted in Figure
1. Note that the four points ϑ(q1), ϑ(q2), ϑ(q3), ϑ(q4) are coplanar because rank(Q4) = 3.

The y-intercept of this common plane is  which is either negative or positive
with value greater than 1. In either case, the plane intersects the tetrahedron as a
quadrilateral. The first three points sit on three separate “ridges” of the quadrilateral and
hence cannot be enclosed by any triangle within the quadrilateral except the one with
vertices at these three points. If rank+(Q4) < 4, then ϑ(q4) must be inside this triangle and
hence be a convex combination of ϑ(q1), ϑ(q2), ϑ(q3), which translates to that the vector q4
must be a nonnegative combination of q1, q2, q3, but this impossible because q44 = 0. Thus
rank+(Q4) = 4.

The expression Q4 = UV in the form (4) represents a polynomial system of 22 equations in
23 unknowns whereas one of the nonzero unknowns can be normalized to unit. This
nonlinear system is solvable. Other than the trivial factorization Q4 = I4Q4 where I4 stands
for the identity matrix, we find that there are only three nontrivial nonnegative factorizations
which we list in Table 1. While the first set of factorization in the table is equivalent to Q4I4,
it is important to note that the last two sets of factorizations correspond to the four vertices
of the quadrilateral shown in figure 1. This observation also shows that Q4 is not prime [2,
15].

When n > 4, such a visualization in geometry is not possible, but the idea remains justifiable
via an algebraic argument with which we precede as follows.
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Theorem 3.1
Suppose that the linear EDM Qn is of rank 3. Then rank+(Qn) = n.

Proof—Because rank(Qn) = 3, its columns reside on a 3-dimensional subspace of ℝn. The
pull-back map ϑ can be considered as the intersection of this subspace and the hyperplane

defined by . Columns of ϑ(Qn) therefore are “coplanar” whereas by their common
plane we refer to a 2-dimensional affine subspace in ℝn. Identifying any n-dimensional
vector x ∈  by its first n−1 entries [x1, …, xn−1]⊤, we thus are able to “see” columns
ϑ(q1), …, ϑ(qn) as n points residing within the unit polyhedron  in the first orthotant of
ℝn−1. These points remain to be coplanar. (Indeed, the 2-dimensional affine subspace can be
identified by a fixed point, say, ϑ(q1), and two coordinate axes, say, v1:= ϑ(q2) − ϑ(q1) and
v2:= ϑ(q3) − ϑ(qn), where all points in the 2-dimensional affine subspace can be represented
as ϑ(q1) + α1v1 + α2v2 with scalars α1 and α2. The drawing in Figure 1, therefore, is still
relatively instructive.)

For 1 ≤ i ≤ n − 1, it is clear that ϑ(qi) cannot possibly be a convex combination of any other
ϑ(qj) because of the unique zero at its ith entry. We claim further that ϑ(qn) cannot possibly
be in the convex hull spanned by ϑ(q1), …, ϑ(qn−1). Assume otherwise, then we would
have

for some ci ≥ 0 with . Note that ||ϑ(qn)||1 = 1. However, 
because ||ϑ(qi)||1 < 1 after chopping away the last row of ϑ(Qn). This is a contradiction. The
smallest number of vertices for a convex hull to enclose ϑ(q1), …, ϑ(qn), therefore, has to
be n, implying that rank+(Qn) = n.

There is a subtle difference between the standard nonnegative factorization of Q4 and that of
Qn when n ≥ 5. Except for the trivial factorization, both factors U and V in Table 1 for Q4
are of rank 3. This is not the case in general.

Lemma 3.1
Suppose n ≥ 5 and Qn = UV is a standard nonnegative factorization for the matrix Qn. Then
it cannot be such that both U and V are of rank 3 simultaneously.

Proof—Observe first that for n ≥ 3, assuming the generic condition rank(Qn) = 3, we can
partition Qn as

(13)

where Φ ∈ ℝ3×(n−3) is uniquely determined. Indeed, if we write Φ = [φ4, … φn], then it can
be shown that
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(14)

Note that the second entry in φj is always negative.

Assume by contradiction that both U and V of Qn are of rank 3. As U and V appear in the
standard form (4), their 3 × 3 leading principal submatrices U11 and V11 are nonsingular.
Thus similar to (13), we can partition the nonnegative factors into blocks

(15)

where Θ, Λ, Γ and Δ are real matrices of compatible sizes. Upon comparison with (13), we
see that Λ = Φ = Γ. Taking a closer look at the product Λ⊤U11, we find that the signs of its
entries are given by

where, again, * indicates some undetermined nonnegative numbers, + some undetermined
positive numbers, and ⊡ some nonnegative numbers which can further be determined.
Similarly, the signs for entries of V11Γ are given by

Being nonnegative, U and V are complementary to each other in the sense that uijvji = 0 for
all indices i and j. It follows that the +’s in the middle row of V11Γ must cause the ⊡’s in the
middle column of Λ⊤U11 to become zeros. This implies that the very same u32 would have
to satisfy the equalities

for all j = 4, … n, which is not possible if n ≥ 5.

To compute the nonnegative factorization of Qn for n ≥ 5 is considerably harder. The case n
= 5, for example, involves a polynomial system of 39 nonlinear equations in 41 unknowns
two of which can be normalized. A short cut from a geometric point of view might be worth
mentioning. Write
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(16)

with q5 ∈ ℝ4×1. Consider the submatrix [Q4, q5] only. Clearly, its columns are coplanar and,
hence, ϑ(q5) is a point in the interior of the quadrilateral drawn in Figure 1. In particular, if
Q4 = UV is one of the two nontrivial standard nonnegative factorizations of Q4, i.e.,
columns of ϑ(U) (or ϑ(V⊤)) are the four vertices of the quadrilateral, then q5 is a
nonnegative combination of columns of U (or V⊤). In this way, two of the nontrivial
standard nonnegative factorizations of Q5 are given by

(17)

respectively, where w5 and z5 are some nonnegative vectors satisfying Uw5 = V⊤z5 = q5.
This procedure can be generalized to higher n, but there might be other nonnegative
factorizations which are not of this particular form specified in (17).

4. A conjecture for higher dimensional EDM
In higher dimensional vector spaces, points p1, …, pn cannot be totally ordered. Thus, for r
> 1 and n ≥ r + 2, the EDM will not enjoy the inherent structure indicated in (12).
Nevertheless, if we denote pj = [pij], then we can write

We have shown earlier that generically rank+(Q(pi1, …, pin)) = n for each 1 ≤ i ≤ r.
Representing the distance matrices for respective components, these r linear EDMs in
general are not related to each other. For their summation (of nonnegative entries) to cause a
reduction of rank, they must satisfy some delicate algebraic constraints. We thus conjecture
that rank+(Q(p1, …, pn)) = n generically for all r.

It might be informative to reexamine the geometric representation of the matrix Q4 when r >
1. In contrast to the setting in Figure 1, columns of Q4 are not coplanar. Their representation
becomes that depicted in Figure 2. The vertex ϑ(q4) resides on the simplex . How the base
plane determined by vertices ϑ(q1), ϑ(q2), and ϑ(q3) intersects the axes characterizes the
zero structure of nonnegative factors. Different from the case r = 1, there are several
possibilities and there is simply no general rules here. The one shown in Figure 2 implies
that the corresponding Q4 is prime, which is another interesting contrast to the case when r =
1.
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Figure 1.
A geometric representation of the matrix ϑ(Q4) when r = 1.
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Figure 2.
A geometric representation of the matrix ϑ(Q4) when r > 1.
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