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Abstract
Understanding the difference between ex vivo and in vivo measurements is critical to interpret the
load carrying mechanisms of living biological systems. For the past four decades, the ex vivo
stiffness of thin biological membranes has been characterized using uniaxial and biaxial tests with
remarkably consistent stiffness parameters, even across different species. Recently, the in vivo
stiffness was characterized using combined imaging techniques and inverse finite element
analyses. Surprisingly, ex vivo and in vivo stiffness values differed by up to three orders of
magnitude. Here, for the first time, we explain this tremendous discrepancy using the concept of
prestrain. We illustrate the mathematical modeling of prestrain in nonlinear continuum mechanics
through the multiplicative decomposition of the total elastic deformation into prestrain-induced
and load-induced parts. Using in vivo measured membrane kinematics and associated pressure
recordings, we perform an inverse finite element analysis for different prestrain levels and show
that the resulting membrane stiffness may indeed differ by four orders of magnitude depending on
the prestrain level. Our study motivates the hypothesis that prestrain is important to position thin
biological membranes in vivo into their optimal operating range, right at the transition point of the
stiffening regime. Understanding the effect of prestrain has direct clinical implications in
regenerative medicine, medical device design, and and tissue engineering of replacement
constructs for thin biological membranes.
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1. INTRODUCTION
Since Y.C. Fung’s classical opening angle experiment in arteries more than two decades ago
[15, 16], we all know, at least theoretically, that biological tissues display residual stresses,
stresses that are relieved when biological substructures are isolated from their native
environment. In fact, engineers have utilized the concept of residual stresses in prestressed
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concrete to structurally strengthen high-rise buildings and long-span bridges since the early
1950s [50]. Because of their elegant shape and aesthetic appearance, prestrained thin
membrane structures have become an architecturally innovative design element in large
outdoor roofs and pavilions [40]. While residual stresses in engineering structures may result
from well-defined fabrication processes such as tensile elements, plastic deformation, or
heat treatment, residual stresses in biological structures typically originate from
development, growth, or remodeling, phenomena which, themselves, are only poorly
understood [3, 44]. It is therefore not surprising that we often forget about the existence of
residual stresses when analyzing living systems. Since we only know so little about them,
why can we not simply ignore the effects of residual stresses in biological systems?

Prestrained thin architectural membranes find their natural equivalent in the mitral valve
leaflet, a thin biological membrane supported by a stiff reinforcing ring, the mitral annulus,
and by tension cables, the chordae tendineae, see Figure 1. The mitral leaflet has become an
object of intense study throughout the past four decades [47], tested first uniaxially [11, 17,
31] then biaxially [19, 33], harvested from animals [31, 33] and from humans [11, 17, 19],
characterized initially ex vivo [19, 31, 33] and now in vivo [28, 25]. While it would be
overly optimistic to expect ex vivo and in vivo studies to yield identical mechanical
characteristics, it is surprising that the reported stiffness values differ by up to three orders
of magnitude [28]. When comparing the reported ex vivo and in vivo data more closely, we
observe three major inconsistencies, one in kinematics, one in equilibrium, and one in the
constitutive response.

The kinematic controversy manifests itself in significantly larger strains measured ex vivo
than in vivo. Ex vivo, in a left heart simulator designed to reproduce the leaflet’s natural
environment, explanted mitral leaflets displayed stretches in the order of 1.2 to 1.3 when
subjected to physiological conditions [21, 26]. In vivo, in controlled animal experiments in
sheep, both sonomicrometry [46] and video fluoroscopy [7, 41] revealed stretches in the
order of 1.05 to 1.1, less than half of the ex vivo values. If membrane stretches were less
than 1.1 in vivo, the true load carrying capacity of collagen associated with the uncrimping
of collagen fibrils in stretch regimes beyond 1.2 [19] would not be activated at all under
physiological conditions.

The equilibrium controversy manifests itself in larger stresses estimated in vivo than
measured ex vivo. Ex vivo, measured failure stresses of healthy human mitral leaflets were
in the order of 900kPa [19]. In vivo, computationally predicted stresses were as large as
3,000kPa in a forward finite element analysis based on in vivo data [29]. If membrane
stresses were in the order of megapascales in vivo, more than three times larger than the
failure stress, leaflets would be in serious danger of rupturing under physiological
conditions.

The constitutive controversy manifests itself in significantly larger stiffness values identified
in vivo than measured ex vivo. Ex vivo, measured pre- and post-transition moduli, the
tangent stiffnesses before and after the onset of stress locking in collagenous tissues, were
consistently reported in the orders of 10kPa and 1MPa in all previous studies [11, 17, 31, 33,
19]. In vivo, the mitral leaflet stiffness identified from in vivo data using linear inverse finite
element analyses was in the order of 10 to 100MPa [28, 30]. Nonlinear constitutive models
displayed a similar mismatch with significantly larger material parameter values when fitted
to in vivo data [45] than when compared to ex vivo data [38]. In a finite element simulation
with the ex vivo fitted parameters, the computational analysis overestimated structural
deformations by a factor two [38] indicating that the assumed stiffness was too low. If the
membrane stiffness was up to three orders of magnitude larger in vivo than ex vivo, what are
the mechanisms responsible for this tremendous stiffness increase in vivo?
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Here we demonstrate that the concept of residual stress, or rather the concept of prestrain, is
capable of explaining all three inconsistencies, in strain, in stress, and in stiffness, between
ex vivo and in vivo data. A recent study revealed that mitral leaflets in vivo are indeed
exposed to significant residual strains which can be released upon leaflet explantation [4].
Leaflets contracted by 17% in area when excising the heart from the body and by a total of
43% when further excising the leaflet from the heart. The ease of measuring kinematic
changes suggests to characterize the difference between in vivo and ex vivo phenomena in
terms of strains rather than stresses, and use a kinematic approach towards modeling
residual stresses [22]. In particular, we propose to adopt the concept of fictitious
configurations [23, 27], in which we decompose the total elastic deformation gradient
multiplicatively into prestrain-induced and load-induced parts, see Figure 2. In this
approach, we parameterize the stored energy as a function of the total elastic strain [2]. The
degree of prestrain defines the remaining stored energy upon removal of all in vivo loads
and naturally introduces the notion of residual stress [9, 35]. In cylindrical structures,
residual stresses have been visualized using the classical opening angle experiment both in
arteries [15, 16] and in the heart [37]. First mathematical models for residual stresses in
cylindrical structures are now on their way [10, 12, 49], and algorithmic protocols have been
developed to efficiently incorporate prestrain in finite element simulations [5, 14]. In thin
films, prestrain has been thoroughly characterized analytically, numerically, and
experimentally using nano- and micro-indentation [6, 51]. In thin biological membranes,
prestrain has been recognized to play a critical role in tissue engineered artificial heart
valves [36]. Prestrain has recently been characterized experimentally ex vivo [4] and has
been identified as an important mechanism in mitral valve mechanics [45]. However, to
date, the effects of prestrain and residual stress in thin biological membranes have never
been quantified systematically in vivo. This is the goal of the present manuscript.

The remainder of this manuscript is organized as follows. In Section 2, we summarize the
general kinematics of prestrain and specify this concept to model prestrain in thin
membranes. In Section 3, we illustrate the general constitutive equations for prestrained
systems and specify the free energy functions for prestrained isotropic circular thin films and
prestrained transversely isotropic mitral leaflets. In Section 4, we discuss the computational
modeling of prestrain and specify the benchmark problem of circular thin films and the
clinical problem of mitral leaflets. In Section 5, we summarize the results of both problems
with a particular focus on their sensitivity with respect to the prestrain levels. In Section 6,
we discuss our results and compare them to existing studies in the literature, before we
conclude by reiterating the role of prestrain and residual stress in thin biological membranes
in Section 7.

2. KINEMATICS OF PRESTRAIN
To characterize the kinematics of prestrain, we adopt the formulation of finite strain
kinematics based on the deformation map φ, which maps material points from the in vivo
unloaded configuration ℬ0 to the in vivo loaded configuration ℬt. Its spatial gradient, the
deformation gradient

(1)

maps elements from tangent space of the in vivo unloaded configuration Tℬ0 to the tangent
space of the in vivo loaded configuration Tℬt. Throughout this manuscript, we assume that
the in vivo unloaded configuration ℬ0 is neither stress- nor strain-free. We interpret prestrain
as the strain required to bring the membrane from the ex vivo unloaded configuration ℬe to
the in vivo unloaded configuration ℬ0 and denote the associated tangent map with Fp : Tℬe
→ Tℬ0. While it is difficult to measure Fp directly, we can experimentally measure the
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inverse prestrain Fp−1 : Tℬ0 → Tℬe as the kinematic change upon tissue explantation [4].
After characterizing the deformation gradient F and the prestrain Fp, we can determine the
second order elastic tensor

(2)

which we multiplicatively decompose into volumetric and isochoric parts,

(3)

This decomposition implies that J̄e = det(F̄e) = 1 and thus . We can then
determine the elastic right Cauchy-Green deformation tensor Ce and its relation to the total
right Cauchy-Green deformation tensor C and to its isochoric part C̄e,

(4)

We account for the characteristic tissue microstructure with a single family of collagen
fibers modeled through the structural tensor N = n0 ⊗ n0, where n0 with ‖n0‖ = 1 denotes
the unit vector in the ex vivo unloaded configuration ℬe. Accordingly, we introduce the
following three elastic invariants

(5)

where the Jacobian Je = det(Fe) characterizes the incompressible response, the first isochoric

invariant  characterizes the isotropic response, and the fourth isochoric invariant

 characterizes anisotropic response.

Remark 1 (Kinematics of prestrained thin membranes). The simplest approach to model
prestrain in thin membranes, which we adopt here, is to assume that the membrane prestrain
is transversely isotropic with respect to the membrane normal m0,

This allows us to parameterize prestrain in terms of a single scalar-valued variable, the in-
plane prestretch λp. The first term, λp [I − m0 ⊗ m0], is associated with the in-plane
prestretch λp and with an area change λp2, while the second term, [m0 ⊗ m0]/λp2, is
associated with the thickness contraction 1/λp2. This implies that our prestrain is
incompressible, i.e., Jp = det (Fp) = 1. Because of its simple rank-one update structure, we
can explicitly invert the membrane prestrain,

using the Sherman Morison formula. We can visualize and measure the inverse prestretch 1/
λp as the membrane contraction upon tissue explantation, see Figure 2.

3. CONSTITUTIVE EQUATIONS FOR PRESTRAINED SYSTEMS
To model the constitutive response of prestrained systems, we adopt an incompressible,
transversely isotropic, hyper-elastic free energy function, characterized through a volumetric
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part U and an isochoric part ψ̄, both parameterized exclusively in terms of the elastic

invariants Je, , and ,

(6)

The additive decomposition of the free energy manifests itself in an additive decomposition
of the Piola-Kirchhoff stress,

(7)

where the volumetric and isochoric parts take the following explicit representations,

(8)

The volumetric stress  depends primarily on the deriviative p̂ ≔ ∂U/∂Je. The isochoric

stress  depends on the second order tensor S̄e,

(9)

whose weighting factors  we will determine later when we specify the particular

form of the isochoric free energy function ψ̄. In equation (8.2), 
denotes the isochoric projection tensor in terms of the fourth order identity tensor

, with the understanding that {●⊗̅○}ijkl = {●}ik{○}jl and {●⊗̲○}ijkl =
{●}il{○}jk. To efficiently solve the nonlinear boundary value problem, we linearize the
Piola-Kirchhoff stress S with respect to the right Cauchy-Green deformation tensor C to
obtain the fourth order tangent moduli

(10)

which we can again decompose into volumetric and isochoric parts,

(11)

The volumetric part depends primarily on the second derivative 𝓀 ̂ ≔ ∂2U/∂Je2. The isochoric
part depends on the fourth order tensor

(12)
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whose weighting factors  we will specify later. In equation (11.2),

 and  are two
additional fourth order tensors related to the isochoric projection. The proposed approach is
generally applicable to incompressible, transversely isotropic materials. In sections 3.1 and
3.2, we specify the isochoric free energy function ψ̄e for isotropic and transversely isotropic

materials and determine its derivatives  and  to specify the isochoric stress S̄e and the
isochoric tangent moduli ℂ̄e.

3.1. Prestrained circular thin films
To specify the isochoric free energy ψ̄e of equation (6) for the benchmark problem of thin
circular films, we select a simple isotropic Neo-Hookean material model parameterized

exclusively in terms of the first invariant  weighted by the shear modulus c0,

(13)

From the first derivative of this isochoric free energy function with respect to the first and
fourth invariants,

(14)

we conclude that, for this particular model, the isochoric stress S̄e of equation (9) depends
only on the shear modulus c0. Accordingly, the second derivatives of the isochoric free
energy function with respect to the first and fourth invariants are all zero,

(15)

and the isochoric tangent moduli ℂ̄e of equation (12) vanish identically.

3.2. Prestrained mitral leaflets
To specify the isochoric free energy ψ̄e of equation (6) for the clinical problem of mitral
leaflets, we select a well-calibrated constitutive model for mitral valve tissue [34, 38].
Transversely isotropic in nature, the mitral leaflet is characterized through a single
representative fiber family. Its isochoric free energy is based on an exponential function in

terms of the first and fourth invariants  and  weighted by three material parameters c0, c1,
and c2,

(16)

The free energy function is polyconvex in the case of incompressibility provided the fibers

are only subjected to tension, i.e.,  [38]. To determine the isochoric stress S̄e in
equation (9), we evaluate the first derivatives of the isochoric free energy function with

respect to the first and fourth invariants ,

(17)
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To determine the isochoric tangent moduli ℂ̄e in equation (12), we evaluate the second
derivatives of the isochoric free energy function with respect to the first and fourth

invariants ,

(18)

Unlike most transversely isotropic models for non-living materials, this particular
constitutive model introduces an inherent constitutive coupling between the isotropic and

anisotropic response through the first and fourth invariants  and . This coupling

manifests itself in non-vanishing mixed second derivatives, .

4. COMPUTATIONAL MODELING OF PRESTRAIN
To simulate prestrain using a standard, commercially available finite element solver, we
adopt a three-step prestrain protocol as illustrated in Figure 2: First, we virtually create the
ex vivo configuration ℬe. Starting with a known in vivo unloaded configuration ℬ0, for a
given Green-Lagrange prestrain Ep = [λp2 − 1]/2, we shrink the geometry with the inverse
membrane prestrain Fp − 1 = [I − m0 ⊗ m0] / λp + λp2 m0 ⊗ m0 with λp = [2 Ep + 1]1/2.
Second, we recreate the in vivo unloaded configuration ℬ0. Starting with the virtually
created ex vivo configuration ℬe, we apply the membrane prestrain Fp = λp[I − m0 ⊗ m0] +
m0 ⊗ m0 / λp2 and verify the prescribed prestrain level. Third, we create in vivo loaded
configuration ℬt. Starting with the in vivo unloaded configuration ℬ0, now prestrained, we
apply the in vivo Dirichlet and Neumann boundary conditions along with the in vivo loading
to solve for the deformation φ and the deformation gradient F = ∇φ. We calculate the
resulting stresses and tangent moduli using the elastic tensor Fe = F·Fp as the composition
of the mappings Fp and F from steps two and three. In what follows, we adopt this three-
step protocol to explore the effect of prestrain in the benchmark problem of circular thin
films and in the clinical problem of mitral leaflets. For both cases, we study different
prestrain levels by systematically varying the in-plane Green-Lagrange prestrain

 in increments of 10%.

4.1. Prestrained circular thin films
To illustrate the effect of prestrain on thin membranes, we simulate two easily reproducible,
simple, generic benchmark problems. For the simulation, we use the commercially available,
implicit finite element solver ABAQUS/ Standard Version 6.9 [1]. For easy reproducibility,
we adopt a simple incompressible Neo-Hookean material model according to Section 3.1
with a shear modulus of c0 = 1MPa. We model the membrane as a flat circular film with a
radius of 1 mm and a thickness-to-radius ratio of 0.01. Using symmetry conditions, we
discretize a quarter of the system with 2,350 SR4 bi-linear quadrilateral finite strain shell
elements with discrete Kirchhoff thin shell kinematics. To virtually generate prestrain in the
film, we adopt the three-step prestrain protocol for prestrain levels of Ep = [0%, 10%, 20%,
30%]: First, starting with a circular disc of radius 1 mm, we virtually create the unloaded
configuration ℬe by shrinking the disc with the inverse membrane prestrain Fp −1. Second,
from this configuration ℬe, we start the simulation and apply the membrane prestrain Fp to
recreate the configuration ℬ0. Third, we clamp the membrane at its outer edges and apply the
in vivo-equivalent loading to solve for the deformation φ and the deformation gradient F =
∇φ, which characterize the configuration ℬt. For the first benchmark problem motivated by
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the mechanics of the mitral valve [45], we simulate the inflation of the thin film with a
homogeneous pressure. For the second benchmark problem motivated by prestrain studies in
the literature [6, 51], we simulate the indentation of the thin film with a frictionless spherical
indenter of an indenter-to-film radius of 0.1. We gradually increase both the inflation
pressure and the indentation force until the center deflection of the thin film reaches a
deflection-to-radius ratio of 0.4.

4.2. Prestrained mitral leaflets
To explore the effect of prestrain on mitral valve mechanics, we implement the constitutive
model described in Section 3.2 as a user subroutine into the commercially available, implicit
finite element solver ABAQUS/Standard Version 6.9 [1]. In particular, we utilize the
framework UANISOHYPER INV for user-defined anisotropic hyperelastic material models
parameterized in an invariant formulation. We create the finite element discretization of the
anterior mitral leaflet as a smooth surface [18] approximating the averaged coordinates of 23
radiopaque tantalum markers, which have been implanted onto the the anterior mitral
leaflets of 57 male Dorsett sheep [8, 32], see Figure 3, left. We discretize the biological
membrane with 1,920 S3R linear triangular finite strain shell elements with discrete
Kirchhoff thin shell kinematics [38], see Figure 3, middle. Specifically, we use an
incompressible finite element formulation, which is realized in ABAQUS/Standard as a
mixed formulation based on the deformation map φ and an independent Lagrange multiplier
p̂. For S3R elements, the Lagrange multiplier p̂, which enforces the incompressibility
constraint Je − 1 = 0 in a weak sense, is constant on the element level and C−1- continuous
[1]. After a series of sensitivity studies, we select a constant leaflet thickness of 1 mm and a
transverse shear stiffness of 100MPa [45]. From the experimentally measured marker
coordinates acquired at 60 frames per second, we select eight consecutive time frames
starting with the image just before leaflet separation, which we define as the in vivo
unloaded reference configuration ℬ0. We then go backwards in time towards the image at
end systole, which we define as the in vivo loaded configuration ℬt [28]. In this particular
simulation interval, the mitral valve is closed, hemodynamic effects are negligible, and the
possible effects of contracting smooth muscle cells are minimized [45]. To account for the
characteristic transversely isotropic microstructure of the mitral leaflet, we create discrete
collagen fiber orientation maps from tissue histology [45] and confirm the results with
collagen orientations reported in the literature [13, 39], see Figure 3, right. We support the
leaflet belly through chordae tendinae, which we model as incompressible Neo-Hookean
tension-only rods inserting into the leaflet center [39]. We assume a chordae stiffness of
20MPa and a total cross-sectional area of 1 mm2 for each branch. Throughout all eight time
steps, we apply inhomogeneous Dirichlet boundary conditions to all boundary nodes using
the experimentally measured boundary marker coordinates. At the same time, we pressurize
the membrane from underneath with the experimentally measured transvalvular pressure, the
pressure difference between the left ventricle and the left atrium acquired using catheter
micromanometer pressure transducers [28]. To virtually generate prestrain in the mitral
leaflet, we adopt the three-step prestrain protocol for prestrain levels of Ep = [0%, 10%,
20%, …, 100%]: First, for each prestrain level, we virtually create the corresponding ex vivo
leaflet geometry ℬe by shrinking the experimentally acquired in vivo leaflet coordinates with
the inverse membrane prestrain Fp−1. Second, from the ex vivo leaflet geometry, we start
the simulation and apply the membrane prestrain Fp to recreate the in vivo unloaded leaflet
geometry ℬ0. Third, we apply the in vivo acquired inhomogeneous Dirichlet boundary
conditions and the in vivo acquired transmembrane pressure to solve for the deformation φ
and the deformation gradient F = ∇φ, which characterize the in vivo loaded leaflet geometry
ℬt. To identify the material parameters for the different prestrain levels, we perform an
inverse finite element analysis. We apply a genetic algorithm using MATLAB to minimize
the average nodal displacement error e by systematically varying the material parameters c0,
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c1, and c2. We start with an initial parameter set and perform a first generation of finite
element simulations. After the simulation, for each parameter set, we calculate the error

 as the distance between all m = 1, …, nm

experimentally measured inner leaflet markers  and all computationally simulated inner

leaflet markers  summed over all t = 0, …, nt time steps. For our particular case, the
number of inner markers is nm = 9 and the number of time steps is nt = 8. Whenever the
simulation does not converge, we assign an error value that is larger than previously
encountered values for converged solutions. Based on the average nodal displacement error
e, the genetic algorithm generates a new input parameter set through 20% mutation and 80%
cross-over. The genetic algorithm iteratively minimizes the error until it reaches a user-
defined convergence criterion. After finding a converged parameter set, we repeat the
optimization algorithm for varying population sizes and initial parameter sets to ensure that
the converged solution represents a global minimum.

Remark 2 (Kinematic compatibility of prestrain). Here, for the sake of simplicity, we
assume that the prestrain tensor Fp is kinematically compatible, i.e., that it can be
constructed as the gradient of a prestrain deformation field. In this sense, we conceptually
adapt a well-accepted two-step protocol to model prestrain in arteries [5, 14], in which an
open arterial segment is first closed to calculate the prestrain tensor Fp, before the in vivo
loads are applied to calculate the in vivo deformation gradient F = ∇φ. This successive
application of prestrain and deformation simplifies the algorithmic formulation, in that the
finite element algorithm can conveniently work with the elastic tensor Fe = F · Fp as the
composition of both mappings. From this elastic tensor, we can easily calculate the stresses
Se = 2 ∂ψ/∂Ce and the elastic tangent moduli ℂe = 2 ∂Se/∂Ce introduced in equations (7) and
(10) with reference to an assumed-to-be-known ex vivo unloaded configuration ℬe.
Alternatively, if the ex vivo configuration ℬe is unknown, we can work with the total
stresses S = Fp · Se · Fpt and with the total tangent moduli ℂ = [Fp ⊗̅ Fp] : ℂe : [Fpt ⊗̅ Fpt]
using pushed forward operations to map the stresses and tangent moduli to the known in
vivo unloaded configuration ℬ0.

5. RESULTS
5.1. Prestrained circular thin films

Figure 4 illustrates the maximum principal elastic Green Lagrange strains and the
corresponding elastic stretches for the benchmark problem of prestrained circular thin films.
The first column displays the ex vivo unloaded configuration, which is mapped onto the in
vivo unloaded configuration displayed in the second column through the membrane
prestrain Fp. The third and fourth columns display the elastic strains in the prestrained
membrane, either subject to inflation or to indentation, characterized through the
deformation gradient F = ∇φ. The color-coded elastic strains are a result of the composition
of both mappings, Fe = F · Fp, influenced through both the prestrain Fp and the deformation
gradient F. Each row corresponds to a different prestrain level, increasing gradually from
0% to 30% in increments of 10%. In agreement with intuition, increasing the membrane
prestrain increases the elastic strains to generate the same vertical center deflection of
0.4mm upon membrane inflation and upon membrane indentation. In agreement with the
literature, increasing the membrane prestrain induces a sharper indentation profile associated
with a more localized deformation pattern [51].

Figure 5 illustrates the effect of prestrain on the constitutive response of circular thin films.
It displays the inflation pressure as a function of the central vertical displacement, left, and
the indentation force as a function of the central vertical displacement, right. To highlight
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the continuous dependence of the constitutive behavior on the prestrain level, we color-
coded the regions between the curves of the individual prestrain levels ranging from red at
no prestrain to blue at the highest simulated prestrain. In agreement with the literature, for
both benchmark problems, the inflation test and the indentation test, the membrane stiffness
represented through the slope of the curves increases markedly with increasing prestrain [6,
51].

5.2. Prestrained mitral leaflets
The parameter identification for the mitral leaflet has converged successfully for all eleven
prestrain levels. For each prestrain level, we have identified an optimal parameter set c0, c1
and c2, minimizing the total error between the experimentally measured and the
computationally simulated inner marker coordinates.

Table 1 summarizes the identified parameter sets for Green Lagrange prestrains Ep = [λp2 −
1]/2 varying from 0% to 100% corresponding to a membrane prestretch of λp varying from
1.000 to 1.732. All associated error values are smaller than 1 mm, which lies within the
range of the expected experimental measuring error. Variation between error values is
minimal with approximately 6% difference between the maximal and minimal values. All
three material parameters decrease monotonically with increasing levels of prestrain. While
the isotropic and anisotropic parameters c1 and c2 decrease by approximately two orders of
magnitude, the stiffness parameter c0 decreases by four orders of magnitude. Parameter c2
associated with the anisotropic invariant I4 is consistently larger than parameter c1
associated with the isotropic invariant I1. The ratio between c2 and c1 increases with
prestrain from a ratio of approximately 1.2 at 0% prestrain to a ratio of 7.5 at 100%
prestrain.

Figure 6 illustrates the prestrain dependence of the three model parameters. For illustration
purposes, we have fitted an exponential function to the discrete parameter values. All three
parameters, c0, c1, and c2, display a sharp exponential decay. Their initial rapid decrease
flattens out at higher prestrain levels. The graphs confirm that the parameter c2 associated
with the anisotropic invariant I4 is consistently larger than the parameter c1 associated with
the isotropic invariant I1, which displays a faster exponential decay.

Figure 7 visualizes the three configurations of the thin membrane for prestrain levels varying
from 0% to 100%. All leaflets are color-coded for the maximum principal elastic Green
Lagrange strain and are drawn to scale. The first column contains the leaflets in the ex vivo
unloaded configuration ℬe, before we apply prestrain. Elastic Green Lagrange strains are
zero across all the leaflets. With increasing levels of prestrain, the leaflet size in the first
column decreases as we isotropically scale down the leaflet dimensions. The second column
contains the leaflets in the in vivo unloaded configuration ℬ0, after we applied the
corresponding prestrain level. Elastic Green Lagrange strains in the second column are
homogeneous and present the individual prestrain levels. By construction, the elastic Green
Lagrange strains of the in vivo unloaded configuration ℬ0 increase with the prestrain level.
The third column contains the leaflets in the in vivo loaded configuration ℬt, after we
applied prestrain and the in vivo loading. Elastic Green Lagrange strains in the third column
are inhomogeneous and increase nonlinearly with the prestrain level.

Figure 8 illustrates the effect of the different parameter sets on the constitutive response of a
thin biological membrane in a homogeneous biaxial tension test. It displays the Cauchy
stresses parallel and perpendicular to the collagen fiber direction σ11, left, and σ22, right, as

functions of the corresponding elastic stretches  and . To highlight the continuous
dependence of the stress-stretch behavior on the prestrain level, we color-coded the regions
between the curves of the individual prestrain levels. The curves demonstrate the typical
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nonlinear stress-elastic-stretch behavior characteristic for collagenous soft biological tissues.
As we increase the prestrain level, the material parameters c0, c1, and c2 decrease, and the
overall response seems to soften. Consequently, the stress-stretch curves flatten with
increased prestrain levels.

Figure 9 further illustrates the effect of the different parameter sets on the constitutive
response of a thin biological membrane in a homogeneous biaxial tension test. In contrast to
Figure 8, Figure 9 displays the Cauchy stresses parallel and perpendicular to the collagen
fiber direction σ11, left, and σ22, right, as functions of the corresponding total stretches

 and . This implies that we have virtually removed the prestrain λp.
Accordingly, the curves shift to the left, depending on the prestrain level. The stretch-axis
intercepts at σ = 0 indicate the inverse prestrain level 1/λp and the stress-axis intercepts at λ
= 1 indicate the residual stress induced through prestrain. While the stress-elastic-stretch
curves shown in Figure 8 seem to flatten with increased prestrain level parameters, the
stress-stretch curves in Figure 9 demonstrate that these curves actually display a significant
exponential stiffening at comparable stretch levels λ.

6. Discussion
Residual stresses, stresses that are relieved when a biological sub-system is isolated from its
natural environment [15, 16], are inherent to virtually all living systems [10, 49]; yet, we
know very little about them. While residual stresses are usually difficult to measure, residual
strains are relatively easy to access as the inverse kinematic change upon isolation from the
living system [4]. The concept of fictitious configurations [23, 27] provides an elegant
theoretical framework to model prestrain and residual stress through the multiplicative
decomposition of the total elastic deformation into prestrain-induced and load-induced parts,
see Figure 2. In the present study, we extracted the load-induced kinematics and pressure
values from in vivo experiments in sheep [41, 45], see Figures 1 and 3. To explore the effect
of prestrain, we systematically prescribed different prestrain levels, and studied their impact
on the overall mechanical characteristics of the mitral leaflet, see Figure 7, left column. Our
central finding is that prestrain has a drastic effect on strain, stress, and stiffness. Because of
the multiplicative nature of the kinematic model, a linear increase in prestrain is associated
with a nonlinear increase in the overall strain, see Figure 7, right column. Because of the
characteristic exponential strain-stiffening behavior of collagenous biological tissues, a
linear increase in prestrain is associated with an exponential decrease in the apparent
material stiffness, see Table 1 and Figure 6. For similar reasons, a linear increase in prestrain
is associated with a nonlinear alterations in stress, see Figures 8 and 9.

6.1. Comparison to previous studies
Our in vivo mitral leaflet kinematics agree nicely with previously reported strains in sheep
from sonomicrometry [46] and from video fluoroscopy [7, 41]. Circumferential and radial
stretches of approximately 1.05 and 1.08 are in good qualitative agreement with values
found for both techniques. However, our in vivo stretches are significantly lower than the ex
vivo circumferential and radial stretches of 1.2 and 1.5 measured in porcine leafets in a left
heart simulator under physiological loading conditions [20, 21, 26]. This difference between
in vivo and ex vivo kinematics has previously been noted [41], but has never been explained
to date. In view of the present study, we attribute this difference to the prestrain Fp between
the ex vivo unloaded configuration ℬe and the in vivo unloaded configuration ℬ0, see Figure
2. Under similar physiological loading conditions, the ex vivo experiments record the total
elastic deformation Fe = F · Fp, i.e., the deformation between the ex vivo configuration ℬe
and the in vivo loaded configuration ℬt, while the in vivo experiments only record the in
vivo deformation F = ∇φ, i.e., the deformation between the in vivo unloaded configuration

Rausch and Kuhl Page 11

J Mech Phys Solids. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ℬ0 and the in vivo loaded configuration ℬt. This difference is visualized in Figure 8 and 9,
where we plot the stresses of a biaxial tension test against the ex vivo recordable total elastic
stretches λe, Figure 8, and against the in vivo recordable load-induced stretches λ = λe/λp,
Figure 9. First experimental studies on mitral leaflets in the early 1970s were based on ex
vivo uniaxial testing of explanted human leaflets in the circumferential direction. To account
for the fundamentally different constitutive response before and after collagen stiffening,
these early studies introduced two different tangent moduli and reported the pre- and post-

translational leaflet stiffnesses to  and  averaged over four

human leaflets [17], and to  and  averaged over 25 human
leaflets [11]. In the early 1990s, similar ex vivo uniaxial experiments were performed on
porcine mitral leaflets, but now in both circumferential and radial directions with

, and  [31]. Stiffness ranges were
similar to the human leaflet, however, this study revealed the characteristic leaflet
anisotropy with a three times larger stiffness circumferentially than radially, i.e., in the
direction of the principal collagen fiber orientation. A combined uniaxial and biaxial study
of porcine mitral leaflets in the mid 1990s confirmed these observations with

, and  [33]. Last, a systematic
study on healthy and diseased human mitral leaflets about a decade ago reported the healthy

post-transitional moduli to  and , and found these values to
double in the diseased state [19]. In summary, stiffness values of all studies lie consistently
in the same range, even for different species, with a stiffening of approximately two orders
of magnitude between the pre- and post-translational regimes.

A few years ago, a study based on marker videofluoroscopy and linear inverse finite element
analysis reported the first in vivo mitral leaflet stiffness in the beating ovine heart [28].
Surprisingly, the study identified the circumferential and radial leaflet stiffnesses to
Ecc=43,000kPa and Err=11,000kPa, stiffness values that were consistently one and three
orders of magnitude larger than the previously reported pre- and post-transitional stiffness
values [30]. This tremendous stiffness difference between ex vivo and in vivo data
stimulated vivid discussions and ongoing debate about the possible mechanisms of in vivo
stiffening. A potential explanation is active muscle cell contraction, present in vivo but not
ex vivo [25, 48]. To quantify the impact of active contraction throughout the cardiac cycle,
stiffness values were identified during isovolumetric contraction and isovolumetric
relaxation with circumferential and radial stiffnesses increasing by 41.3% and 54.5% during
the contractile phase [29]; yet, not enough to explain a difference of orders of magnitude. To
increase active contraction, the mitral valve complex was subjected to vegal nerve
stimulation to further increase the circumferential and radial stiffnesses by 63.6% and 80.0%
[25]; again, not enough to explain a difference of orders of magnitude. The effect of
prestrain, as discussed in this manuscript, could easily explain these controversies, however,
only in combination with a nonlinear constitutive equation.

Up until the mid 1990s, it was quite common in the bioengineering community to model the
constitutive behavior of biological membranes through a bi-linear model with two distinct
stiffness values in the pre- and post-translational regimes. The first study to use an
exponential Fung-type free energy function for biological membranes was proposed two
decades ago [24]. It was soon adapted for porcine mitral leaflets using the free energy

function  with the following three material
parameter values c̄0 = 0.399kPa, c̄1 = 4.325, c̄2 = 1446.5 [34] calibrated with earlier ex vivo
data [33]. Here, we used a slight modification of this free energy function

 as introduced in equation (16). When calibrated with
the same ex vivo data [33], its parameters take the following values c0 = 0.0520kPa, c1 =
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4.63, and c2 = 22.6 [38]. When calibrated with in vivo data using marker videofluoroscopy
and nonlinear inverse finite element analysis, we found its parameters to take the following
values c0 = 119; 020.7kPa, c1 = 152.4, and c2 = 185.5, see Table 1. Qualitatively, these in
vivo parameters of the nonlinear model lie within the same range as the in vivo parameters
of the linear model [28]. However, consistent with the ex vivo and in vivo parameters of the
linear constitutive model, the ex vivo and in vivo parameters of the nonlinear constitutive
model differ by orders of magnitude. This raises the question which parameters we should
use in future simulations? Or, more provokingly, how useful are ex vivo determined material
parameters when we try to make predictions of a living system?

In linear finite element simulations with the in vivo fitted parameters, the computational
analysis overestimated the stresses by a factor three beyond the failure stress [29]. In
nonlinear finite element simulations with the ex vivo fitted parameters, the computational
analysis overestimated the structural deformations by a factor two [38]. The nonlinear model
we propose here is calibrated to in vivo data [45]; its computational analysis inherently
predicts the correct structural deformations for all prestrain levels. So the question is rather,
what is the correct prestrain level?

Recent prestrain measurements indicate an area reduction of 43% upon leaflet explantation
[4]. Assuming the pre-strain is isotropic in the leaflet plane Fp = λp [I − m0 ⊗ m0] + [m0 ⊗
m0] / λp2, this would correspond to a prestretch of λp = 1/[1.00 − 0.43]1/2 = 1.32. For this
prestretch level, we interpolate the following parameter values c0 = 26.7kPa, c1 = 1.5, and c2
= 6.8 from the data in Table 1, illustrated also in Figure 6. Although not identical, these in
vivo parameter values with λp = 1.32 prestretch are much closer to the previously reported
ex vivo parameter values of c0 = 0.052kPa, c1 = 4.63, c2 = 22.6 [38].

6.2. Limitations
We view this study as a first prototype analysis of prestrain and residual stress in thin
biological membranes. As such, it provides valuable insight into the interplay between
prestrain-induced and load-induced deformation. Despite these promising first results, some
limitations are inherent to the proposed method. Some have already been addressed in detail
in previous publications, e.g., limitations related to the experimental data acquisition [7, 32],
limitations related to data averaging over 57 animals [42, 43], limitations related to creating
a smooth surface from 23 discrete points [18], limitations related to the inverse finite
element analysis itself [28], limitations related to additional parameters such as chordae
stiffness and leaflet thickness [45], and limitations related to differences in species such as
pig, sheep, and human [42]. Additional potential limitations specific to this particular study
are limitations related to this specific constitutive model [34, 38], limitations related to the
assumption of a transversely isotropic prestrain [4], and limitations related to the
compatibility of prestrain [9, 14].

7. Conclusion
This study has, for the first time, systematically quantified the effects of prestrain and
residual stress in thin biological membranes in vivo. Previous studies had revealed three
unresolved discrepancies in kinematic, equilibrium, and constitutive properties derived from
ex vivo and in vivo measurements: Ex vivo strains were larger by a factor two than in vivo
strains; in vivo stresses were larger by a factor three than ex vivo failure stresses; and, most
drastically, in vivo stiffnesses were up to three orders of magnitude larger than ex vivo
stiffnesses. Here we have shown that all three discrepancies can be explained by the concept
of prestrain. Since the degree of prestrain in thin biological membranes has not been fully
characterized to date, we systematically explored the effect of different prestrain levels, first
in an in vivo parameter identification, then in an ex vivo biaxial test. Our studies reveal that
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the reported area reduction of 43% upon leaflet explantation associated with a prestretch of
1.32 would indeed reduce the membrane stiffness from 119,020.7kPa for the prestrain-free
case to 26.7kPa for the reported prestrain level, an apparent stiffness reduction of four orders
of magnitude. While these numbers might be specific to the anterior mitral leaflet, we
believe that other thin collagenous membranes such as the fetal membrane, liver capsule,
renal capsule, ear drum, pericardium, peritoneum, pia mater, dura mater, and skin display
conceptually similar characteristics. Our findings suggests that prestrain plays a critical role
in the mechanics of thin biological membranes. Neglecting its effects might fundamentally
change the underlying load carrying mechanisms and might result in significantly under- or
over-estimated material and structural properties. As such, our findings have direct
implications in medical device design, in tissue engineering, and in other fields of material
sciences targeted at designing replacement materials which resemble the native
characteristics of thin biological structures.
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Figure 1.
The anterior mitral leaflet is a typical example of a prestrained thin biological membrane,
structurally supported by a stiff reinforcing ring, the mitral annulus, and by tension cables,
the chordae tendineae. Under physiological conditions, the closed leaflet is subjected to
blood pressure from underneath, as the left ventricle contracts.
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Figure 2.
Kinematics of finite deformation with prestrain. The elastic tensor Fe = F · Fp is
multiplicatively decomposed into a prestrain-induced part Fp and a load-induced part F =
∇φ, where the latter is the gradient of the in vivo deformation map φ from the in vivo
unloaded configuration ℬ0 to the loaded in vivo configuration ℬt. While it is difficult to
explicitly quantify the prestrain Fp, we can easily measure the inverse prestrain Fp−1 as the
membrane shrinkage upon tissue explantation.
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Figure 3.
Computational model of the anterior mitral leaflet created from 23 discrete marker positions,
left. The resulting finite element model consists of 1,920 S3R linear triangular finite strain
shell elements, middle. Discrete collagen fiber orientation maps were extracted from tissue
histology, right.

Rausch and Kuhl Page 19

J Mech Phys Solids. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Maximum principal elastic Green Lagrange strains and corresponding elastic stretches for
different prestrain levels. From the ex vivo unloaded configuration in the first column to the
in vivo unloaded configuration in the second column, the membrane is prestrained through a
prestrain Fp of different levels. From the in vivo unloaded configuration to the in vivo
loaded configurations the membrane is either subjected to inflation, third column or to
indentation, fourth column, reflected through the deformation gradient F = ∇φ. The color-
coded elastic strains are a result of the composition of both mappings, Fe = F · Fp.
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Figure 5.
Inflation pressure vs. vertical displacement, left, and indentation force vs. vertical
displacement, right, for circular thin films at different prestrain levels. The membrane
stiffness, the slope of the curves, increases markedly with increasing membrane prestrain.
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Figure 6.
Material parameter values for mitral leaflet tissue identified for different prestrain levels.
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Figure 7.
Maximum principal elastic Green Lagrange strains and corresponding elastic stretches for
different prestrain levels. From the ex vivo unloaded configuration ℬe to the in vivo
unloaded configuration ℬ0, the membrane is prestrained through a prestrain Fp of different
levels. From the in vivo unloaded configuration ℬ0 to the loaded configuration ℬt, the
membrane is subjected to the experimentally measured load resulting in the deformation
gradient F = ∇φ. The color-coded elastic strains are a result of the composition of both
mappings, Fe = F · Fp.
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Figure 8.
Homogeneous biaxial tension test for different prestrain levels. Cauchy stresses parallel to

fiber direction σ11 vs. elastic stretch , left, and Cauchy stresses perpendicular to fiber

direction σ22 vs. elastic stretch , right. To calculate the stress-stretch curves, we used the
individual parameter sets for the different prestrain levels summarized in Table 1.
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Figure 9.
Homogeneous biaxial tension test for different prestrain levels. Cauchy stresses parallel to

fiber direction σ11 vs. in vivo stretch , left, and Cauchy stresses perpendicular to

fiber direction σ22 vs. elastic stretch vs. in vivo stretch , right. To calculate the
stress-stretch curves, we used the individual parameter sets for the different prestrain levels
summarized in Table 1.
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