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The main functional roles attributed 
to the centrosome, the major micro-

tubule organizing center (MTOC) of 
metazoans, are related to cell locomotion, 
sensory perception and division. The role 
of vesicular trafficking in the regulation 
of the centrosome cycle has been largely 
unexplored. Recently, however, several 
studies have indicated the involvement of 
molecules and/or complexes of the traf-
ficking routes in centrosome positioning, 
duplication and regulation. Functional 
screens have revealed communication 
between the outer nuclear envelope, the 
Golgi apparatus, the endosomal recycling 
compartment and centrosomes, while 
other studies underline the involvement 
of the ESCRT complex proteins in cen-
trosome function. In this commentary, 
we discuss our recent study, which shows 
the involvement of an endosomal Rho 
protein, namely RhoD, in centrosome 
duplication and possible links between 
the centrosome’s structural and func-
tional integrity to vesicular trafficking.

The Centrosome

The centrosome is the major microtubule-
organizing center of animal cells, which 
influences cell shape and directs the for-
mation of the bipolar mitotic spindle. 
At the core of a typical centrosome are 
two cylindrical microtubule-based struc-
tures termed centrioles, which recruit a 
matrix of associated pericentriolar mate-
rial (PCM). Aberrations in numerical 
and structural integrity of centrosomes 
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interfere with spindle formation and 
chromosome segregation. Centrosome 
duplication occurs through a conserved 
cycle.1 It begins with centriole disengage-
ment, followed by procentriole assembly 
perpendicular to the pre-existing centriole 
and occurs during the S phase of the cell 
cycle. By G

2
, both centriole pairs mature 

by recruiting necessary components such 
as PCM (maturation phase) and as cells 
proceed to M phase, the two centrosomes 
separate and orient toward opposing poles 
of the cells to drive the formation of the 
mitotic spindle. During separation, only 1 
centrosome is functionally active (“domi-
nant” or “mother” centrosome) in terms 
of microtubule nucleation and struc-
tural maturation and the other (“new” 
or “daughter” centrosome) moves to the 
opposite site and completes its maturation 
~10 min before nuclear envelope break-
down.2 Centrosome duplication is heavily 
regulated by cell cycle controls. The link 
between the cell and centrosome cycles is 
mediated through the function of cyclins 
and their cyclin-dependent kinases.

Centrosome positioning is crucial, as 
it determines the location of many other 
organelles within the cell and regulates 
proper cell division.3 This localization is 
actively maintained via interconnected 
mechanical forces applied from micro-
tubules and the cortical actin network. 
This crosstalk is essential not only for the 
maintenance of the central localization of 
the MTOC in interphase cells, but also 
for orchestrating the movement of the 
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duplicated centrosomes during cell divi-
sion (Fig. 1).4-6

Changes in numbers, structure and/
or location of centrosomes result in phe-
notypic abnormalities (from apoptosis to 
uncontrolled proliferation) due to chro-
mosome instabilities. Centrosome ampli-
fication forces cells to pass through a 
multipolar spindle intermediate, enhanc-
ing merotelic attachments and lagging 
chromosomes, and as a consequence 
unequal chromosome segregation into 
the daughter cells.7,8 In fact, altered cen-
trosomes have been described in many 
tumors.9-13 Furthermore, direct manipu-
lation of centrosomes in vitro leads to 
aneuploidy and transformation, support-
ing a potentially causative effect toward 
malignancy.14

Crosstalk Between Trafficking 
Routes and the Centrosome

Golgi apparatus. Over the last few years, a 
series of studies in centrosome research have 
re-evaluated the correlation of trafficking 
compartments and centrosome integrity. 
In interphase mammalian cells, the Golgi 
apparatus is found in close proximity to 
the centrosome and recent data suggest 
that this proximity is accompanied by a 
functional link between these two organ-
elles. Golgi-associated proteins that con-
trol the pericentriolar position of the Golgi 
apparatus, also contribute to centrosome 
reorganization.15,16 Furthermore, GM130, 
a Golgi protein, by association with Tuba, 
a CDC42 guanine nucleotide exchange 
factor, activates CDC42, which in turn 
regulates centrosome organization.17 
The bidirectional interaction between 
the Golgi and centrosome is highlighted 
by the fact that centrosome-nucleated 
microtubules govern Golgi positioning.18 
In a recent study, functional repurposing 
revealed the involvement of the STRIPAK 
(Striatin-InteRacting Phosphatase and 
Kinase) signaling complexes in mediating 
communication between the outer nuclear 
envelope, the Golgi and centrosomes and 
is likely to unravel new mechanisms of 
organelle homeostasis.19

Figure 1. Mechanical forces applied on centrosomes. Centrosome positioning is maintained 
by coordinated microtubule pulling forces and cortical actin pushing centripetal flow. During 
division, enhanced actomyosin contractility in the periphery of the opposite pole drags adjacent 
astral microtubules to drive the separation of duplicated centrosomes to opposing poles. Figure 
adapted from both Burakov and Rosenblatt.4,5 Centrosome (gray), nucleus (pink), recycling com-
partment (orange), endoplasmic reticulum (green), Golgi (magenta).

Figure 2. RhoD encircles centrosomes. Preference to one of the two centrin positive couples. HUVE cells were infected with myc-RhoDWT or myc-
RhoDG26V and transfected with GFP-Centrin. Twenty four-hours post transfection/infection cells were processed for GFP-centrin, myc-RhoDWT or 
G26V (red-TRITC) and endogenous α-tubulin (blue-CY5). Bar = 10 μm. Image taken from Kyrkou.32
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Our group’s work provides an extra 
link. RhoD GTPase, an endosomal pro-
tein, belongs to the Rho family of GTPases 
and has been mainly implicated in endo-
some dynamics. More specifically overex-
pression of a GTPase deficient mutant of 
RhoD (RhoDG26V) impedes the motil-
ity of early endosomes, which are scattered 
in the periphery of the cell.30 A novel splice 
variant of human Diaphanous, hDia2C, 
mediates the effect of RhoD on endo-
some motility and involves the membrane 
recruitment and activation of c-Src.31 Our 
current work describes a novel function of 
RhoD potentially connecting membrane 
trafficking and the centrosome cycle.32 
In this paper we describe novel effects of 
RhoD in terms of both cell and centro-
some cycle progression. Our findings sug-
gest that RhoD promotes G

1
/S transition 

via the interaction with a newly identified 
effector, Diaphanous1 and that dominant 
activation or depletion of RhoD interferes 
with centrosome integrity. Expression of 
RhoDG26V results in atypical nuclear 
morphology seen both in vivo and in vitro, 
characterized by the formation of cells 
with nuclear fragmentation and multi-
nucleation. Further analysis revealed that 
nuclear fragmentation was associated with 

Recently, however, there are indications 
that such an association does indeed exist. 
The seminal study of Doxsey’s group29 
identified a direct link between endo-
somes and centrosomes. More specifically, 
two mother centriole appendage pro-
teins, centriolin and cenexin/ODF2, were 
found to regulate the association of the 
recycling endosome components Rab11-
GTPase, the Rab11-GAP protein Evi5 and 
the exocyst complex at the mother centri-
ole. According to the proposed model for 
the hierarchy of molecular interactions, 
cenexin anchors centriolin at the append-
ages of the mother centriole, which in turn 
recruits the exocyst complex, necessary for 
the recycling. The exocyst associates with 
Evi5 GAP, which inactivates Rab11, lead-
ing to the release of the GTPase from the 
centrosome. Interestingly, knockdown of 
centriolin resulted in an increase of recy-
cling, suggesting that upon loss of cen-
triolin and the binding partner Evi5 GAP 
from centrosomes, Rab11-GTP is retained 
on this structure enhancing the recycling 
of cargo from neighboring endosomes to 
the plasma membrane. These observations 
indicate a dual role of Rab11 both in endo-
somal function (efficient recycling) and in 
centrosome regulation as well.

ESCRT complex. Centrosome integ-
rity is strongly affected by proteins 
involved in other trafficking routes as well. 
The endosomal sorting complex required 
for transport (ESCRT) is required for the 
recognition and sorting of ubiquitin-mod-
ified cargo proteins into the internal vesi-
cles of multivesicular bodies (MVBs)20-22 
and catalyzes membrane scission events23 
in the biogenesis of MVBs and cytokine-
sis.24-27 A recent study identified a func-
tional role for late-acting ESCTIII/VPS4 
proteins in centrosome and mitotic spindle 
maintenance.28 Cells depleted of ESCRT-
III/VPS4 exhibit highly penetrant phe-
notypes including multipolar spindles 
and over amplified centrosomes, suggest-
ing a strong participation of the ESCRT 
complex in the proper centrosome cycle. 
Furthermore, ESCRT factors have also 
been shown to regulate spindle-pole-body 
duplication in the functional repurposing 
study mentioned above—further under-
lining the diversity of cellular pathways.19

Recycling compartment. The perinu-
clear recycling endosomal compartment 
is in close proximity to the centrosomes, 
however, there is little information regard-
ing possible functional or structural asso-
ciation between these organelles as yet. 

Figure 3. RhoDWT does not colocalize with PCM1-positive centrosome granules. HUVE cells were transfected with myc-RhoDWT for 24 h. Myc-Rho-
DWT protein was detected with α-myc/Alexa α-mouse 488 and centrosome granules via α-PCM1/ATTO α-rabbit 425. The upper panel is a confocal 
image. The boxed region in the upper image is shown in the lower panel and is a STED image. Bar = 10 μm.



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com Small GTPases 119

the regulation of the centrosome cycle. 
What is the mechanism of action of RhoD 
in centrosome duplication? It is likely that 
alterations of the actin cytoskeleton con-
tribute to the effect of RhoD, however 
trafficking may also be involved and the 
delivery of components required for cen-
trosome assembly may be altered. We are 
currently addressing these issues.

Implication of Other GTPases  
in the Centrosome  
Cycle Regulation

To date few GTPase have been impli-
cated in centrosome integrity. Another 

an endosomal protein interfering struc-
turally with the centrosome to the extent 
that the lack of this protein inhibits the 
formation of the centrosome. Detailed 
imaging indicates that RhoD is local-
ized in the pericentriolar area in G

1
 phase 

and as the cell progresses to S-G
2
 phase, 

RhoD positive structures “decorate” one 
of the two centrosomes, which prelimi-
nary data hint is the mother centriole  
(Figs. 2 and 3 with PCM). In conjunction 
with these data, super-resolution confo-
cal imaging reveal an important overlap 
with Rab11 positive pericentriolar struc-
tures (Fig. 4, unpublished data; Fig. 5), 
underlying the importance of RhoD in 

chromosome misalignment and formation 
of multipolar spindles during metaphase, 
whereas cells processing more than one 
“normal” sized nucleus were generated 
upon cytokinesis defects. This effect is so 
striking that the cells are lost within a few 
days due to apoptosis.

RhoDG26V promotes centriole over-
duplication, whereas expression of the 
dominant negative RhoDT31N or knock-
down of the protein abrogates centro-
some duplication. Electron microscopic 
analysis revealed the existence of cells 
with atypical centrosomal structures or 
even cells lacking centrosomal structures 
completely. This is a striking example of 

Figure 4. RhoDWT-positive endosomes show partial overlap with Rab11-positive (recycling) endosomes. HUVE cells were co-transfected with myc-
RhoDWT and GFP-Rab11WT for 24 h. GFP fluorescence was quenched by fixation in methanol for 20 min at -20°C. Myc-RhoD was detected with α-myc/
ATTO-rabbit 425 and Rab11 with α-GFP/Alexa α-mouse 488. The upper panel is a confocal image. The boxed regions in the upper merged image are 
shown in the central and lower panels and are STED images. The central panels show the colocalization of Rab11 and RhoD in the perinuclear recycling 
compartment, while the lower panels show the colocalization on peripheral vesicles. Bar = 5 μm. Quantitation with MotionTracking Software yield ap-
proximately 56% overlap of RhoD-positive vesicles vs. Rab11-positive endosomes (and 32% of Rab11/RhoD). This is based on total colocalization, while 
in the perinuclear recycling compartment the colocalization is significantly higher.
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Figure 5. Crosstalk between the recycling compartment and the centrosome. (A) RhoD-positive and/or Rab11 positive vesicles of the recycling com-
partment surround the centrosome. A distinct population of endosomes (Microtubule driven trafficking in arrow) are either moving from the recycling 
area (or maybe the periphery) toward the centrosome or emanating from this pericentriolar area to the cell’s periphery. (B) Mother centriole append-
ages are decorated with recycling endosomes and membrane-free Rab11-GTP.29 RhoD-GTP trafficking inside the centrosome structure is under inves-
tigation. Illustrated areas of RhoD-GTP in dark blue lines, Rab11-GTP in green lines, RhoD-GTP and Rab11-GTP colocalization in cyan, PCM1 granules in 
pink, Rab6c in yellow. MC, mother centriole; DC, daughter centriole.
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endosomes and Golgi having possible 
implications in asymmetric cell division 
and ciliary signaling. Further investiga-
tion is required to gain insight into the 
molecular mechanisms underlying this 
cooperation.
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