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Recent evidences suggested that 
growth and differentiation of pan-

creatic cell lineages, including the insu-
lin-producing β-cells, depend on proper 
tissue-architecture, epithelial remod-
eling and cell positioning within the 
branching pancreatic epithelium. We 
recently found that Rho GTPase and 
its regulator, Stard13 RhoGAP, coordi-
nate morphogenesis with growth in the 
developing pancreas. Conditional muta-
tion of Stard13 in the mouse pancreas 
hampers epithelial remodeling and dis-
tal tip domain formation, affecting pro-
liferation and expansion of pancreatic 
progenitors. These defects eventually 
result in pancreatic hypoplasia at birth. 
Stard13 acts by regulating Rho signal-
ing spatially and temporally during 
pancreas development. In line with this, 
pharmacological activation or inhibition 
of Rho mimics or rescues, respectively, 
the defects observed in Stard13-deficient 
embryos and pancreatic organ cultures. 
Furthermore, in the absence of Stard13 
uninhibited Rho activity affects the 
actomyosin contractile network, disrupt-
ing its apical distribution and hampering 
coordinated cell-shape changes. These 
results unveil therefore the crucial role 
of actin cytoskeletal dynamics during 
the onset of pancreatic branching mor-
phogenesis. Finally, our findings define a 
reciprocal interaction between the actin-
MAL/SRF and the MAPK signaling to 
locally regulate progenitor cell prolifera-
tion in the pancreas.

During embryogenesis developing organs 
acquire their final functional architectures 
at the same time as their residing cells 
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proliferate and undergo differentiation. 
This leads to interesting unsolved prob-
lems: How is morphogenesis integrated 
with growth and differentiation events 
during organ formation? Do they influ-
ence each other? For instance, does change 
in proliferation affect change in shape?

Tissue forms can be the result of spa-
tial differentials in cell proliferation. 
For example, during epithelial branch-
ing morphogenesis and vascular sprout-
ing, cells located at the tips of branching 
buds generally proliferate more rapidly 
than neighboring cells located in the 
ducts.1,2 This so-called “localized cell 
proliferation” is an important morphoge-
netic mechanism in kidney development, 
directing the extension of the epithelial 
branches.2,3 However, there are examples 
in which bud outgrowth (e.g., in the 
lung) has been found to precede localized 
proliferation, suggesting that alternative 
mechanisms may be at the origin of shape 
acquisition.4 Similarly, complete block of 
proliferation in pancreas organ cultures 
does not hamper the initiation of pri-
mary branches, suggesting that “localized 
proliferation” is not the only mechanism 
underlying bud outgrowth and branch 
formation in the developing pancreas as 
well.5 Furthermore, these observations 
underscore another important facet of 
the problem, which is the control of the 
relative spatial position of cells within 
a developing tissue for being correctly 
formed and functional. It is likely that ini-
tial change in shape allocates a certain cell 
type in a special position (e.g., progenitor 
cells at the tip of the branch) where it can 
acquire its identity and proliferate or dif-
ferentiate, accordingly.
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integrated and the role of the Rho signal-
ing in this context.

Since pancreas organ size relies on 
the expansion of the progenitor cell res-
ervoir in the embryo,9 we analyzed if the 
loss of Stard13 affects the number and 
survival of pancreatic progenitor cells 
(Pdx1+;Cpa1+ cells). No significant differ-
ence in cell death was detected between 
wild-type (WT) and mutant littermates, 
whereas the number of proliferating cells 
was strongly reduced in Stard13PA-deleted 
embryos at E12.5. Strikingly, the prolif-
erative defects almost exclusively affected 
the progenitor cells (Cpa1+;pHH3+ cells), 
while proliferation rate in the rest of the 
epithelium was similar to control coun-
terparts.16 In addition to a decreased pro-
liferative activity, Cpa1+ progenitor cells 
appeared mislocalized and randomly dis-
tributed throughout the tissue, being the 
tip structures not properly formed in the 
mutant.16 These observations suggest that 
the RhoGAP Stard13 plays an important 
role in sustaining proliferating progenitor 
cells in the embryonic pancreas.

Next, we sought to test the hypoth-
esis whether the defects in proliferation 
were the consequences of perturbed tip 
morphogenesis or at the origin of it. Our 
detailed phenotypic analysis suggests that 
loss of Stard13 affects pancreatic epithe-
lium starting from E11.5, which coincides 
with the initiation of the transition from 
a stratified unpolarized epithelium into 
a polarized monolayer of cells.16,19 Upon 
closer examination of cell morphology, 
polarity, and cytoskeletal organization, 
we observed that Stard13PA-deleted embryos 
show major problems in epithelial remod-
eling. Specifically, Stard13 mutant cells 
remained stratified, cuboidal in shape 
and did not properly form and resolve 
“rosette-like” structures.16,20 In addi-
tion, we found that mutant cells display 
alterations in the actomyosin cytoskeletal 
organization, including not only an accu-
mulation of F-actin and myosin, but also 
their irregular distribution throughout 
the cytoplasm.16 Collectively, these results 
suggest that Stard13 is required for ensur-
ing epithelial remodeling and initiation 
of branching in the pancreas. The fact 
that epithelial defects (e.g., aberrant cell 
shape and F-actin accumulation) were the 
earliest detectable defects in the mutant 

thereby, control morphogenesis in a variety 
of epithelial tissues.12,13 Rho, Cdc42 and 
Rac1, the most studied members of the 
Rho GTPase family, have been recently 
shown to control different aspects of pan-
creatic morphogenesis, including initia-
tion of branching process, tubulogenesis 
and islet cells migration, respectively.14-16

The cycling of small GTPases between 
an active (GTP-bound) and inactive 
(GDP-bound) state is tightly regulated 
by three classes of proteins: the guanine-
nucleotide exchange factors (GEF), 
GTPases-activating proteins (GAP) and 
GDP-dissociation inhibitors (GDI).17 
Specifically, the GAPs inactivate small 
GTPases by accelerating their intrinsic 
GTPase activity and converting them into 
inactive GDP-bound form.17,18 Because 
of the numerous roles and ubiquitous 
nature of small GTPases, preferential tis-
sue expression of these regulatory proteins 
may be critical for precisely timed and 
localized activity of Rho family mem-
bers. In line with this, we recently iden-
tified the RhoGAP protein Stard13 as an 
essential mechanism to spatio-temporally 
restrict Rho signaling in the embryonic 
pancreas.16 The loss of this type of con-
trol in the Stard13 conditional knockout 
mouse results into constitutive Rho acti-
vation and severe perturbation of pancreas 
organogenesis (Fig. 1).16

Stard13 is expressed in the developing 
pancreatic epithelium starting at E10.5. 
Around the onset of branching morpho-
genesis, Stard13 becomes enriched at the 
tip domains of the epithelium, where 
the multipotent pancreatic progenitors 
reside.5,10 Pdx1-Cre-mediated deletion of 
Stard13 in the developing pancreas [here-
after referred to as Stard13PA-deleted] resulted 
in defective branching morphogenesis, 
disorganized “tip and trunk” domain tis-
sue-architecture and subsequent postnatal 
organ hypoplasia.16 Importantly, the same 
phenotype was observed upon the deletion 
of Stard13 gene expression ubiquitously 
using a CMV-Cre-deleter mouse strain, 
indicating that Stard13 acts as a pancreas 
tissue-specific GTPase regulator.16 The 
analysis of the Stard13 mutant phenotype 
emphasized the tight connection between 
growth and morphogenesis in the devel-
oping pancreas (Fig. 1). We therefore set 
out to establish how the two processes are 

Here, we focus on recent advances in 
the understanding of how branching mor-
phogenesis is coupled with growth and, 
possibly, differentiation in the pancreas, 
emphasizing the role of the Rho-actin 
signaling in these processes. The pan-
creas is a mixed exocrine and endocrine 
gland responsible for vital functions in 
our body, including the digestion and 
glucose metabolism.6,7 During embryonic 
development, the pancreas originates from 
distinct embryonic outgrowths of the dor-
sal and ventral primitive gut endoderm 
at embryonic day (E) 9.5 in the mouse 
embryo.7,8 Both outgrowths evaginate into 
the surrounding mesenchyme as solid epi-
thelial buds, which subsequently undergo 
proliferation, differentiation and morpho-
genesis and, eventually, fuse together to 
form the definitive organ.7,8 Recent evi-
dence suggests that pancreatic organ size is 
constrained by the initial progenitor pop-
ulation.9,10 When pancreatic fate is speci-
fied all Pdx1+ epithelial cells appear to act 
as progenitor cells, whereas, subsequently, 
at the initiation of branching [between 
E12 and E14] progenitor cells become 
confined to the tip of the branches.7,10,11 
Indeed, lineage restriction within the 
pancreatic epithelium delineates a distal 
tip and a trunk domain of the branches.10 
Tip progenitor cells are capable of gen-
erating all pancreatic cell types, undergo 
limited self-renewal and proliferate much 
faster than the trunk cells.5,10 After E14.5, 
the tip undergoes a developmental switch 
and its fate becomes restricted to the exo-
crine lineage, while most of the trunk 
cells appear committed to the endocrine 
lineage.6,7,10 Thus, the branches represent 
a perfect example of modular unit—in 
which the tip might serve as an organizing 
center for pancreatic organogenesis, fuel-
ing the tissue with multipotent progenitor 
cells that divide rapidly and, possibly, in 
a directional fashion, leaving behind, in 
the trunk, their more differentiated prog-
eny (e.g., the endocrine and duct cells). In 
this scenario, lineage restriction needs to 
be tightly coupled with branching mor-
phogenesis to ultimately build functional 
tissue-architecture in the pancreas.

Small Rho-GTPases are well-known 
regulators of many essential cellular pro-
cesses, including cytoskeletal dynamics, 
cell polarity, adhesion and migration, and, 
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the Mitogen-Activated Protein Kinase 
(MAPK) signaling.16,23-25 This finding is 
particularly intriguing, as we measured 
a concomitant reduction of the MAPK/
pERK signaling activity in the Stard13 
mutant as compared with WT pan-
creas.16 Furthermore, decreased levels of 
pERK1/2 in Stard13 mutants were res-
cued to near WT levels by specific inhibi-
tion of Rho.16 Collectively, these findings 
suggest the convergence of the Rho-actin 
signaling into the MAPK cascade through 
modulation of SRF targets, providing a 
mechanistic explanation for the reduced 
proliferation in Stard13PA-deleted pancreatic 
epithelium.

In line with this, the selective inhibition 
of downstream Rho/SRF transcriptional 
signaling rescued the Stard13 mutant 
cell proliferation defects.16 Nevertheless, 
upstream inhibition of the Rho signaling 
using the C3 exotoxin molecule results in a 
more effective rescue of the Stard13PA-deleted 
defects than the transcriptional disruption 
of the SRF pathway using the compound 
CCG1423.16 These observations reinforce 

indicate that Stard13 controls epithelial 
remodeling and morphogenesis by regu-
lating Rho/actin signaling axis within the 
pancreatic epithelium. In addition, these 
results unveiled a novel role for actin cyto-
skeletal dynamics at the onset of pancre-
atic branching morphogenesis. The next 
question was whether the same Rho-actin 
signaling cascade may directly influence 
proliferation in the pancreatic epithelium 
and how.

Actin, which is best known as a cyto-
skeletal component, also participates in 
the control of gene expression, influencing 
the Serum Response Factor (SRF) tran-
scriptional cascade.22 Accordingly, in par-
allel with the accumulation of F-actin in 
the Stard13PA-deleted epithelium, we reported 
an induction of the SRF-dependent tran-
scriptional activity and of its transcrip-
tional co-activator the Megakaryoblastic 
leukemia-1 (MAL).16 In particular, among 
others, we found elevated levels of the 
MAL/SRF downstream targets Mig6 
and Zfp36, which are anti-proliferative 
signals and known to negatively regulate 

pancreas, while reduction in cell prolif-
eration became obvious starting at E12.5, 
suggests a temporal succession of events, 
in which morphogenetic defects would 
underlay and, possibly, cause defective 
proliferation (Fig. 1).

As Stard13 contains a conserved 
RhoGAP domain, we anticipated it being 
able to regulate Rho in the developing 
pancreas. Accordingly, using pull down 
and immunolocalization assays, we dem-
onstrated that mutant tissues accumulate 
elevated levels of active (GTP-bound) 
Rho, indicating that Stard13 is required 
to spatio-temporally limit Rho activity 
in the pancreas.16 To determine whether 
the observed phenotype was due to unin-
hibited Rho activity, we used an ex vivo 
pancreatic culture system and performed 
rescue experiments using pharmacological 
inhibitors of Rho in Stard13 mutant pan-
creas.5,21 Importantly, inhibition of Rho in 
Stard13PA-deleted explants partially rescued 
branching and proliferation defects and 
restored asymmetric F-actin distribu-
tion in epithelial cells.16 These findings 

Figure 1. Schematic diagram representing pancreatic branching morphogenesis and lineage restriction in wild-type (upper panel) and Stard13-defi-
cient (bottom panel) embryos.
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progenitors of the embryonic pancreas 
once properly allocated to the tips of the 
branches may define a supporting “niche.” 
For instance, mesenchymal cells sur-
rounding the branching tips may signal 
to the epithelium, maintaining the pro-
genitor state of the tip cells, while the cells 
more distant from the mesenchyme lose 
that influence and become restricted in 
their fate. Consistently, our study unveiled 
a differential distribution of active pERK 
signaling in the emerging tips, suggesting 
a crosstalk between epithelial progenitor 
tip cells and its surrounding mesenchyme 
(FGF and EGF source) that possibly sus-
tains their proliferation and expansion.16

In conclusion, based on our findings, 
we propose Stard13 as an intrinsic regu-
lator of the number of pancreatic pro-
genitors through the establishment of the 
pancreatic tip domain. From a mechanis-
tic point of view, our data define a recip-
rocal interaction between the actin-MAL/
SRF signaling and the MAPK signaling 
to locally regulate progenitor cells prolif-
eration in the pancreas (Fig. 1). As such, 
the initial progenitor pool can expand and 
reach proper final size, which predeter-
mines pancreas organ size in the adult.9,10 
In the long run, full comprehension of the 
relationship between pancreatic progeni-
tor cells and tissue-architecture will aid 
in defining new and more efficient strate-
gies for expansion of pancreatic progeni-
tors and generation of insulin producing 
β-cells from stem cells or progenitor cells 
as a potential cure to diabetes.
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