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HSV-NIS, an oncolytic herpes simplex virus type 1 encoding
human sodium iodide symporter for preclinical prostate
cancer radiovirotherapy
H Li1, H Nakashima2, TD Decklever3, RA Nace1 and SJ Russell1,4

Several clinical trials have shown that oncolytic herpes simplex virus type 1 (oHSV-1) can be safely administered to patients.
However, virus replication in tumor tissue has generally not been monitored in these oHSV clinical trials, and the data suggest
that its oncolytic potency needs to be improved. To facilitate noninvasive monitoring of the in vivo spread of an oHSV and to
increase its antitumor efficacy, the gene coding for human sodium iodide symporter (NIS) was incorporated into a recombinant
oHSV genome and the corresponding virus (oHSV-NIS) rescued in our laboratory. Our data demonstrate that a human prostate
cancer cell line, LNCap, efficiently concentrates radioactive iodine after the cells have been infected in vitro or in vivo. In vivo
replication of oHSV-NIS in tumors was noninvasively monitored by computed tomography/single-photon emission computed
tomography imaging of the biodistribution of pertechnetate and was confirmed. LNCap xenografts in nude mice were eradicated
by intratumoral administration of oHSV-NIS. Systemic administration of oHSV-NIS prolonged the survival of tumor-bearing mice,
and the therapeutic effect was further enhanced by administration of 131I after the intratumoral spread of the virus had peaked.
oHSV-NIS has the potential to substantially enhance the outcomes of standard therapy for patients with prostate cancer.
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INTRODUCTION
An estimated 241 740 new cases and 28 170 deaths due to prostate
cancer occured in the US during 2012.1 Current treatment for
metastatic human prostate cancer is palliative.2 Oncolytic viruses
have been examined extensively to treat various types of cancers in
addition to human prostate cancers.3,4 Oncolytic herpes simplex
virus type 1 (oHSV-1) is attenuated through deletion of virulence
factors to make it safe for administration to cancer patients.5 As a
DNA viral vector, oHSV-1 has superior potential to be engineered
because of its ample genome space for transgene insertion and its
wide tropism. Several preclinical and clinical trials have
demonstrated that attenuated HSVs are safe,6,7 but the trade-off is
that their efficacy has been compromised. Although the replication
of an oncolytic virus is crucial for its effectiveness, noninvasive
monitoring of the intratumoral spread of oHSV-1 spreading in
tumor-bearing patients has not been reported so far. Nevertheless,
there is no doubt that the potency needs to be improved to get a
better therapeutic effect from oHSVs in clinical use.

Several attempts have been made to enhance the anti-
tumor potency of oncolytic viruses in various preclinical tumor
models,8–12 either by arming them with cytokine genes to boost
the antitumor immune responses6,8,13–15 or combining them with
anticancer drugs16–18 and/or radiotherapy.8,19 However, off-target
damage, restricted replication and incompetence to target smaller
metastases need to be further addressed.20

Human sodium iodide symporter (NIS) is a membrane protein
that transports iodide into thyroidal cells. NIS has been exploited
as a marker gene for cancer gene therapy.21–24 Several oncolytic
viruses have been equipped with a NIS gene to facilitate

noninvasive in vivo monitoring25–30 and potency enhancement
by adding I-131 (131I).20,21,23,26,30,31 In this paper, we report a novel
NIS-expressing oHSV whose viral dynamics are not altered by the
NIS transgene.

MATERIALS AND METHODS
Cell lines and virus rescue
Human prostate cancer cell lines LNCap, PC3 and DU145 were
authenticated and obtained from ATCC (Manassas, VA, USA). Cells lines
were passaged within 6 months of receiving from ATCC and characterized
with DNA profiling by the cell bank. PCR was used to confirm that the cells
were Mycoplasma-free before this study. Construction of oHSVs expressing
NIS or firefly luciferase was carried out using HSVQuik technology as
described previously.32,33 The viruses were engineered to delete both
copies of ICP34.5 and disrupt the ICP6 reading frame. NIS and luciferase
transgenes were inserted under the control of cytomegalovirus promoter.
The rescued viruses were amplified on Vero cells from a single plaque
before preparation of working stocks. Supernatant and cell-associated
virus progeny were harvested, subjected to three rounds of freeze–
thawing, cleared of cell debris and then pelleted by centrifugation at
14 000 g for 1 h. Titers were determined by plaque assay on Vero cells.
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) assays were used to measure the oncolytic activities
of the rescued viruses in three human prostate cancer cell lines (Promega,
Madison, WI, USA).

Pertechnetate uptake assay and luciferase assay
To measure functional NIS expression, pertechnetate uptake assays were
carried out as previously described.21,26,28 Briefly, LNCap or Vero cells were
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infected with the indicated virus at a multiplicity of infection (MOI) of
1, 0.1, 0.01, 0.001 and 0.0001. After 24 or 72 h, technetium-99m as
pertechnetate (99mTcO4) was added to the medium. In control wells,
100 mM potassium perchlorate (KClO4) was added to block NIS activity.
After 1-h incubation, the medium was removed and cells were washed
twice. The remaining cells were resuspended in sodium chloride. Radio-
activity was measured in a gamma-counter. The assays were performed in
triplicate and the means plotted.

To measure firefly luciferase expression, the luciferase assay was per-
formed according to the protocol provided by the manufacturer
(Promega). The assay was performed with the whole-cell lysate, normalized
to protein content and expressed as relative luciferase units.

Animal studies
All animal experiments were performed in accordance with the guidelines
of and with approval from the Institutional Animal Care and Use
Committee of Mayo Foundation. Male athymic nu/nu mice (Charles River
Laboratories, Frederick, MD, USA) aged 6–8 weeks were used for all the
tumor studies.

For subcutaneous tumors, nude mice received a subcutaneous implant
of 1.5� 107 LNCap cells mixed with Matrigel (BD Biosciences, San Jose, CA,
USA) at a 1:1 ratio into the rear flank. When tumors reached an average
volume of 250 mm3, mice were administered phosphate-buffered saline
(PBS) or the indicated virus by direct intratumoral injection or by tail vein
injection (2� 106 plaque-forming units (PFUs)). First day of therapy
was designated as day 0. Tumor volume was calculated using the formula
length�width2� 0.52. For radiovirotherapy, 1 mCi radioiodine 131I
was administered intraperitoneally after viral injection at the time of peak
99mTcO4 uptake on the imaging studies.

Computed tomography/single-photon emission computed
tomography (CT/SPECT) imaging
Mice bearing LNCap tumors X250 mm3 were treated with PBS or the
indicated virus. Imaging was performed as previously described using a
high-resolution microSPECT/CT system (X-SPECT; Gamma Medica-Ideas,
Northridge, CA, USA).22,23 Briefly, 500 uCi 99mTcO4 was given 1, 3, 6, 9 and
12 days after oHSV-NIS treatment. Images were collected to monitor
99mTcO4 biodistribution 1 h after its injection and were analyzed using the

PMOD Biomedical Image Quantification and Kinetic Modeling Software
(PMOD Technologies, Zurich, Switzerland). The level of 99mTcO4 uptake by
the tumor was expressed as tumor activity in mCi per tumor volume (cubic
centimeter).’’

Autoradiography and immunohistochemical staining for oHSV
To confirm the expression of NIS in virus-treated tumors, we performed
autoradiography using 99mTcO4 as previously described.22 Similar
to the imaging procedures, LNCap tumors were harvested at different
time points after OHSV-NIS treatment. In all, 500 uCi 99mTcO4 was
injected 1 h before tumor harvest. Serial tumor sections were obtained
using a cryostat (Leica Microsystems, Buffalo Grove, IL, USA). For
autoradiography, tumor sections were exposed to X-Omat radiographic
(Carestream Health, Rochester, NY, USA) film in a darkroom and incubated
overnight at 4 1C. Sections for HSV staining were stored at � 80 1C. Anti-
HSV polyclonal antibody (Abcam, Cambridge, MA, USA) was applied to
thawed sections after brief fixation with cold acetone. The staining was
done using cell and tissue staining kit (R&D Systems, Minneapolis, MN,
USA) according to the manufacturer’s instructions.

Statistical analysis
The t-test was used to analyze changes in cell killing and 99mTcO4 uptake.
A P-value o0.05 was considered statistically significant. For survival analyses,
Kaplan–Meier curves were plotted and compared using the log-rank test
with GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA, USA).

RESULTS
Generation and characterization of recombinant oHSV-NIS
The NIS gene has been previously inserted into several oncolytic
viral genomes, including adenoviruses, measles virus, vesicular
stomatitis virus and vaccine.29,30,34–37 However, it was not known
whether NIS expression could be compatible with oHSV-1. We
therefore generated an oHSV-1 incorporating a NIS transgene
driven by a cytomegalovirus promoter (oHSV-NIS). oHSV-Luc,
the corresponding virus incorporating a firefly luciferase gene,

Figure 1. Rescue and characterization of recombinant viruses. (a) Schematic genome structures of oncolytic herpes simplex virus-sodium
iodide symporter (oHSV-NIS) and oHSV-Luc. (b) oHSV-NIS and oHSV-Luc growth curves on Vero cells at different multiplicities of infection
(MOIs). (c) 99mTcO4 uptake assays showing time course of functional NIS expression in oHSV-NIS-infected cells. (d) Luciferase assays showing
time course of luciferase expression in oHSV-Luc-infected cells (MOIs of 1.0, 0.1 and 0.01). CMV, cytomegalovirus promoter/enhancer; CPM,
counts per minute; GFP, green fluorescent protein; hNIS, human sodium iodide symporter; ICP6, infected cell protein 6; Luc, luciferase; PFU,
plaque-forming units; RLU, relative luminescence unit.
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was engineered and rescued similarly using the HSVQuik
technology.11,32,38 Figure 1a shows schematically the genome
structures of oHSV-NIS and oHSV-Luc. The backbones of both
viruses are from a first-generation oHSV-1, which was attenuated
by deleting of both copies of ICP34.5 and disrupting ICP6. The
growth kinetics of the viruses was compared after infection
of Vero cells. Both oHSV-NIS and oHSV-Luc replicated similarly at
MOI 0.1, 1 and 10 in Vero cells (Figure 1b). Expression of their
respective transgenes was evaluated by testing radioactive iodine
uptake or luciferase activity in the infected cell cultures. Thus,
99mTcO4 was concentrated in oHSV-NIS-infected Vero cells, with
uptakes changing over time according to MOI (0.01 or 3), closely
following the trend of the oHSV-NIS replication curve (Figure 1c).
The luciferase assay showed a similar trend in oHSV-Luc-infected
Vero cells (Figure 1d). The data indicate that both NIS and
luciferase can be used as reporter genes to monitor oHSV
replication in vitro.

Replication of oHSV-NIS in prostate cancer cells
To test the oncolytic activity of the new viruses, we infected
human prostate cancer cell lines using oHSV-NIS or oHSV-Luc at
MOI 0.1 and 1. Cytopathic effects were recorded 48 h after viral
infection. LNCap cells were most permissive to oHSV-NIS infection,
followed by PC3, then DU145 (Figure 2a). Loss of cell viability was
evaluated by MTS assay (Figure 2b) and was in line with the green
fluorescent protein expression data.

To further explore the potential of oHSV-NIS as an oncolytic
virus for prostate cancer therapy, we focused our subsequent
studies on the LNCap model. We first showed that oHSV-NIS can
propagate efficiently in LNCap cells infected at MOIs ranging from
0.0001 to 0.1 by serial monitoring of green fluorescent protein
expression (Figure 2c). NIS activity in the oHSV-NIS-infected cells
was confirmed by 99mTcO4 uptake assays in the presence or
absence of the perchlorate, a specific inhibitor of NIS-mediated
99mTcO4 uptake. Substantial NIS-specific 99mTcO4 uptake was

Figure 2. Infection of human prostate cancer cell lines by oncolytic herpes simplex virus-sodium iodide symporter (oHSV-NIS). Human
prostate cancer cells LNCap, PC3 and DU145 were infected with oHSV-NIS. (a) Photographs taken under phase contrast and ultraviolet
illumination 48 h after infection (multiplicity of infection (MOI) 0.1 or 1.0). (b) 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium (MTS) assay used to measure the killing ability of oHSV-NIS 72 h after infection (MOI 0.1 or 1.0). (c) 99mTcO4 uptake
assay carried out to test NIS function in the presence or absence of its specific inhibitor potassium perchlorate (KClO4) at multiple indicated
MOIs. The assay was read at 24 or 72 h after oHSV-NIS infection. (d) GFP expression in LNCap cells infected by oHSV-NIS at multiple indicated
MOIs at 24, 48 and 72 h post infection.
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recorded in LNCap cells 24 h after oHSV-NIS infection at MOIs of
0.01, 0.1 and 1.0. Seventy-two hours after oHSV-NIS infection, the
99mTcO4 uptake had increased markedly in cells infected at very
low MOIs of 0.001 and 0.0001, presumably a reflection of virus
propagation (Figure 2d). The decreased 72-h 99mTcO4 uptake in
LNCap cells infected at higher MOIs (0.1 and 1.0) is due to virus-
mediated cell death. These data show that oHSV-NIS replication
can be followed by monitoring NIS-mediated 99mTcO4 uptake in
the infected cells.

Oncolytic efficacy of oHSV-NIS in vivo
For the evaluation of oncolytic efficacy of oHSV-NIS in vivo, human
LNCap xenografts were established in male nude mice, and
treatment was administered when tumor size reached 4250 mm3.
oHSV-NIS (2� 106 PFUs) was injected intratumorally or intrave-
nously on day 0. Tumors continued to grow aggressively in control
mice treated with PBS and met criteria for euthanasia within 3
weeks. Systemically administered oHSV-NIS stabilized tumor
growth during the 40 days of observation while intratumoral
oHSV-NIS led to complete tumor response in all the treated
animals (Figure 3a).

In a parallel study, three mice per group were given
intraperitoneal 99mTcO4 at specified time points after virus
administration and were imaged with CT/SPECT (under inhalation
anesthesia) 1 h later (Figure 3b). No 99mTcO4 uptake above
background was detected in the tumors of PBS-treated mice. In
contrast, robust uptake of 99mTcO4 was observed from day 3 after
intratumoral injection of oHSV-NIS, increasing in intensity and
peaking at day 8, then fading in parallel with tumor regression
until it was no longer detectable by day 15. In systemically treated
mice, the 99mTcO4 signal followed the same pattern, peaking on
day 8 post-virus administration but was much weaker than the
signal from the intratumoral-treated mice (Figure 3b). Radiotracer

uptakes of treated tumors at different time points after virus
administration were calculated using PMOD Biomedical Image
Quantification and Kinetic Modeling Software (Figure 4a). The
quantification data showed that tumors treated intratumorally or
intravenously with oHSV-NIS have significantly increased tracer
uptakes compared with oHSV-Luc- or PBS-treated tumors. The
peak Tc-99mO4 uptake following intratumoral oHSV-NIS therapy
was around day 8, and the uptake decreased as the tumors
regressed. However, tracer uptake by the intravenously oHSV-NIS-
treated tumors made did increase above background until later
time points, which may explain the lesser tumor response
(Figure 3a). Several representatives immunohistochemical images
are shown in Figure 4b to confirm that the HSV infection is solid
and specific. These data suggested that the oHSV-NIS can replicate
and spread in LNCap xenografts leading to efficient intratumoral
concentration of 99mTcO4.

To confirm the impression that oHSV-NIS was actively replicat-
ing and spreading in the LNCap xenografts, we performed
immunohistochemical staining for HSV antigens and autoradio-
graphy for 99mTcO4 uptake on consecutive LNCap tumor sections.
Tumor-bearing mice (10 per group) were given a single
intratumoral or intravenous injection of oHSV-NIS. At specified
intervals after virus administration, 99mTcO4 was administered by
intraperitoneal injection to two mice from each group, and 1 h
later, the mice were euthanized and their tumors were harvested,
fixed in optimal cutting temperature and sectioned. Adjacent
tumor sections were either exposed to radiographic film overnight
or stained with polyclonal antibody against HSV, and the results
were photographed for overlay. Substantial uptake of 99mTcO4 was
detected day 5 after intravenous virus injection and peaked at
day 8 (Figure 5). In the intratumoral-treated group, the tumor
99mTcO4 signal was detectable as early as day 3 after oHSV-NIS
injection and peaked at day 8. The tumor signal was still detect-
able day 12 after virus administration independent of the route of

Figure 3. Antitumor activity of oncolytic herpes simplex virus-sodium iodide symporter (oHSV-NIS) in LNCap prostate cancer xenograft model.
Male nude mice aged 6–8 weeks were implanted subcutaneously with LNCap cells and tumor-bearing mice were randomly assigned into
three treatment groups. (a) Individual tumor growth curves are plotted for mice treated with intratumoral (IT) oHSV-NIS, intravenous (IV)
oHSV-NIS and IT phosphate-buffered saline (PBS). (b) Three mice in each group were imaged using micro single-photon emission computed
tomography/computed tomography at days 3, 5, 8, 12 and 15 after treatment. Images are shown for a single representative mouse from each
group and for a control mouse treated IV with oHSV-Luc.
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administration, but persisted slightly longer (to day 15) in the
intravenous-treated group, becoming undetectable by day 22 (not
shown). PBS-treated tumors showed no 99mTcO4 uptake above
background. All oHSV-NIS-treated tumors stained positive for HSV
antigens, and in all cases, the HSV staining co-localized with the
autoradiographic signal. Some areas apparently infected by oHSV
show no 99mTcO4 uptake, presumably because nonviable HSV-
killed cells cannot concentrate the radioisotope, even if NIS
positive. The poor correlation between signal intensity in these
sections and tumor response (comparing intratumoral with
intravenous delivery) should not be overinterpreted because the
sections are a random sampling of the entire tumor.

Synergistic activity of oHSV-NIS with 131I:radiovirotherapy
Human prostate cancer is a metastatic malignancy, and most
prostate cancer deaths are a consequence of metastatic disease.
For this reason, systemic administration of oncolytic viruses has
been explored as a way of targeting small metastatic tumors.39,40

However, as shown in Figure 3, intravenously injected oHSV-NIS
could not eradicate large LNCap xenografts in the current study.
Previously, NIS-expressing oncolytic viruses have been combined

with 131I radiotherapy to increase their antitumor potency
(radiovirotherapy).21,23,26 To determine whether 131I radiotherapy
could enhance the efficacy of systemically administered oHSV-NIS,
LNCap tumors were implanted as previously described and
treated with oHSV-NIS or 131I alone or in combination. Control
tumors were treated with PBS and continued to grow unabated.
As previously, single-agent intravenous oHSV-NIS was able to
stabilize tumor growth but was not curative. Intraperitoneal 131I
administered day 7 after PBS had no effect on tumor growth,
whereas 131I administered day 7 after oHSV-NIS led to substantial,
often complete tumor regression. The combination of oHSV-NIS
and radioiodine was therefore significantly superior to the activity
of either agent alone (Figure 6a). oHSV-NIS-treated tumors started
to regress very soon after 131I administration (Figure 6b), and this
resulted in significant prolongation of overall survival (Figure 6c).

As an additional control, when oHSV-Luc was substituted for
oHSV-NIS, subsequent administration of 131I did not lead to any
enhancement of tumor response. Luminescence imaging was
used to monitor the intratumoral amplification of the oHSV-Luc
virus tail viral injection, and the luminescence signal did not
increase following 131I administration (Figure 7), nor was there any
acceleration of tumor regression seen when 131I was administered
after intravenous oHSV-NIS (Figure 7).

DISCUSSION
Oncolytic virotherapy is a promising new anticancer modality that
can destroy tumor cells either by infecting them directly or by
provoking an anticancer immune response.41 Several oncolytic
viruses are showing promise in ongoing clinical trials, but none
have yet gained marketing approvals from the Food and Drug
Administration, and there is still considerable room for
improvement in their efficacy. Also, to date, there has been little
insight gained from correlative studies as to the relative
importance of intratumoral spread versus cross-priming of
anticancer immunity in the clinical setting. This ability to
noninvasively monitor the intratumoral expression of NIS-
expressing oncolytic viruses is therefore an important
development. NIS is a relatively large protein that is expressed
abundantly in thyroid follicular cells where it traverses the cell
membrane 13 times and serves to concentrate iodide, which is
needed for thyroxin synthesis.42 NIS has several advantages as a
reporter gene because it is a self-protein; it is nonimmunogenic; it
is nontoxic to the cells in which it is expressed; at 2 kb, the gene
can be stably inserted into most viral vectors and NIS-compatible
radioactive tracers such as 123I and 99mTcO4 are readily available
for preclinical and clinical use in most medical centers.20,24,25,43

HSV is an appealing oncolytic platform for human use in part,
because it naturally infects human populations and can reactivate
repeatedly in a single infected host even in the face of a
comprehensive antiviral immune response.5 Several oHSV designs
have been shown to be safe for administration in humans, including
the ICP6/g34.5 gene inactivated version used as a basis for oHSV-NIS.
However, as with other oncolytic viruses which have been proven
safe but not very effective in the clinic,4,44 there is considerable
interest in the generation of new oHSVs that will show greater
antitumor potency in a clinical trial setting.6 NIS gene insertion is
one of the more interesting approaches that have been used to
enhance the potency of other oncolytic viruses, allowing potency
enhancement by administering a therapeutically active dose of 131I,
a beta particle emitting radioisotope of iodine. This radiovirotherapy
concept has been validated using different NIS-expressing oncolytic
viruses in several different mouse tumor models.21,23,26,31,35

Here, for the first time, we have engineered a functional NIS
transgene into a fully replication competent oHSV. Arming the
virus with a NIS transgene allowed us to noninvasively monitor its
intratumoral spread in living mice by serial SPECT/CT imaging of
the biodistribution of 99mTcO4, a readily available, clinically usable

Figure 4. Replication and spreading of oncolytic herpes simplex
virus-sodium iodide symporter (oHSV-NIS) in LNCap tumors in vivo.
(a) Quantitative analysis of 99mTcO4 uptake in the LNCap prostate
cancer xenograft model. LNCap tumors were treated and imaged as
described in Figure 3b. The images at different time points were
analyzed using the PMOD Biomedical Image Quantification and
Kinetic Modeling Software. P-values were calculated to compare the
uptakes from each group. *Po0.05 vs phosphate-buffered saline
(PBS) or HSV-Luc intravenous (IV); #Po0.01 vs PBS or HSV-Luc IV.
(b) Immunohistochemistry staining of oHSV infection. LNCap tumors
were treated and imaged as described in Figure 3. Frozen sections
were stained with a polyclonal anti-HSV antiserum. IT, intratumoral.
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Figure 5. Co-localization of HSV staining and 99mTcO4 uptake in LNCap tumor sections from oncolytic herpes simplex virus-sodium
iodide symporter (oHSV-NIS)-treated mice. Mice bearing LNCap tumors received oHSV-NIS by intratumoral (IT) or intravenous (IV) injection.
A total of 500 uCi 99mTcO4 was administered by intraperitoneal injection 1 h before euthanasia and tumor harvest. Frozen sections
were stained with a polyclonal anti-HSV antiserum, and an adjacent section was exposed overnight to radiographic film. Photos were merged.
Anti-HSV Ab, anti-HSV polyclonal antibody; autoradio, autoradiography; PBS, phosphate-buffered saline.

Figure 6. Radiovirotherapy with systemically administered oncolytic herpes simplex virus-sodium iodide symporter (oHSV-NIS) and
radioiodine (131I) in the LNCap prostate cancer xenograft model. LNCap tumor-bearing mice were treated with phosphate-buffered saline
(PBS) or oHSV-NIS (12 mice per group). Seven days later, half of the animals in each group received 1mCi 131I by intraperitoneal injection.
Tumor growth for individual mice treated with PBS, oHSV-NIS, PBSþ 131I and oHSV-NISþ 131I in each group is plotted (a). Average tumor
growth curves are plotted for all the groups (b). Corresponding Kaplan–Meier survival curves (c).
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gamma-emitting tracer with a short physical half-life of only 6 h.
Systemic administration of oHSV-NIS was able to arrest the growth
of human prostate cancer xenografts derived from the LNCap cell
line but was not curative. However, when 131I was administered at
the appropriate time (day 8) after systemic oHSV-NIS injection, the
tumors (which were unresponsive to single agent 131I) regressed
completely.

Prostate cancer could be an appropriate target indication in
which to demonstrate the oncolytic paradigm in humans.3,45,46

Previously, an oncolytic adenovirus-expressing NIS was shown by
99mTcO4-based SPECT/CT imaging to concentrate iodide in the
virus-injected tumors of patients with prostate cancer.4 Although
the adenovirus used in this published clinical trial did not mediate
tumor regressions,47 the study did serve to establish the feasibility
of exploiting NIS as a reporter gene for human oncolytic
applications. We are hopeful that HSV will be able to replicate
and spread faster than an oncolytic adenovirus in human prostate
cancer. Moreover, as we have been able to demonstrate selective
virus propagation in subcutaneous prostate tumor xenografts
after systemic administration of oHSV-NIS, it is reasonable to
propose that the virus be developed as a systemic therapy for
patients with metastatic prostate cancer. The critical role of the
virally encoded NIS transgene in these studies was confirmed by
co-localization of HSV antigens with 99mTcO4 in LNCap tumor
sections obtained from oHSV-NIS-treated mice.

Other groups are using radiovirotherapy for human prostate
cancers, incorporating the NIS gene into the measles or adenovirus
oncolytic platforms.3,4,35 This is highly rational as there are major
differences in the mechanisms of tumor cell targeting, intratumoral
virus propagation and tumor cell killing for each of the viruses
being evaluated. Parallel development of several virus platforms is
therefore fully justified for the treatment of prostate cancer, and in
each case, it is expected that the addition of the NIS transgene will
be of significant value both to facilitate noninvasive monitoring of
virus spread and to boost efficacy by administration of I-131. In this
study, oHSV-expressing NIS could eradicate LNCap tumors rapidly
with 106 pfus intratumoral injection, which has not been reported
with other oncolytic viruses. However, 131I administration is known
to cause offtarget toxicity, primarily to thyroid and and salivary
glands. Although these toxicities are nonlethal and can be treated,
for example, by thyroid hormone replacement therapy, several
strategies are being developed to better protect these organs. In
this study, there were no significant health changes observed
among treated mice by the day the experiments terminated. Long-
term toxicity of oHSV-NIS radiovirotherapy is being investigated.

Although it is widely used by for the evaluation of oncolytic
viruses,3,4,35 LNCap is considered to be a low-grade, androgen-
responsive prostate cancer model. The results presented in this
paper are therefore not necessarily predictive of activity in
advanced metastatic prostate cancers, a question that is the
subject of ongoing work.

The parental virus, oHSVQ which we used as a platform for the
creation of HSV-NIS, was originally generated in the lab of
Dr E Antonio Chiocca by deleting UL39 and both copies of the
g34.5 gene. The virus is therefore restricted in its replicative ability
in noncancer cells, because it cannot combat the innate response
to virus infection that leads to eIF2a (enhanced initiation factor-
2a) phosphorylation and translation shutoff.48 The genetic
structure of the HSV-NIS virus platform is therefore very similar
to that of G207,49 an HSV-1 mutant that was tested in clinical trials
for humans with malignant glioma and shown to be safe up to
the highest dose that could be tested, has been extensively
studied and is known to spare non-malignant cells and tissues.50

Also, oHSVQ-derived virus have previously been tested for
neuroattenuation in mouse models and were found to be much
safer than wild-type HSV33

In summary, we report the construction and characterization
of oHSV-NIS, a novel, NIS-expressing oHSV-1. We demonstrate
when administered intravenously, the virus infects and selectively
propagates in prostate cancer xenografts that are therefore able
to concentrate 99mTcO4 and radioiodine, which provides a basis
for noninvasive SPECT/CT imaging of intratumoral virus propaga-
tion and boosting of the antitumor response. HSV radiovirother-
apy is a promising new approach to prostate cancer therapy and
should be tested clinically.
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