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Abstract
The identification and modelling of ligands into macromolecular models is important for
understanding molecule's function and for designing inhibitors to modulate its activities. We
describe new algorithms for the automated building of ligands into electron density maps in
crystal structure determination. Location of the ligand-binding site is achieved by matching
numerical shape features describing the ligand to those of density clusters using a “fragmentation-
tree” density representation. The ligand molecule is built using two distinct algorithms exploiting
free atoms with inter-atomic connectivity and Metropolis-based optimisation of the
conformational state of the ligand, producing an ensemble of structures from which the final
model is derived. The method was validated on several thousand entries from the Protein Data
Bank. In the majority of cases, the ligand-binding site could be correctly located and the ligand
model built with a coordinate accuracy of better than 1 Å. We anticipate that the method will be of
routine use to anyone modelling ligands, lead compounds or even compound fragments as part of
protein functional analyses or drug design efforts.
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Introduction
The process of structure determination in macro-molecular crystallography (MX) is
considered complete when all electron density in the unit cell has been modelled to the
extent possible. The identification of small compounds—ligand molecules—and the
appreciation of their binding mode are often keys to the understanding of chemical,
biological or pharmaceutical processes in which the examined protein complex takes part.
Highly automated procedures for the accurate identification of ligand-binding sites and
placement of ligands in crystallographic maps are therefore highly desirable, permitting the
rapid, convenient and unbiased completion of biological structures for subsequent analyses.

X-ray crystallography has proven very useful for the identification of bound low-affinity
solutes arising from the crystallisation liquor—indeed it was one of the earliest methods
capable of doing so.1 The bound fragments located in the crystal structure allow the location
of binding sites and directly indicate their binding modes, while their distributions on the
protein surface may help guide the construction of new leads and drug-like molecules by the
association of adjacent fragments in a “LEGO-like” manner. This formed the basis for a
crystallography-led, fragment-based approach to drug discovery2 successfully applied to a
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number of biological targets in recent years. 3,4 However, a large-scale application of this
approach requires a large effort for data collection and modelling, and automated fragment
location and building is of obvious benefit in such efforts.

Conventionally, crystallographic ligand building comprises a number of steps. Firstly, a
suitable binding site is identified from the electron density and/or any other a priori available
knowledge. Subsequently, the ligand molecule is placed in that binding site in a
conformation that matches the electron density and is stereochemically sensible in itself as
well as relative to the protein environment. Finally, the coordinates of the ligand molecule
are refined, either in real or in reciprocal space. The thus obtained complex of the ligand
with the protein is further refined against the measured diffraction data. A search for the
next bound ligand in the new difference electron density can then be initiated. In all cases,
subsequent final rounds of structure refinement and validation are necessary steps.

In MX, a variety of methods for automated modelling of bound ligands have been proposed
over the last decade, each with emphasis on different aspects of the process. All of these
approaches, in essence, fit the ligand model to a density blob, and the quality of the
correspondence is evaluated by calculating some measure of the fit, typically a local map
correlation coefficient. Most methods use variations of rotational and translational
placement of the target ligand model as a whole, followed by its conformational
optimisation. The AFITT method, drawing on the power of Monte Carlo techniques, was
suggested by Wlodek et al.5 Therein, an ensemble of low-energy plausible conformations is
prepared, and each is in turn fit to the density using a force field. The molecular graphics
application Coot6 uses an adapted form of the X-LIGAND7 method where potential binding
sites are found using the analysis of unsatisfied electron density and where a Monte Carlo
method is employed for optimisation of a ligand conformation to best fit the density blob.

A radically different approach—particularly suitable for the building of large ligands—was
successfully implemented in Resolve8 and then also provided within the Phenix suite.
Therein, the modelling is achieved via the placement of a core fragment of the ligand with
subsequent addition of the remaining parts according to the electron density and
stereochemical considerations. An equally novel approach—based on the modelling of a
density blob as free atoms—was implemented in the ARP/wARP modelling suite.9,10

Atomic assignments of the free atoms are made using a graph-search approach leading to a
full model, which is then optimised in real space. Graph search is also a key element of a
method based on the medial axis transform,11 where a set of points is computed from the
surface of a density blob and is then thinned to follow the centre of the shape. The search
ligand is matched to a “thinned” subset of the medial axis. A semiautomated procedure was
proposed12 to assist in the identification of bound ligands from unknown electron density by
aligning the surface of the binding cleft and the representative set of ligands from the Protein
Data Bank (PDB).13

A number of publications pointed to the potential benefits of using advanced mathematical
features for the automatic recognition of molecular patterns. Such features included, for
example, higher-order shape descriptors based on spherical harmonics for superposition of
the surfaces of the ligand and the binding cavity through minimisation of the distance
between their respective expansion coefficients.14,15 More elaborate numerical descriptors
that are less limited in their resolution of shapes, such as the Zernike moments, allow the
recording of various structural properties in a concise way and were demonstrated to be
applicable to ligand description.16,17

In this paper, we describe a number of novel techniques for shape recognition and ligand
fitting. An innovative methodology for binding site identification based on the construction

Langer et al. Page 2

J Mol Biol. Author manuscript; available in PMC 2013 August 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of a “fragmentation tree” is introduced. New shape features that aid assignment of the
appropriate site for an input ligand are also described. The “label-swapping” routine for
ligand building previously described9,10 has been developed and combined with a new
Metropolis routine, and we demonstrate that their combination leads to better results than
with either method alone.

Results and Discussion
Implementation of the software

The developed technologies have been implemented in the ARP/wARP ligand-building
module,18 providing a comprehensive and robust procedure for accurate building of ligands
into crystallographic maps starting from separate ligand and protein structures provided in
the PDB format. The full pipeline is shown in Fig. 1.

Pre-processing of the input information
Locating the binding site—Electron density maps are typically presented in terms of
iso-surfaces drawn/plotted at a given contour level. These closed surfaces define contiguous
regions of density higher than the contouring level, which we hereafter refer to as density
clusters.

We introduce a novel method for description of a three-dimensional electron density
contoured at different density levels, which depicts the variation of volumes of density
clusters and is extremely useful for discriminating ligand density clusters from background
noise in a crystallographic map.

Let us consider a single atom whose electron density follows an isotropic three-dimensional
normal distribution:

(1)

where r is the distance from the centre of the atom, s is the standard deviation of its density
distribution and Z is a scaling factor. If this density is contoured at a threshold ρ(r) = t, the
volume inside the contoured density cluster is:

(2)

For a given cluster, the dependence of V2/3 against ln(t)—a fragmentation tree—should be
linear. We note that an approximately linear dependence is also observed for clusters
composed of more than one atomic Gaussian shape and computed from resolution-truncated
data. In these cases, the scaling factor Z may be larger than the number of electrons in the
atoms.19,20 Due to overlaps of atomic density, the observed electron density clusters for
bound ligands have somewhat smaller volumes than would be expected from Eq. (2).
However, this does not adversely affect the use of the fragmentation tree for recognition of
the density clusters.

When the bound ligand is fully occupied and is pronounced in the difference density, its
density cluster has properties distinct from other clusters, as evident in the example
fragmentation tree in Fig. 2. Upon increase of the density-contouring threshold, the clusters
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of bound compounds reduce in their volume. Ligand density areas can be recognised from
characteristic, approximately linear stretches. The slope of a stretch reflects the sharpness of
the density inside the clusters—compare, for example, the blue-coloured branch
corresponding to a zinc ion in Fig. 2 with the stretches for HEM or NRG with steeper slopes.
The intercepts of the lines corresponding to the stretches reflect the density height inside the
clusters. All clusters in the difference density, which do not correspond to bound ligands but
rather to water molecules and other small features, form the rapidly decaying “background”
region of the plot.

The density clusters for ligands eventually break into smaller fragments upon increase of the
density threshold—see, for example, the HEM cluster in Fig. 2. At a low level, the density
for the HEM entity is contiguous with that of several adjacent water molecules, especially
those bound to its carboxylate groups. At ∼ 1.4 sigma (point 1), the contiguous iso-surface
fragments and the enclosed volume at this stage are those of the HEM and the sulphur atom
of the cysteine residue (Cys186) that associates strongly with the iron atom of HEM. At
higher threshold (approximately half-way between points 1 and 2 in the plot), the density
iso-surface remains fully intact, and the reduction in volume of the cluster in this range
corresponds to that predicted by Eq. (2). At point 2, the HEM cluster begins to fragment,
initially with the separation of the carboxylate groups of HEM from the central pyrrole
substructure. The other non-core carbon atoms—CBB and CBC— separate at point 3. The
new, smaller density clusters enclosing these fragments are represented by the stretches of
red points at lower-density volumes. At 5 sigma level (point 4), only the strong density of
the HEM iron atom and the adjacent sulphur remains. The significant change in volume
observed here results from the final separation of densities associated with both atoms.

Shape matching—An electron density map calculated from the ligand to be fit is
compared to each potential density cluster based on their shapes. This is accomplished using
seven shape features that provide a concise but thorough description of an object, described
under Methods. The single highest-scoring match is taken forward for further ligand
building.

Deriving ligand stereochemistry—Prior to construction of the ligand, its
stereochemical description is required. Such information is not explicitly given in the input
PDB file and must be obtained from the atomic coordinates. The protocols for
stereochemical analysis are described later in the text. Ligand building subsequently
proceeds via both label-swapping and Metropolis routines.

Building the ligand
Label swapping—The label-swapping routine was first introduced in 2004,9 but it is now
applied in an improved manner, with the analysis of the output also advanced as evidenced
in the following discussion. Within the routine, a search ligand could generally be well
matched to one or more density clusters, as occurs in the construction of FAD depicted in
Fig. 3.

We note that not all graph searches yield a complete model; generally, only a few do so (Fig.
4). For example, the assignment of the pivot atom shown in Fig. 3a to the middle of the
sparse cluster (around the location of the phosphates of FAD) in Fig. 3b would not lead to
the complete model. The best results were obtained following selection of up to 27 best-
scored models and the use of two different sparse representations of each density cluster.
The quality of each candidate solution is evaluated through a scoring function that uses
inter-atomic distances, van der Waals repulsions, chiral centres and density height at atomic
positions.
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This results in up to 54 best-scored ligand-to-node assignments; one of them is shown in
Fig. 3c. The assignments are the models of the search ligand with distorted stereochemistry,
which are tidied up at a later stage.

Metropolis-based ligand modelling—Another 54 models are output by the Metropolis
routine, and the results are merged with those from label swapping—thus, 108 models are
taken forward for further processing. The time taken for model building via the Metropolis
algorithm depends on the number of rotatable bonds in the ligands, with the dependency
being approximately quadratic in our tests. A ligand with 10 rotatable bonds should be fitted
in approximately 8 s, while a ligand with 50 rotatable bonds will require approximately 100
s.

Real-space refinement
Real-space refinement is applied to each of the 108 models prepared. During the refinement,
the density shape of each atom is described by a spherical Gaussian function, where its
centre (xyz) and width are optimised. In addition, the two parameters scaling the observed
electron density to the one for the modelled ligand are refined. Each of the models is
optimised to fit density and the stereochemical targets (bond distances, angle-bonded
distances and planes). The contributions from the density and the stereochemistry residuals
are dynamically weighted to each other. Ribose rings are tested in conformations
corresponding to the two puckers—the one providing the best fit to the density is selected.
Other ring systems are currently only modelled in the input conformation, and this may be
addressed in the future. In these instances, the user may input two different models—for
example, one in a “boat” conformation and one in a “chair” conformation for non-aromatic
six-membered rings—and use the map correlation coefficient of the built models in order to
select the correct conformation.

Selection of the output ligand
Three sequences of rankings are generated from the refined models: (1) the sum of the
density values at atomic coordinates, (2) the r.m.s. shift of the model during the refinement
and (3) the goodness of fit of the electron density calculated from the fitted model and the
density cluster.

This goodness of fit also indirectly characterises the fit to the stereochemical targets. These
three rankings are combined with weights of 0.68, 0.08 and 0.24, respectively. The highest
weight corresponds to the density values at ligand atomic positions, which is the most
characteristic feature for the quality of the fit. In contrast, the shift of the model during the
refinement contributes little and thus has a small weight. These weights were obtained from
training on a small test set of ligand ensembles, with the optimisation aiming to place those
ligands built with smaller r.m.s.d. higher in the ranking list. Normally, the best single model
is taken as the one with the best total rank. However, if there is another model amongst the
top 20 that is sufficiently similar to the single best result, both are averaged and the
“merged” model is refined again. Such ensemble averaging is repeated iteratively until
convergence.

Validation of the software
The test set—The number of unique ligands was 3462 (Fig. 5). Ligands of sizes 5 and 6
were most abundant and alone comprised one-third of the cases. These were mostly
phosphates and sulfates.

Approximately 20% of the ligand-building cases concerned structures of low molecular
mass (90–200 Da), thus testing the potential of the method to place fragment-like molecules.
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The majority of the cases involved larger lead and drug-type ligands. The largest molecule
was vancomycin containing 101 non-hydrogen atoms. In only 20 cases had the ligand more
than 90 atoms. The resolution of the data ranged from 0.75 to 5.0 Å. However, there were
only 10 cases with resolution in the range from 4.0 to 5.0 Å. In more than 50% of the cases,
the ligand had a local map correlation of 80% or higher; only 33 cases had map correlations
lower than 10%.

Accuracy of the built ligands—Overall results for building the largest ligand molecule
(if more than one was present) are presented in Fig. 6. Building the ligand that is not the
largest (e.g., attempting to build the N-omega-nitro-L-arginine before constructing
protoporphyrin in the oxyreductase structure 1ed5) has shown only marginally lower
performance. For ligands consisting of seven or more non-hydrogen atoms, the identification
of their binding site was successful in over 80% of the cases (Fig. 6a)—in the previously
reported method9,10 in which the binding site was simply taken as the largest cluster in
difference density, the binding site was only found in 70% of cases for the same type of
ligand—and only when the largest ligand was fitted. The higher discrimination provided by
our fragmentation tree and shape matching approach is apparently more accurate and
rigorous than that used previously. Furthermore, the new approach should permit ligands to
be modelled into a map in any order and not only from largest to smallest. When the binding
site was determined, accurate construction of the ligand was possible in majority of the
cases. For ligands of a size typical of drug molecules—20 to 40 non-hydrogen atoms—that
were well seen in the density map, models with an accuracy of better than 1.0 Å were
obtained in 75% of the cases, with the binding site being found in 96% of cases (Fig. 6b).
When using the earlier method that utilised only a label-swapping routine, only 45% of
similarly “good” ligands could be built. The significant improvement achieved is a good
measure of the advantages in combining the method with a Metropolis optimisation.

Accurate building of the ligand entity was possible for ligands of diverse sizes. Figure 7
illustrates that, in cases of clear difference electron density, a small sulphur ion is built as
accurately as a larger atorvastatin molecule.

A stringent nearest-neighbour r.m.s.d. limit of 1.0 Å was not always the best measure for
evaluating success. For example, in the built model of a plant lumazine synthase inhibitor at
3.1 Å (Fig. 8a), an apparently inappropriate modelling of the inhibitor's benzene ring
resulted in the incorrect placement of the hydroxylamine group and an apparent r.m.s.d. of
1.9 Å from the deposited ligand. Although we classify such a model as incorrect, we expect
that it may be considered sufficiently accurate in many cases. Similarly, building S-adenosyl
methionine into a disordered density leads to the observed r.m.s.d. of 2.5 Å. These two cases
exemplify the directions in which future developments can be attempted.

Conclusions
The obtained results convincingly demonstrate the efficiency of the combined approaches,
where different methods complement each other. Evidently, ligands can be automatically
and successfully built at various levels of crystallographic data quality and ligand
complexity. The use of both label-swapping and Metropolis methods is superior to using
either alone as the most appropriate algorithm can vary depending on the particular scenario.
While the label-swapping method would be expected to be more sensitive to errors in phases
as it works on a per-atom basis, the Metropolis search should compensate for this as it
operates at the level of whole rigid groups of atoms. At the same time, the Metropolis search
does not guarantee a convergence to the global minimum, but the label-swapping method
building the model “from the seeds” has inherently high convergence properties. Amongst a
subset of 3000 examples for which the deposited ligand was well pronounced in density and
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for which the binding site was correctly located using the described approach, 821 were, on
average, initially built within 1.0 Å only via the Metropolis method while 220 were
accurately modelled only via the label-swapping routine. Amongst the former set, the
average data resolution was 2.1 Å compared to 1.8 Å for the latter, indicating the required
higher data quality for the label-swapping method as anticipated. Since both methods find
their results in different ways, the combined model ensemble has a higher likelihood of
containing the correct solution compared to either method alone.

The use of the fragmentation-tree approach in map analysis provides a very efficient means
for identification of the binding site. Due to the fact that ligand molecules consist of bonded
atoms, whose density shapes overlap (particularly at resolutions typical for MX structure
determination), ligand electron density has properties distinct from those of solvent
molecules and background noise. Since noise peaks are a result of random constructive
interference of the Fourier terms, their spatial correlation is low; hence, their cluster volumes
are high but only present at low-density levels. The density iso-surfaces of noise shrink
faster as the contour level is increased. The fragmentation-tree-based approach is used to
identify the ligand-binding site in cases where it is unknown or where it can be employed for
validation purposes. Indeed, the automatic identification of a particular ligand at a particular
location in the map may be taken as an indication that it is more likely bound there than at
any other site.

We hope to extend our use of the fragmentation tree in the future, as it would appear to offer
much information regarding the molecular structures described. One example might be its
use to aid the actual identification of ligands from a cocktail of candidates. Most complex
organic molecules with 10 or more atoms typically consist of a number of large cores or
rigid groups that are connected by bonds around which conformational rotations may be
possible. Due to their mobility, these connections may have lower electron density and serve
as breakpoints of the density clusters into smaller blobs as the contour level is increased. In a
fragmentation tree, this leads to a characteristic breakup pattern that gives hints as to the
stereochemistry of a ligand molecule. In cases of ligands of unknown identity, the sizes and
chemical content of rigid groups can, to an extent, be estimated from these breakup patterns.

Since the fragmentation tree is based on the overlapping density between bonded atoms, it is
less powerful at very high resolutions, around 1.5 Å or better, where individual atoms are
well resolved in the density. As a practical measure, for these cases, the difference electron
density maps were computed from data truncated to 1.5 Å resolution. Conversely, at a
resolution of 3.0 Å or worse, density clusters for ligands start merging with those for
unmodelled solvent and noise in the map, which also complicates correct identification and
building of ligand model.

The presented algorithms should be exceptionally useful in aiding the convenient and
automated placement of ligands into density in crystallographic research, particularly in the
area of knowledge-based drug design. In a typical real-life structure determination exercise
based on crystallographic data, the researcher will initially build the protein model as fully
as possible. At this stage, difference density maps can be prepared that should be of good
quality provided that the protein building has been successful. Thus, in most cases, a ligand-
building procedure of such broad applicability as presented should be successful in virtually
all typical structure analyses. Solvent molecules can be modelled subsequent to the
placement of the appropriate ligands in order to complete the structure.

There are a number of topics worthy of further investigation. As any other ordered molecule
bound to the protein, ordered water molecules leave their imprint in the difference density
map. In the fragmentation tree, the corresponding density blobs appear in the lower volume
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regions. Indeed, the best-ordered water molecules define a “water horizon” below which it
becomes impossible to identify the origin of the different blobs. Remarkably, the “water
horizon” is always present, and its physical nature is known. Thus, it could possibly be used
as a calibrating tool to put electron density maps on an absolute scale (electrons per cubic
angstrom), in addition to the standard deviation (sigma) currently used. The fitting of
partially ordered ligands is a real challenge even when done manually using an experienced
researcher as a tool. It is desirable that automated procedures could advise on which groups
of a bound molecule are giving rise to the observed density. Another under-explored area
with high potential is the use of other shape descriptors (such as the abovementioned
Zernike moments) that would be tailored to a particular family or stereochemical group of
ligand candidates. Finally, there is a wealth of chemical information provided by the protein
environment around the binding site. Based on our test set, we estimate that approximately
3% of ligands in the PDB are small fragment-type compounds that are shape symmetric and
therefore have an ambiguity in atom placement that cannot be resolved solely using shape.
These cases may require user intervention. The matching of ligands to hydrogen bond
donors/acceptors and hydrophobic pockets in the protein, as widely used in docking
approaches and evaluated using typical scoring functions,21,22 should also aid the task of
ligand modelling in MX, especially in these specific instances.

Methods
Selection of cluster points in the fragmentation tree

We note that one does not know in advance the contour level at which the similarity of the
density cluster at the correct location to the search ligand is maximised. Therefore, we
inspect the density at different contour levels t ranging from 1.0 to 6.0 sigma above the
mean in steps of 0.05 sigma. All clusters at every contour level are treated independently.
The signal-to-noise ratio is very low at this stage, typically around 0.001, that is, for one
correct ligand-binding density cluster, there are ∼1000 other clusters.

At each density threshold, we consider the 11 clusters with the highest volume and select all
branches of the fragmentation tree in which these clusters are located (examples of such
branches are the sequences of the blue-, green- or red-coloured points in Fig. 2). We chose
to select 11 clusters as testing showed that, in this case, there is an average 95% probability
of including the correct cluster therein; further increases in selection size did not improve
the results significantly. The selected branches are filtered so that, at any density threshold,
they lie within the expected volume limits from N to 10N Å3 where N is the number of non-
hydrogen atoms in the search ligand. The described branch filtering provides an
approximately 100-fold reduction in the number of cluster candidates.

Creating an electron density from the input ligand
The xyz coordinates of all atoms of the search ligand are used to generate an electron
density blob trimmed to the resolution of the X-ray data. During this density generation,
series terminations that result from truncation of electron density data are modelled by
convoluting the density with a Gaussian kernel—this is equivalent to the application of an
excess B-factor that introduces a required resolution-dependent smearing factor. A scaling
factor is also used to ensure that the integral of the density distribution is appropriate. The
electron density grid spacing is typically 0.5 Å; cell angles are those of the input map.

Sparse density clusters
A sparse density cluster, created as now described, is used to model density clusters, both
for calculating shape matches and for ligand building via label swapping. A density cluster
corresponding to a ligand usually contains many more grid points than there are atoms in
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that ligand. For example, at 1.8 Å resolution, the cluster for a 15-atom NRG molecule (Fig.
2) in the density contoured at 2.0 sigma has a volume of 58 Å3, which corresponds to 268
grid points of the map at 0.6 Å grid spacing. Rather than processing all cluster grid points,
we transform them into a pseudo-skeleton containing a smaller number of points. This
transformation is similar to the reduction of the problem's complexity using the free atoms'
concept of ARP/wARP18, where free atoms with no particular chemical identity are placed
into density at approximately inter-atomic distances. To build a pseudo-skeleton, we select a
high-density pivot grid point, and we remove all neighbouring grid points within a radius of
1.1 Å. The next pivot is selected as the highest-density point within the distance range 1.1–
1.6 Å to the previous pivot(s). This is iterated, resulting in a set of points that capture the
spatial distribution of the density cluster; we denote such a representation a sparse density
cluster. The number of points in the sparse cluster is set to be always higher than the number
of ligand atoms. Since the distance range 1.1– 1.6 Å covers all bond lengths typically
occurring in ligands, such a sparse cluster can be seen as a pseudo-molecule of
interconnected atoms (Fig. 9), which can be directly compared to the structure of the search
ligand.

Automatic detection of ligand stereochemistry
A ligand connectivity tree that describes rigid groups and overall stereochemistry is
generated automatically as follows. Pairs of atoms located at less than 2.5 Å distance are
considered as potential bonding partners. Should the angle between two bonds involving the
same atom be smaller than 80°, the longer bond is removed from the connectivity table. A
graph search is applied to the connectivity table to identify closed polygons (rings). The
hybridisation state of bonded atoms is inspected using a number of criteria. Inter-atomic
distances are compared against tabulated distances for single, double and triple bonds
between the most common elements present in carbon-containing compounds. Bonding
angles close to 109°, 120° or 180° are taken as indications of sp3, sp2 or sp hybridisation.
The local planarity is evaluated through a least-squares plane fitted to the coordinates of an
atom together with its three neighbours. If none of the atoms deviates from the plane by
more than 0.1 Å, the group of such connected atoms is considered locally planar. While such
checks have been shown to be extremely robust in our tests, the input coordinates should be
sensible—otherwise, evaluation of stereochemistry may be adversely affected.

Shape features for choosing the appropriate binding site
The following seven shape features are used to compare the density modelled from the input
ligand to the density clusters found using the fragmentation tree:

1. The ratio of surface points to the total number of points in a cluster. Surface points
are those with at least one adjacent grid point having a density value below the
threshold, with grid spacing always being set as close to 0.5 Å as possible;

2. The dimensions of the smallest rectangular box that fully encloses the cluster;

3. The eigenvalues of the moment of inertia tensor of the cluster about its centre of
mass (computed from density-weighted xyz coordinates; the density values are
always positive due to their thresholding at 1.0 sigma above the mean or higher);

4. The sum of the nonoverlapping volumes of the ligand and the cluster after their
rigid-body superposition;

5. The eigenvalues of the sample covariance matrix of the mean-centred xyz
coordinates of the points constituting the sparse cluster; similarly eigenvalues are
computed for the search ligand model;
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6. The difference vector between the two inter-atomic distance histograms of ligand
and sparse cluster—treating all sparse cluster points as pseudo-atoms; both
histograms are binned identically in steps of 0.4 Å up to a maximum distance of 40
Å; and

7. The same difference vector [as in (6)], calculated using geodesic distances. The
geodesic distance is defined as the sum over bonded distances between atoms (or
adjacent cluster points for a sparse density cluster) along a connectivity path
through the molecule that links any two atoms; the shortest such path is selected.

Features 4, 5, 6 and 7 use the ligand molecule in the given conformation. For each feature
except feature 4, the individual scores Si are computed as follows:

(3)

where ki are empirical weights for each feature i, j denotes the summation index of the
dimensions of each feature vector (1 for feature 1; 3 for features 2, 3 and 5; 200 for features
6 and 7) and f(o) and f(c) are the feature values for the observed and calculated clusters of the
ligand density, respectively. These seven different features are at different scales, but each
has a characteristic range of values for correct and incorrect cluster–ligand matches: the
value of Si is between 0 and 1, approaching the latter for a perfect match. The individual
scores Si are combined to yield the total score for each examined cluster:

(4)

The total score is a quadratic classifier and is expressed as a product of the weight vector q
and the feature vector S. The values of the vector q were trained using a set of 1000 protein–
ligand complexes with data resolution ranging from 1.3 to 3.1 Å and ligand sizes from 5 to
60 atoms. Only structures containing fully occupied ligands and those having local map
correlation of higher than 75% were selected for the training set. The optimisation was done
through a random 5000-step walk in the weight space; at each step, 20 random updates of
the weight vector were generated, and the best update was accepted if it yielded a score (the
sum of Sranking values for the 1000 training cases) higher than the one at the previous step.
Thus, the optimisation targeted a maximisation of the total score across the range of all
complexes in the training set.

Label swapping
This method was introduced by Zwart et al.,9 and only a brief description of the most crucial
aspects of the procedure is given here. The task is to find the subset of a sparse cluster, a
subgraph, which best matches the ligand. This may be seen as “swapping” the identities of
the ligand atoms when they are mapped to a subgraph.

Such a procedure starts with a selection of the pivot ligand atom (Fig. 3a), which is
successively assigned to each node of the sparse cluster (Fig. 3b). The search problem is
thus split into as many smaller subtasks as there are nodes in the sparse cluster. From all trial
models generated within each subtask at every step, only a subset with the highest scores
need typically be kept for further extensions.
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Metropolis search
A Metropolis type of optimisation is used in various implementations of crystallographic
ligand building.5–7 It makes use of the conformational freedom of the ligand molecule
around its rotatable bonds in order to optimally match it to the density cluster. In our
implementation, the ligand in the conformation input by the user is placed into the density
cluster to match its centre of mass and three principal axes (one out of four possibilities),
and an initial score is calculated. This score reflects a density map correlation between the
ligand and the sparse cluster.

The initial model is then rotated to sample all orientations in steps of 60°, with each
orientation being subject to 100 steps of Metropolis optimisation of the score. The 12 best
solutions are taken to the next round and are submitted to a further Metropolis optimisation
at three different temperatures. The initial temperature is proportional to the initial score;
after 4000 steps of optimisation at this initial temperature, 5000 steps are carried out at half
the initial temperature and finally 200 steps at one-tenth of the initial temperature. The
Metropolis optimiser works with an ensemble of randomly created initial models. From this
ensemble, the best 54 models are output and merged with the result of the label-swapping
algorithm.

Data and software used
Model refinement and map calculation were done using REFMAC,23 FFT and MAPMASK
software from the CCP4 package.24

The developed methods were evaluated on a large set of ligand structures from the PDB
using version 7.2 of the ARP/wARP software. The diffraction data were taken from the EDS
(Electron Density Server)25 and ligand coordinates from the heterocompound information
centre in Uppsala, HIC-Up.26 The EDS entries were filtered by the following criteria:

a. the structure contains a protein and at least one ligand with five or more non-
hydrogen atoms;

b. the structure does not contain DNA/RNA chains; and

c. at least one of the ligands in the structure must match the HIC-Up database with the
compound name, the number of atoms and their stereochemical description.

Overall, 13,985 PDB entries containing 20,568 ligands were selected.

In order to eliminate model bias and closely mimic the real-life situation occurring in crystal
structure determination, we removed all HETATM atoms including solvent from the PDB
files and subjected the remainder to one cycle of restrained refinement with REFMAC. The
difference electron density maps were then calculated for further analysis and ligand
building.

During evaluation of software performance, a density cluster was interpreted as having been
found correctly if it had at least one density grid point within 1 Å distance from any of the
ligand atoms from the deposited model. After final model building, the rebuilt ligand models
were compared to their PDB deposited structures, and the nearest-neighbour r.m.s.d. was
computed. The PDB models were considered as absolutely correct reference structures, and
an r.m.s.d. to them lower than 1.0 Å was interpreted as a successfully built ligand.
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Fig. 1.
Schematic representation of the three-step procedure of crystallographic ligand building in
ARP/wARP.
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Fig. 2.
Fragmentation tree of the difference electron density of the oxyreductase structure 1ed5. The
clusters for a protoporphyrin IX ring (HEM), N-omega-nitro-L-argi-nine (NRG) and a zinc
ion (ZN) ion are shown in red, green and blue, respectively. Other features in the density
map, including water molecules, are coloured black.
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Fig. 3.
Construction of the FAD molecule (PDB code 2gf3) using the label-swapping algorithm: (a)
the search ligand, (b) its sparse density cluster and (c) one high-scored subgraph-matching
solution. The arrow in (a) points to the pivot ligand atom, which is assigned to each node.
The arrow in (b) points to the group of nodes (marked as balls) from which the expansion
leads to a complete model of the ligand (see also Fig. 4).
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Fig. 4.
Matching of the FAD molecule (Fig. 3a) to the sparse grid shown in Fig. 3b. The evolution
of the model building process for each starting node (of 98 nodes in total) is plotted on the
horizontal axis. The number of ligand atoms assigned to a sub-cluster is on the vertical axis.
The number of candidate models is delineated as follows: green stands for 0 models in a
“stack” and red indicates that only the top 100 models are kept for further expansion; grey
scale colours indicate intermediates between both extremes. Only the few labelled starting
grid nodes allow for complete assignment of all ligand atoms.
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Fig. 5.
Characteristics of the ligand-building test set.
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Fig. 6.
The overall performance of the ligand-building procedure. Green areas denote successful
building with an r.m.s.d. from the PDB model of less than 1.0 Å, red indicates building at a
correctly identified binding site but with an r.m.s.d. higher than 1.0 Å, blue areas correspond
to ligand models built in the wrong place, (a) 9389 cases with seven or more non-hydrogen
atoms and (b) 2773 cases with ligand well-pronounced in the density (real-space map
correlation of 0.8 or higher) and sizes from 20 to 40 atoms.
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Fig. 7.
Examples of ligands of diverse sizes built in maps at various resolutions—deposited ligands
are shown in atom colour, built ligands in yellow; the maps are contoured at a level of 1.5
sigma above the mean. (a) A sulphate ion in bovine pancreatic ribonuclease A built at 1.6 Å
resolution with an r.m.s.d. of 0.45 Å to the reference structure (PDB code 1a5p); (b) the anti-
cholesterol agent atorvastatin, bound to its biological target, HMG coenzyme A reductase
(1hwk), at 2.2 Å with an r.m.s.d. of 0.23 Å; (c) a hexasaccharide ligand with 65 non-
hydrogen atoms bound to a bacterial α-amylase (1qho) rebuilt with an r.m.s.d. of 0.31 Å at
1.7 Å resolution; (d) a transition-state analogue of a plant enzyme, myrosinase, (1e6q) built
with a coordinate accuracy of 0.22 Å in a map at 1.35 Å; (e) 17-–-estradiol built with an
r.m.s.d. of 0.31 Å in the map derived from a complex with the human estrogen receptor at
3.1 Å resolution (1ere).
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Fig. 8.
(a) A plant lumazine synthase inhibitor built into a 3. 1-Å protein structure (PDB 1c41), to
an r.m.s.d. of 1.9 Å from the deposited ligand. (b) S-Adenosyl methionine modelled in a
tRNA methyltransferase enzyme (PDB 1v2x); a long flexible aliphatic chain was apparently
disordered, leading to little density to guide its placement. The variation in atom placement
(the deposited model is shown in grey, and the built model is shown in yellow) results and
explains the r.m.s.d. of 2.5 Å observed.
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Fig. 9.
Sparse representation (magenta balls and sticks) of an electron density cluster (blue wire) for
the FAD ligand in the structure 2gf3 of sarcosine oxidase at 1.3 Å resolution.
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