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PURPOSE. Ordinary least squares linear regression (OLSLR) analyses are inappropriate for
performing trend analysis on repeatedly measured longitudinal data. This study examines
multilevel linear mixed-effects (LME) and nonlinear mixed-effects (NLME) methods to model
longitudinally collected perimetry data and determines whether NLME methods provide
significant improvements over LME methods and OLSLR.

METHODS. Models of LME and NLME (exponential, whereby the rate of change in sensitivity
worsens over time) were examined with two levels of nesting (subject and eye within
subject) to predict the mean deviation. Models were compared using analysis of variance or
Akaike’s information criterion and Bayesian information criterion, as appropriate.

RESULTS. Nonlinear (exponential) models provided significantly better fits than linear models
(P < 0.0001). Nonlinear fits markedly improved the validity of the model, as evidenced by the
lack of significant autocorrelation, residuals that are closer to being normally distributed, and
improved homogeneity. From the fitted exponential model, the rate of glaucomatous
progression for an average subject of age 70 years was �0.07 decibels (dB) per year. Ten years
later, the same eye would be deteriorating at �0.12 dB/y.

CONCLUSIONS. Multilevel mixed-effects models provide better fits to the test data than OLSLR by
accounting for group effects and/or within-group correlation. However, the fitted LME model
poorly tracks visual field (VF) change over time. An exponential model provides a significant
improvement over linear models and more accurately tracks VF change over time in this
cohort.
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Glaucoma, characterized by a progressive optic neuropathy
and damage to the visual field (VF), is a leading cause of

irreversible blindness worldwide.1,2 Of vital interest in glauco-
ma management is the assessment of disease progression by
monitoring functional and structural changes.3–5 Although both
functional and structural changes can provide evidence of
disease progression, tracking glaucomatous VF progression is of
key importance because functional testing directly relates to
the activities of daily living.6 Standard automated perimetry, for
example as performed by the Humphrey Field Analyzer (Carl
Zeiss Meditec Inc., Dublin, CA), is currently the most widely
used test for detecting functional damage.

In recent decades, numerous analyses have been developed
for detecting VF damage and for monitoring its progression
over time such as Glaucoma Progression Analysis and
PROGRESSOR.7 Trend analyses are increasingly being per-
formed on perimetry data gathered from patients with
glaucoma. Some examples are trend analyses of the mean
deviation (MD), the Visual Field Index, or pointwise linear
regression of VF sensitivities. Despite the availability of various
advanced technologies for tracking functional progression,
trend analyses using ordinary least squares linear regression
(OLSLR) are still widely used statistical methods in the vision
science literature8–12 because of its straightforward and

mathematically more tractable applications. Numerous studies
have used clinical applications of OLS regression analyses, for
example when measuring treatment effects,11 examining
characteristics of types of glaucoma,12 and assessing the rate
of VF progression.10 However, OLSLR, the most commonly
used method for trend analysis in the literature, may be
inappropriate for modeling longitudinal data. Its validity, and
hence the P values it produces, relies on not violating several
assumptions, as discussed below.

First, one of the fundamental assumptions underlying the
OLS approach is that the residuals have homogeneous variance.
However, various studies13–15 have suggested that the variabil-
ity of VF sensitivities is increased when sensitivity is lower in
both normal and damaged eyes.13,15 Therefore, performing an
OLSLR on longitudinally collected data violates the principle of
homoscedasticity.

A second assumption within the OLS framework is that the
residuals (the differences between the observed values and
those predicted by the trend over time) are uncorrelated. In
longitudinal data, it is common for temporal autocorrelation to
be present even if no glaucomatous progression is observed.16

This can be caused by longer-term random fluctuations, whose
effects last more than the interval between tests, or by longer-
term fluctuations in causative factors that were not included in
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the model. The same effect can also occur when a linear fit is
imposed on data that are actually changing in a nonlinear
manner. As an example, the measure of interest (in this case,
the MD) is assumed to change at a constant rate over time.
Recent cross-sectional studies17–19 indicate that change in
sensitivity when expressed on a linear (1/contrast) scale
appears to be proportional to the percentage loss of retinal
ganglion cells (RGCs). Therefore, given the logarithmic nature
of the decibel (dB) scale used in perimetry, linear change in
sensitivity over time implies that the proportion of remaining
RGCs that die each year must remain constant. That is, if 10%
of the RGCs die in a year, 10% of the surviving RGCs would die
in the following year, and so forth. If we hypothesize an
alternative formulation, where the actual number of remaining
RGCs that die each year remains constant, resulting in a linear
decline in structural measures such as retinal nerve fiber layer
thickness, then based on the cross-sectional findings this
would result in the loss of sensitivity in decibels appearing to
accelerate exponentially. If a linear fit is placed over data that
are accelerating downward exponentially, the residuals will
tend to be positive in the center of the period and negative at
either end of the sequence, causing potentially significant
temporal autocorrelation. In the presence of heteroscedasticity
or temporal autocorrelation, OLS estimators are no longer the
best linear unbiased estimators. Thus, statistics and confidence
intervals from OLS may not be valid for drawing inference.

Third, longitudinally collected data are often grouped by
one or more grouping factors. In the case of ophthalmic tests,
data are grouped within an eye (i.e., ‡50 VF locations per eye),
and eyes are grouped in pairs for each individual. Observations
taken within the same eye or from the same individual are
likely to be more similar than observations taken from a
different eye or person. When OLSLR is performed on grouped
data, residuals from the same group (e.g., two eyes of an
individual or VF locations within an eye) tend to have the same
sign, either positive or negative. This indicates the need for
more sophisticated methods that take into account correlation
among observations within the same group.

In this study, we use multilevel mixed-effects methods that
account for group effects (both within eyes and between
fellow eyes of the same individual), as well as temporal
autocorrelation of within-group errors, to generate more valid
P values for assessing the significance of change in VF
sequences from participants with glaucoma. These findings
are also compared with those from OLSLR. We then consider
the use of a nonlinear model in which VF sensitivity declines
exponentially with time based on the alternative formulation
outlined above, and we determine whether this removes
evidence of autocorrelation. We demonstrate and test these
statistical methods with a relatively simple predictive model
using only age as a predictor of the rate of glaucomatous field
change. However, the overall goal of this work is to aid in the
development of better predictive models that will help
clinicians manage patients with glaucoma.

METHODS

Data

Data from participants with suspected or early glaucoma or
with high-risk ocular hypertension from the ongoing Portland
Progression Project at Devers Eye Institute were used in this
study. The study protocol was approved by the Legacy Health
Institutional Review Board. This study complies with the
Health Insurance Portability and Accountability Act of 1996
and is in agreement with the provisions of the Declaration of
Helsinki. Consent was obtained from all participants after they

were well informed about the risks and benefits of participa-
tion.

Initially, participants were tested annually with various
functional and structural tests. In 2009, testing was switched to
6-month intervals for all participants. At baseline, participants
either had early glaucoma (standard automated perimetry MD
no worse than �6 dB) or had ocular hypertension (untreated
intraocular pressure repeatedly >22 mm Hg) plus one or more
risk factors for developing glaucoma as determined by their eye
care provider. Risk factors included age older than 70 years,5,20

African ancestry,20 systemic hypertension,21 peripheral vaso-
spasm,22 migraine,23 self-reported family history of glaucoma,24

disc hemorrhage,25,26 diet-controlled diabetes,27 and/or previ-
ously diagnosed glaucomatous optic neuropathy or suspicious
optic nerve head appearance (cup-disc ratio asymmetry > 0.2)
and neuroretinal rim notching or narrowing. Participants
having visual acuity worse than 20/40 in either eye or worse
than mild glaucoma, cataract, or media change at baseline were
excluded. Other exclusion criteria included any other disease
or the use of any medications likely to affect the VF or having
undergone intraocular surgery (except for uncomplicated
cataract surgery).

Standard automated perimetry VF testing was performed
using a Humphrey Field Analyzer II (Carl Zeiss Meditec Inc.).28

Initially, we used the Full Threshold algorithm and the 30-2 test
pattern but later used the 24-2 test pattern and the Swedish
Interactive Threshold Algorithm (SITA).29 All MD values used
in this study were 24-2 equivalent. This was accomplished by
including earlier 30-2 tests within a Guided Progression
Analysis30 sequence that included at least one 24-2 test. The
Humphrey Field Analyzer II (Carl Zeiss Meditec Inc.) then
produces 24-2 equivalent MDs for the included 30-2 tests.
Previously, we have shown that there is no difference in MD
values generated by the Full Threshold and SITA Standard
algorithms,31 so there is no concern with using data from both.
An optimal lens correction was placed before the tested eye,
and an eye patch was used to occlude the fellow eye. All
subjects had previous experience with VF testing before
entering the study, and most had undergone multiple previous
tests. Tests with greater than 33% fixation losses or false
negatives or with greater than 15% false positives were
considered unreliable and were excluded.

Statistical Analysis

All statistical analyses were performed using statistical com-
puting software R.32 Only participants with 10 or more
observations per eye meeting the reliability criteria were
included in the analyses. Follow-up time and age at the time of
testing centered to its mean (a suggested risk factor for
glaucomatous progression20) were used as covariates. To find
the best predictive model for the MD, both linear mixed-effects
(LME) and nonlinear mixed-effects (NLME) models with two
levels of nesting (subject and eye within subject) were fitted
(details of the models considered are given in the Appendix).
Discrete and continuous autoregressive methods were tested
to examine temporal dependency likely to be present in
within-group errors. Autoregressive (discrete or continuous)
methods (CAR1) are used to model serial correlation of within-
group errors in time series and longitudinal data, where the
correlation between residuals from the model decreases
exponentially with the time difference between measure-
ments.33

Therefore, four mixed-effects models were compared. As
detailed in the Appendix, these include the following: (1)
model I (linear progression over time, uncorrelated residuals),
(2) model II (linear progression over time, autocorrelated
residuals), (3) model III (nonlinear [exponential] progression
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over time, uncorrelated residuals), and (4) model IV (nonlinear
progression over time, autocorrelated residuals).

The goodness of fit of models was compared using analysis
of variance (ANOVA) or Akaike’s information criterion (AIC)
and Bayesian information criterion (BIC), as appropriate.
Nested models (models I vs. II and models III vs. IV) are
compared based on P values from ANOVA. Nonnested models
(models I vs. III and models II vs. IV) cannot be compared
using ANOVA and so instead are compared based on AIC and
BIC, with smaller AIC and BIC indicating a better fit to the data.
These AIC (2h � 2log(L)) and BIC (hlog(L) � 2log(L)) are
commonly used penalized model selection criteria for com-
parison and selection of models, where h, L, and n are the total
number of parameters to be estimated, the likelihood function,

and the sample size, respectively. h acts to penalize models
with a greater number of free parameters.

RESULTS

In total, 4179 VFs from 271 eyes of 138 participants were used.
At baseline, the mean age was 56.86 (6SD 10.38) years, the MD
was�0.02 (62.09) dB, and 11% of participants had an MD of�2
dB or less. The average number of VF tests for each eye was 16.
The average follow-up duration was 7.22 (64.33) years.

Figure 1 shows the box plots of residuals from the OLSLR fit
(displaying only a small sample of the subjects for better
visualization), together with an autocorrelation plot of the

TABLE 1. AIC and BIC Comparison of Various Candidate Mixed-Effects
Models

Model AIC BIC

I 12,850.03 12,913.41

II 12,742.35 12,812.07

III 12,259.04 12,322.42

IV 12,261.55 12,331.28

Model I is a two-level LME with independent within-group error.
Model II is a two-level LME model with continuous within-group
temporal correlation structure (CAR1). Model III is a two-level NLME
with independent within-group error. Model IV is a two-level NLME
with continuous within-group temporal correlation structure.

TABLE 2. ANOVA Comparison of Candidate Mixed-Effects Models

Model II III IV

I P < 0.0001 NA* P < 0.0001

II P < 0.0001 NA*

III P ¼ 0.47

P values are from an ANOVA comparison between the two models
indicated. The models are defined in Table 1.

* Not available for nonnested models.
FIGURE 2. Empirical autocorrelation plots of the residuals from LME
model I.

FIGURE 1. Empirical autocorrelation plots (a) and residuals for a sample of subjects (b) from the OLSLR fit.
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residuals for a subject. These plots indicate the problem of
using OLSLR on longitudinally collected data. Significant
autocorrelation is evident, as indicated by the vertical lines
(Fig. 1a) falling outside the normal limits for uncorrelated data
(horizontal dashed lines). This violates the fundamental
assumption of independence that underlies the OLS method.
Furthermore, residuals from the same eyes and/or subject from
OLSLR fits are not centered at zero (Fig. 1b), indicating that a
mixed-effects model is needed to incorporate group effects.

Table 1 and Table 2 give goodness-of-fit values for the
candidate models and P values from ANOVA comparisons,

respectively. Model II provides a significantly better fit than
model I (P < 0.0001), indicating the presence of significant
temporal autocorrelation that needs to be taken into
account when performing linear fits. The AIC and BIC are
much lower (better) for model III and model IV compared
with any of the candidate LME models (Table 1) and show
that exponential models fit sequences of MD values
significantly better than assuming linear change over time.
However, model III and model IV provide equivalent fits (P
¼ 0.47). This indicates that when a suitable nonlinear model
is used to examine change over time temporal autocorrela-

FIGURE 3. Empirical autocorrelation plots (a) and a scatter plot of the standardized residuals versus fitted values (b) from model II.

FIGURE 4. Empirical autocorrelation plots (a) and a scatter plot of the standardized residuals versus fitted values (b) from model III.
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tion is no longer significant. It appears to be caused by
incorrectly imposing a linear fit, rather than by long-term
fluctuation acting within the sequences.

Significant autocorrelation between longitudinal data is
detected in the plot of standardized residuals from the two-

level LME model (Fig. 2), as indicated by the vertical lines
extending beyond the limits that would be expected in the
absence of autocorrelation (dashed horizontal lines). We
examined the within-group correlation structure using both a
discrete (AR) and continuous (CAR1) autoregressive structure.
Because of the regularity of testing in this data set, there was
very little difference (approximately equivalent AIC and BIC),
but the continuous autoregressive structure is more practical
and generalizable because it can be used directly in data sets
with less regular temporal sampling.

Figure 3 shows diagnostic plots for model II. Errors from
model II are now closer to being uncorrelated (Fig. 3a).
However, the plot of standardized residuals versus the fitted

TABLE 3. Estimates of Fixed-Effects Parameters for NLME Model III

Parameter Estimate (SE) P Value

k0, dB 1.26 (0.15) <0.0001

j0, dB/y 0.064 (0.008) <0.0001

c0, dB/y �0.0009 (0.0006) 0.17

FIGURE 5. Within-group predictions (line) and observed MD (circles) versus time using the exponential model III for four subjects in the study.
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values from model II indicates that the variance of the residuals
increases as the fitted MD value decreases (Fig. 3b), violating
the assumptions of constant within-group error variance. The
fact that variability goes up with damage, as we have seen here,
is consistent with the findings from previous studies.13–15,34

Figure 4 shows similar diagnostic plots of model III. The
plot of standardized residuals versus the fitted values (Fig.
4b) indicates that residuals are symmetrically distributed
around zero, with improved homogeneity compared with
model II. In addition, no significant autocorrelation is
observed up to 2 years on the empirical autocorrelation
plots (Fig. 4a). The negative autocorrelation in the plot with
higher lags is less reliable because estimates of autocorre-
lation for greater intervals are based on fewer residual
pairs.22 This apparent lack of autocorrelation is consistent
with the fact that when using NLME models there is no
longer a significant benefit in accounting for correlated
errors (models III vs. IV, P ¼ 0.47). This supports our earlier
assertion that errors could appear correlated if a linear fit is
imposed onto nonlinear data.

Table 3 gives population estimates of the model parameters
(k0, j0, and c0), corresponding SEs, and associated P values for
the exponential model III. The average baseline MD (k0) and
intercept of rate (j0) are significantly different from zero (P <
0.0001). The estimated maximum correlation among the fitted
parameters was �0.2, indicating no overfitting. The predicted
sensitivity for an average subject at time (t) is given by MDt¼k0

� exp(j0þ c0 � age)t, with the rate of change given by�(j0þ c0

� age) � exp(j0þ c0 � age)t. For an average 70-year-old subject in
this cohort (i.e., when the random effects are set to be zero),
his or her MD at time zero (i.e., baseline) is 0.26 dB, with a rate
of change of �0.062 dB/y. Ten years later (i.e., t ¼ 10), the VF
will be deteriorating at�0.11 dB/y.

Figure 5 shows the augmented predictions to assess the
adequacy of the fitted exponential model III (shown only for a
few candidate subjects representing different cases). It is
evident that the exponential model III is in close agreement
with the observed MDs. The adequacy of the exponential
model for fitting and predicting test data is apparent.

DISCUSSION

Accurate monitoring of glaucomatous progression is essential
for better patient management. Such progression is often
examined by performing OLSLR. Our study shows that tracking
VF progression using OLSLR is insufficient for longitudinal
data. Ordinary least squares linear regression ignores the
grouping structure and heteroscedasticity of longitudinally
collected ophthalmic data. In addition, errors from OLSLR are
correlated. As a consequence, OLS methods overestimate the
significance of trends, giving potentially inaccurate information
about disease progression and its risk factors. For example, age
is a highly significant predictor (P < 0.0001) when the MD is
fitted using OLSLR. However, age is not a significant risk factor
(P > 0.05) using either the fitted LME or NLME models. Note
that this does not imply that age is not in fact associated with
progression because the power to detect an effect may not be
sufficient in this data set. Lack of evidence of an effect should
not be taken as evidence for the lack of an effect. However, it
illustrates that the significance of an effect can be overstated
when an inappropriate model is used.

Unlike OLSLR, LME methods adequately incorporate group
effects and within-group correlation and provide improvement
over OLSLR. However, our results show that this linear
formulation is still suboptimal for monitoring functional
change over time. A nonlinear fit, whereby sensitivity declines
exponentially on a decibel scale, markedly improved the
validity of the model, as evidenced by the lack of significant
autocorrelation, residuals that are closer to being normally
distributed, and improved homogeneity.

The use of an exponential model is well supported by
recent work on the structure-function relationship. It is
consistent with a constant rate of RGC loss, without requiring
the existence of a functional reserve.35 The often-reported
delay between when structural loss is first detected and when
functional loss is first reported could be partly because of the
logarithmic scaling (in decibels) of units used in perimetry. In
an exponential model, the observed rate of change in decibels
accelerates as the disease progresses, without assuming any
fundamental change in the rate of RGC loss. Although the

FIGURE 6. Prediction curve based on minimum (a) and maximum (b) rates estimates using the exponential model III.
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mixed-effects approach used in this study cannot be applied to
individual patients, the method demonstrates that an expo-
nential model in which the rate of progression increases over
time should be used for individual patient data.

An exponential model can be applied across the entire
glaucomatous spectrum up to end stage, at which point floor
effects in clinical techniques make it impossible to detect
further change.36–38 For end-stage disease, it is technical
limitations, rather than any pathophysiological process, that
drive results. At present, no model has been proposed that
successfully accounts for both this floor effect and the
likelihood that the VF was effectively stable for many years
before detectable progression commencing. Work to derive
and validate such a model is ongoing.

The exponential model described herein is applicable
regardless of whether the MD is slightly above or below
normal (0 dB) at baseline. Depending on the predicted
values of the random effects, it is possible to have both
positive and negative rates. However even in the most
extreme cases, the predicted values are still reasonable, as
seen in Figure 6, which is produced from the fitted
exponential model III at the estimated minimum (�0.087
dB/y) and maximum (0.085 dB/y) rates using population
estimates of starting MD (average, 1.26) and the mean age.
The rate of change is very slow when the MD appears to
increase over time, but the rate of change can be much
more rapid when the MD is decreasing over time. This
agrees with the nature of both learning effects in perime-
try39 and the pathophysiological process of glaucomatous
disease progression. It is possible that a nonlinear trend
could be caused by learning effects. We believe that this is
unlikely to fully explain our results because all subjects had
at least some experience with VF testing before entering the
study, so learning effects should have been small.

In this study, we applied a mixed-effects model, whereby
the regression parameters for each eye are assumed to be
sampled from a normal distribution, rather than varying
independently. This greatly reduces the number of free
parameters being fit, allowing us to compare linear and
nonlinear (exponential) models. However, the implication is
that nonlinear trends should also be fit to longitudinal data
from individual eyes, rather than the linear fits commonly used
at present.

In our study, we discussed shortcomings of OLSLR in trend
analysis of longitudinal perimetry test data and proposed more
realistic nonlinear models that take into account heterosce-
dasticity, correlated errors, and/or grouped structure of the
data. However, our study findings and claims have not yet been
validated in an independent data set. In addition, it is possible
that the observed nonlinearity could in part result from
learning effects even if true progression is linear, although
study participants had all undergone VF testing before entering
the study. It is unlikely that previous conclusions from
implementing linear fits would turn out to be untrue, but
some may need to be checked using an exponential model for
functional change.

In conclusion, both in clinical practice and research,
attempts are made to monitor the rate of VF change. Ordinary
least squares linear regression is an inappropriate method for
performing trend analysis of longitudinally collected VF test
data. Linear mixed-effects approaches provide an improvement
compared with OLSLR but do not appear to be the optimal
choice for tracking VF change. The observed correlated errors
of the linear fits may not result from long-term fluctuation in
the test data but may be because of model misspecification. For
example, functional change in glaucoma appears to be
essentially nonlinear when modeling the VF using the MD
expressed in decibels. Therefore, exponential models seem to

be more statistically valid, use reasonable assumptions, have a
sound pathophysiological interpretation, are in close agree-
ment with the observed data, and provide reliable tools for
predicting future VF outcomes. Our results demonstrate that
the rate of progression for individual patients does not remain
constant (as in a linear model) but increases over time, and it
should be assessed accordingly. We believe that the proposed
methods can help clinicians and researchers better understand
VF change in glaucoma and hence adopt better strategies to
manage patients with glaucoma.
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APPENDIX

Details of the models used in this study are given below. First,
an OLS model was fit to the data, giving the trend of VF MD
against test time (t),

MDt ¼ aþ bt þ c age

Where a, b, and c are the intercept, slope, and age effect,
respectively. This most simple model implicitly assumes that all
eyes have the same sensitivity at time t ¼ 0 (i.e., study entry)
and that all decline at the same rate b after taking into account
an aging effect. While this is clearly not a realistic model given
intereye and intersubject variability in both physiology and
pathophysiology, the following two-level (subject and eye
within subject) LME models were formed:

ðIÞ ðMDtÞij ¼ b21ti þ b22agei þ Zi;jbi þ Zijbij þ eij;

i ¼ 1; 2;:::;N ; j ¼ 1; 2; eij ~Nð0; r2IÞ

ðIIÞ ðMDtÞij ¼ b21ti þ b22agei þ Zi;jbi þ Zijbij þ eij;

i ¼ 1; 2;:::;N ; j ¼ 1; 2; eij ~Nð0;R1Þ

where i and j are indices representing the subject identification
and the eye (nested within subject), respectively. The b21, b22

are the slope and age effect, respectively; bi and bij are first-
level (subject) and second-level (eye within subject) random
effects with corresponding matrices Zi,j and Zij, respectively;
and eij values are within-group errors. The first level of random
effect accounts for consistent differences in the MD between
subjects. The second level of random effect accounts for
consistent differences between the two eyes of a subject. The
random effect is effectively an adjustment for the fact that
some subjects will consistently have higher MD values than
others, and it takes the form of a random variable, where there
is one value for each subject.

The difference between model I and model II above is that
here errors from model II are assumed to be temporally
correlated according to a continuous autoregressive (CAR1)
model with covariance matrix R1, wherein the correlation
between two residuals derived from the same eye decreases
with the length of time between them. By contrast, errors are
assumed to be uncorrelated within the same eye in model I.

Similarly, the following two-level (subject and eye within
subject) exponential models were fitted to model nonlinearity
in the MD data:
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ðIIIÞ ðMDtÞij ¼ ðk0Þij � expðjij þ cij:ageiÞti þ eij;

i ¼ 1; 2;:::;N; j ¼ 1; 2; eij ~Nð0;r2IÞ�
ðk0Þij;jij;cij

�
¼
�

k0 þ ki þ kij;j0 þ ðj1Þi þ ðj2Þij;

c0 þ ðc1Þi þ ðc2Þij
� g

ðIVÞ ðMDtÞij ¼ ðk0Þij �expðjij þ cij:ageiÞti þ eij;

i ¼ 1; 2;:::;N ; j ¼ 1; 2; eij ~Nð0;r2R2Þ�
ðk0Þij; jij; cij

�
¼
�

k0 þ ki þ kij;j0 þ ðj1Þi þ ðj2Þij;

c0 þ ðc1Þi þ ðc2Þij
� g

For both model III and model IV, (k0, j0, c0,) are fixed-effects

population parameters; bi¼ (ki, (j1)i, (c1)i) and bij¼ (kij, (j2)ij,

(c2)ij) are level-one and level-two random effects, respectively;

and eij values are within-group errors. Similar to LME model II,

the errors of model IV are assumed to be temporally

correlated according to a continuous autoregressive (CAR1)

model with covariance matrix R2 (i.e., the correlation

decreases exponentially with the length of time between

the measurements), whereas errors are assumed to be

uncorrelated for model III. All random effects (bi, bij, eij)

were assumed to be independent. In addition, bi values were

assumed to be independent for different subjects, and bij and

eij were assumed to be independent for different subjects and/

or different eyes.
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