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Abstract
Because of population heterogeneity, causal inference with observational data in social science
may suffer from two possible sources of bias: (1) bias in unobserved pretreatment factors affecting
the outcome even without treatment; and (2)bias due to heterogeneity in treatment effects. Even
when we control for observed covariates, these two biases may occur if the classic ignorability
assumption is untrue. In cases where the ignorability assumption is true, “composition bias” can
occur if treatment propensity is systematically associated with heterogeneous treatment effects.

Social and behavioral sciences can be considered population sciences in that they try to
understand what Neyman called “populations” -- “categories of entities satisfying certain
definitions but varying in their individual properties” (quoted by Duncan 1984, p.96). The
idea that scientists can fruitfully study categories of entities that are variant from each other,
according to Mayr (1982, 2001), originated with Darwin (1859) and was a revolutionary
concept. Mayr (1982) called this idea “population thinking,” contrasting it with the
“typological thinking” that he claimed originated with Plato.

Typological thinking has influenced physical science enormously and is still arguably
dominant in determining what can be considered scientific truth. From a typological
perspective, the main goal of science should be to discover universally valid, unchanging
laws. Thus, scientists should, by eliminating the influences of extraneous, confounding
factors, distil their representations of the universe down to abstract but conceptually
homogenous relationships. Whether they are constructing thought experiments in
developing scientific theories for typical objects or conducting actual experiments to try to
verify theories under controlled laboratory conditions, the knowledge that results, according
to typological thinking, should be valid anywhere in the universe. Homogeneity is a strong
assumption which has worked well in natural science: we need only obtain knowledge about
a type of phenomena so as to generalize that knowledge to individual, concrete cases. The
typological thinker treats observed variation in the real world as a mere matter of
appearances and thus as inconsequential. This ancient philosophical view was supported in
the seventeenth century by measurement theorists, who revealed that measurement errors
give rise to observed variation and also developed methods of handling these errors (Stigler
1986).

The first person to fundamentally challenge typological thinking was Charles Darwin
(1809-1882) (Mayr 1982, 2001). Indeed, the proposition that individual variability is real,
not merely apparent, is essential to Darwin’s theory of evolution by natural selection.1

*Please direct all correspondence to (yuxie@umich.edu) at Population Studies Center, Institute for Social Research, 426 Thompson
Street, University of Michigan, Ann Arbor, MI 48106. .
1Chapters one and two of Darwin’s On the Origins of Species (1859) are entitled “Variation under Nature” and “Variation under
Domestication.”
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Darwin and his successors saw deviations from population averages not as scientifically
trivial but as the very basis of evolution. One of Darwin’s successors was Francis Galton
(1822-1911), who introduced the principle of variation into social science. Instead of
focusing on typical phenomena as typological thinking dictated, Galton focused on “how the
quality is distributed” (Galton 1889, pp.35-36). One modern historian of science described
Galton as a scientist to whom “individual differences … were almost the only thing of
interest” (Hilts 1973, p.221).

Population thinking, as pioneered by Darwin and Galton, soon gave birth to a new kind of
science known as population science. The population scientist does not assume that all
concrete units in a population are basically the same, i.e., homogeneous, but instead
recognizes that units of analysis in a population are different from one another, i.e.,
heterogeneous. One might say that most social science disciplines -- economics,
demography, psychology, sociology, political science, and anthropology -- are population
sciences, since they cannot afford to ignore individual-level variation. The acceptance of
individual-level heterogeneity in social science has important consequences for our research
practices. In this paper, I will show how certain biases for causal inference in social science
may potentially result from population heterogeneity.

When we begin to take individual-level variability seriously and to treat it as a reality in
population sciences rather than imperfection or measurement error, we can no longer rely on
a scientific method that has always served physical science well, namely the laboratory
experiment. If homogeneity cannot be maintained, how can we know, even at the level of
individual units of analysis, if differences in outcomes in units subjected to different
experimental conditions are caused by experimental treatment or intrinsic individual-level
differences (Holland 1986)? All population scientists can do is to conduct field experiments,
in which units of analysis are randomized into experimental conditions (Fisher 1926;
Neyman 1923).

Thus, in all population sciences, it is no longer possible to assume that a category of
homogeneous entities exists , or that relationships between particular causes and effects are
homogeneous. Statistical methods provide the population scientist with an alternative
strategy in accounting for this intrinsic and inevitable variability (Xie 2007). Although we
cannot understand how a given experimental condition might affect every unit in a
population, we can assess its average consequence by means of field experiments and
statistical analyses (Fisher 1926; Heckman 2005; Holland 1986; Manski 1995; Rubin 1974).

Heterogeneity and Possible Biases in Causal Inference
Numerous scholars who study causal inference in social science have previously recognized
the importance of population heterogeneity and considered its implications for potential
biases (e.g., Heckman 2005; Holland 1986; Manski 1995; Morgan and Winship 2007; Rubin
1974; Tsai and Xie 2011; Winship and Morgan 1999; Xie, Brand, and Jann 2012). In this
section, I will consider why population heterogeneity may lead to biases in causal inference.

Let us assume that a population, U, is being studied. Let Y denote an outcome variable of
interest that is a real-valued function for each member of U, and let D denote a dichotomous
treatment variable (with its realized value being d) with D=1 if a member is treated and D=0
if a member is not treated. For clarity, let subscript i represent the ith member in U. We

further denote  as the ith member’s potential outcome if treated (i.e., when di=1), and  as
the ith member’s potential outcome if untreated (i.e., when di=0). Since population
heterogeneity is ever present, let us conceptualize a treatment effect as the difference in
potential outcomes associated with different treatment states for the same member in U:
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(1)

where δi represents the hypothetical treatment effect for the ith member.2 The fundamental

problem of causal inference (Holland 1986) is that, for a given unit i, we observe either  (if

di=1) or (if di=0), but not both. In light of this fundamental problem, how can we estimate
treatment effects? Holland presents two possible solutions: the “scientific solution” and the
“statistical solution.”

The scientific solution, which is based on typological thinking, assumes that all members in

U are exactly the same, i.e., homogenous: , and , where j ≠ i is a different
member in U. This strong assumption would allow the researcher to identify individual-level
treatment effects. In fact, if the strong assumption can be maintained and there is no
measurement error, one would need only two cases in U (say i and j with different treatment
conditions) to reveal treatments effects for all members in the entire population, for the
following would hold true:

(2)

for any j ≠ i, where we can drop the subscript of δ as it does not vary across members in the
population. As previously stated, however, in the social sciences, which are inherently
population sciences, heterogeneity is the rule rather than the exception. In general, then, the
formula under the strong homogeneity assumption (equation 2) is of no practical value in
social science.

For any population science, the ubiquity of population heterogeneity makes the statistical
solution a necessity. One limitation of the statistical approach is that we can compute
quantities of interest about causal effects only at the group level. For example, let us
compare the average difference between a set of members that were randomly selected for
treatment and another set of members that were randomly selected for control. Since this
quantity is essentially the average treatment effect over the entire population, it is called the
Average Treatment Effect (ATE):

(3)

Quantities of interest in the statistical approach can also be defined for other groups (or
subpopulations), as long as they are well defined. For example, Treatment Effect of the
Treated (TT) can be defined as average difference in Y between treatment and control
among those individuals who are actually treated:

(4)

Analogously, Treatment Effect of the Untreated (TUT) is the average difference by
treatment status among those individuals who are not treated:

(5)

2This formulation has limitations, as it presumes that fixed future outcomes are associated with different treatment conditions at the
time of treatment. Social outcomes are complex and unpredictible. See Dawid (2000) for an approach based on Bayesian decision
analysis. Also see Brand and Xie (2007) for a method of averaging future outcomes.
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In order to compute quantities of ATE, TT, and TUT, however, we need to invoke
assumptions.

For an elaboration of the above statement, let us partition the total population U into the
subpopulation of the treated U1 (for which D=1) and the subpopulation of untreated U0 (for
which D=0). We can thus decompose the expectation for the two counterfactual outcomes as
follows:

(6)

and

(7)

Ignoring issues of statistical inference and focusing only on identification, we can estimate
from observed data: E(Y1|D = 1), E(Y0|D = 0), P(D = 1), and P(D = 0). Selection bias arises
if:

(8)

and

(9)

Recall that we can only observed either Y1 or Y0 for any unit in U. Therefore, we can only
make inferences about, but cannot directly estimate, a quantity of interest representing
causal effect, such as ATE. If we use the naive estimator E(Y1|D = 1) – E(Y0|D = 0) for
E(Y1) – E(Y0), which is ATE, what are potential sources of bias? To answer this question,
we can further decompose an overall selection bias in the naive estimator as follows. In
doing so, we will use the following abbreviated notations:

p = the proportion treated (i.e., the proportion of cases D=1),

q = the proportion untreated (i.e., the proportion of cases D=0),

Using the iterative expectation rule, we can decompose ATE as follows:

(10)

where, as previously defined in equations (4) and (5), TT is the average Treatment Effect of
the Treated, and TUT is the average Treatment Effect of the Untreated:
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Thus, we can see from equation (10) that if we use the naive estimator from observed data

 for ATE, there are two possible sources of bias:

1. The average difference between the two groups in outcomes if neither group

receives the treatment: , which we will call this the “pretreatment
heterogeneity bias,” or “Type I selection bias.”

2. The difference in the average treatment effect between the two groups (TT – TUT),
weighted by the proportion untreated q. The weight of q results from our choice to
define pre-treatment heterogeneity bias for the untreated state. We call this the
“treatment-effect heterogeneity bias,” or “Type II selection bias.”

These two sources of bias may exist, because subjects may be sorted into treatment or
control groups by either their differences in the base-line level (i.e., Type I selection bias) or
their differences in the effect of treatment (i.e., Type II selection bias). Let me now reiterate
that the treatment-effect heterogeneity bias or Type II selection bias is the situation in which
we encounter the following:

TT ≠ TUT

ATE ≠ TT;

ATE ≠ TUT.

In particular, when TT – TUT > 0, there is a sorting gain so that the average treatment effect
for the treated is greater than the average treatment effect of the untreated. Conversely, if TT
– TUT < 0, there is a sorting loss.

The Ignorability Assumption and Its Implications
In the last section, I established the difficulty, perhaps the impossibility, of drawing causal
inference in social science. Given this difficulty, how can social science researchers study
causal effects? There are two possible solutions to this problem: the experimental solution
and the observational solution.

The experimental solution uses random assignment to get rid of both sources of selection
bias that we looked at earlier. Random assignment means that a unit in U receives either the

treatment or control condition by chance only. Let  denote independence. Random
assignment ensures:

(11)

so that

(12)

and
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(13)

Under these conditions, we can easily compute ATE, TT, and TUT as:

In social science research, experimental studies are uncommon. Even when subjects are
randomly assigned to experimental conditions, their compliance may not be random. In such
cases, the actual treatment condition may not be truly independent with respect to potential
outcomes, as required in equation (11). In other situations, often called “natural
experiments,” we can assume that some factors that affect treatment conditions may be
random and extraneous, even though treatment conditions may not be independent with
respect to potential outcomes. In both types of situations, we can take a general approach
called “instrumental variable (IV) estimation.” For a variable to qualify as instrumental, it
must meet the exclusion restriction assumption: it affects the likelihood of treatment
condition (D) but affects the substantive outcome variable (Y) only indirectly via the
treatment status (D). For example, draft lottery may be associated with military enlistment
but should affect economic outcomes only indirectly through military enlistment (Angrist
1990).

A large literature has grown out of the application of IVs in causal inference (Angrist,
Imbens, and Rubin 1996; Angrist and Pischke 2009; Heckman, Urzua, and Vytlacil 2006).
Unfortunately, true and strong IVs are difficult to find in practice. Furthermore, even when
true experiments are successfully carried out, or good IVs are found, they are typically based
on a particular subpopulation at a particular location or time, say students at a certain
college, or applicants to a certain federally funded program. In addition, because of
population heterogeneity, it is problematic to generalize findings from such studies based on
narrowed-defined subpopulations (Manski and Garfinkel 1992). Thus, despite its
methodological appeal and growing popularity, the experimental approach does not, in
actuality, provide an adequate solution.

When random assignment is not feasible, and no suitable IV is available, the researcher may
turn to the second approach, observational solution. The main idea in this approach is to
collect rich data measuring population heterogeneity, called covariates, that pertain to
potential systematic differences between the treatment and control groups in either the
baseline level or the treatment effect. Since only covariates that affect both the treatment
assignment and the outcome have the potential to bias the observed relationship between
treatment and outcome (Rubin 1997), the researcher assumes that he/she can adequately
control for all covariates that simultaneously affect the treatment assignment and the
outcome. Once covariates have been controlled, the hope is that treatment status will then be
independent of potential outcomes. This conditional independence assumption is called
“ignorability,” “unconfoundedness” or “selection on observables.” Let X denote a vector of
observed covariates. The ignorability assumption states:

(14)

Comparing equations (11) and (14) highlights the crucial role of covariates X. Note that the
ignorability condition is always an unverifiable assumption. Although it is written as a
statistical property in equation (14), whether the assumption is plausible or not is actually a
substantive subject matter, since much depends on what covariates are included. In any case,
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the researcher can tentatively consider the ignorability assumption and then assess its
plausibility in a concrete setting through sensitivity or auxiliary analyses (Cornfield et al.
1959; DiPrete and Gangl 2004; Harding 2003; Rosenbaum 2002).

Conditioning on X can be difficult in applied research due to the “curse of dimensionality.”
However, Rosenbaum and Rubin’s (1983, 1984) important work has shown that, under the
ignorability assumption, it is sufficient to condition on the propensity score as a function of
X. Let P(D = 1|X) denote the propensity score of treatment given X. Rosenbaum and Rubin
essentially changed equation (14) to:

(15)

That is, it is sufficient to condition on the propensity score P(D = 1|X). In actuality, the
propensity score is unknown and can be estimated from observed data, for example through
a logit model or a probit model. In the current literature on causal inference using
observational data, almost all methods are based on the propensity score (e.g., Dehejia and
Wahba 1999; Morgan and Harding 2006; Xie, Brand, and Jann 2012).

The main function of the propensity score is to balance out the distribution of observed
covariates X between the treatment group and the control group (within a given level of the
propensity score). For this purpose, the absolute level of the propensity score does not
matter. What matters is the relative magnitudes of propensity scores associated with
different values of covariates X.

The result of equation (15) states that, under ignorability, treatment is independent of
potential outcomes conditional on the propensity score. That is to say, there is no bias after
controlling for the propensity score. In light of our earlier discussion stating that bias can
manifest in two types, this amounts to two “no-bias” conditions:

1. There is no pre-treatment heterogeneity bias, or Type I selection bias, conditional
on p(X). In reference to equation (10), this means

(16)

2. There is no treatment-effect heterogeneity bias, or Type II selection bias,
conditional on p(X). In reference to equation (10), this means

(17)

Given equations (16) and (17), the researcher can apply the naive estimator

conditional on the propensity score, because there is no selection bias conditional on the
propensity score. In other words, if the ignorability assumption is true, we can assume away
both sources of bias, or systematic differences between treated units and untreated units, at
the same level of the propensity score. More precisely, we have
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(18)

Of course, unconditional comparisons of the treatment group and the control group, such as
ATE, TT, and TUT, involve aggregation of conditional comparisons over the actual
distribution of the propensity score.

Composition Bias
The methodological literature on causal inference can be divided into two groups, based on
whether or not the ignorability assumption is adopted. When it is not, the researcher is
concerned with residual selection bias conditional on the propensity score that is attributable
to unobservable variables. However, even when the ignorability assumption is true, there
can be “composition bias” if treatment propensity is systematically associated with
heterogeneous treatment effects (Xie 2011).

“Composition bias” results from a dynamic process of recruitment of units into treatment.
Recall that recruitment of units into treatment is always selective. This is acknowledged
even by the classic ignorability assumption. A well-known property of a dynamic survival
process is that the extent of selectivity changes as the proportion surviving changes (Vaupel
and Yashin 1985). As a result, the compositions of both the group that is treated and the
group that is untreated change constantly. Imagine that as the proportion of treated units in
U, p, increases from p1, to p2, the resulting changes in the composition of U1 and U0 give
rise to biases in aggregate measures of treatment effects, such as TT and TUT.

In a simulation analysis (Xie 2011), I demonstrate how composition bias occurs even when
ignorability is satisfied. In a situation in which there is a strong positive association between
propensity of treatment and treatment effect, I showed that, as the proportion of being
treated increases, both TT and TUT decrease. However, because TUT decreases at a faster
rate than TT, the amount of the sorting gain bias, TT – TUT, increases. The last finding –
that the sorting gain bias increases as the proportion being treated increases toward 1 – is
surprising.

I should emphasize that the composition bias that I discuss here is different from Type II
selection bias, because the former is compatible with ignorability but the latter violates
ignorability. To investigate Type II selection bias when ignorability is not true, the
researchers may resort to methods based on Marginal Treatment Effect (MTE), developed
by Heckman and his associates (Björklund and Moffitt 1987; Carneiro, Heckman, and
Vytlacil Forthcoming; Heckman, Urzua, and Vytlacil 2006). MTE is the expected treatment
effect at the marginal point at which a latent factor determining a unit’s treatment status is
neutral – i.e., does not favor either treatment or control. Zhou and Xie (2011) compares
propensity-score based methods to MTE-based methods.

MTE is closely related to the IV approach, as it can be conceptualized as the average
treatment effect for a small segment of units whose propensity of treatment is altered by an
IV. It is this change in propensity that shifts the proportion being treated. The work of
Heckman, Urzua, and Vytlacil (2006) shows that it is possible to derive various summary
quantities of interest, such as ATE, TT, and TUT, from individual-level MTE, using
appropriate weights. Thus, it is possible to study the sorting gain (or loss), the difference
between TT and TUT, using MTE-based methods.
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Discussion and Conclusion
The ubiquity of population heterogeneity in social phenomena makes it impossible to draw
causal inferences at the individual level. Instead, the best that can be achieved in any social
science is inference at the group level. However, focusing on group comparison also means
inattention to individual heterogeneity, resulting in comparisons essentially assuming
relatively homogeneous groups. This is a fundamental dilemma facing all researchers in
social science.

Many possible methods of formulating comparison groups can be used in actual research
settings. Besides the usual treatment-versus-control group comparison, one useful tool
meriting research attention is the propensity score, which summarizes information in a
multi-dimensional space from multivariate covariates into a univariate variable. Thus, one
potential source of heterogeneity that should receive particular attention in causal inference
is the interaction between the treatment effect and the propensity score (Xie, Brand, and
Jann 2012). Such interactions can be detected without any new requirement, as this can be
done under the assumption of ignorability. When such interactions are found, however, the
interpretation of the results may differ. If the researcher believes that ignorability is true, the
estimated effect of heterogeneity may be generalized. Alternatively, the researcher may
interpret the heterogeneous pattern in the estimated effects as an indication that the selection
process into treatment may be selective, driven by unobserved factors (Xie and Wu 2005;
Zhou and Xie 2011).

In this paper, I have demonstrated two forms of selection bias when the ignorability
assumption is violated. The first is bias in unobserved pretreatment factors affecting the
outcome even in the absence of treatment. The second is bias due to heterogeneity in
treatment effects. Even when the ignorability assumption is true, there can be “composition
bias” if treatment propensity is systematically associated with heterogeneous treatment
effects. Composition bias arises when the exposure population, the population at risk for
being selected into treatment, is changed dynamically by the selection of units into the
treatment group. As the treatment proportion expands, the degree of over-presentation of
units with high intrinsic propensities among the newly recruited into treatment declines. This
results in a shift in composition among newly recruited increments away from high
propensity toward low propensity recruits, thus altering average treatment effects at the
group levels.

In conclusion, I wish to warn researchers hoping to draw causal inferences in social science,
particularly when using observational data, of several potential sources of bias caused by
population heterogeneity. Casual inference is an ideal and sometimes ultimate goal in any
science, including social science. However, an essential characteristic of social phenomena
-- population heterogeneity -- makes the task of causal inference in social science extremely
difficult, if not insurmountable.
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