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Abstract

Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, 

such as schizophrenia, Parkinson’s disease and Alzheimer’s disease. The primary objective of this 

work is to review the literature on the role of dopamine D3 receptors in cognition, and propose 

dopamine D3 receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. 

A literature search was performed to identify animal and human studies on D3 receptors and 
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cognition using PubMed, MEDLINE and EMBASE. The search terms included “dopamine D3 

receptor” and “cognition”. The literature search identified 164 articles. The results revealed: (1) D3 

receptors are associated with cognitive functioning in both healthy individuals and those with 

neuropsychiatric disorders; (2) D3 receptor blockade appears to enhance while D3 receptor 

agonism seems to impair cognitive function, including memory, attention, learning, processing 

speed, social recognition and executive function independent of age; and (3) D3 receptor 

antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the 

prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus 

accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings 

suggest that D3 receptor blockade may enhance cognitive performance in healthy individuals and 

treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are 

needed to confirm these effects.
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1. Introduction

Cognition involves a number of mental processes that include attention, memory, language 

comprehension and expression, problem solving, and decision making. Cognition is 

indispensable for understanding information, applying knowledge, and changing 

preferences. Cognitive dysfunction is common in individuals with neuropsychiatric 

disorders, such as schizophrenia, mood disorders, Parkinson’s disease (PD), autism and 

Alzheimer’s disease (AD), even though the characteristic manifestations and 

pathophysiology of these disorders are different (Millan et al., 2012). Importantly, cognitive 

dysfunction has a negative impact on social functioning, independent community living, 

employment and quality of life (QOL) (Demirtas-Tatlidede et al., 2013; Green, 2007; Green 

et al., 2000, 2004; Millan et al., 2012). As such, the discovery of effective treatments to 

improve cognition is essential for improving QOL in individuals with neuropsychiatric 

disorders.

Although pro-cognitive drugs, such as donepezil (a cholinesterase inhibitor) or memantine (a 

weak N-methyl-D-aspartate receptor antagonist), are clinically available for AD, these 

agents have only short-term effects on behavioral and cognitive test scores compared with 

placebo (Kaduszkiewicz et al., 2005; McShane et al., 2006; Saddichha and Pandey, 2008). 

No disease-modifying effects have been shown in AD and no preventative treatments exist 

(Ballard et al., 2011). Many candidate pro-cognitive drugs have been investigated in clinical 

trials for schizophrenia, including AZD3480 (an α4β2 central neuronal nicotinic receptor 

agonist) (Velligan et al., 2012), dimebon (a serotonin 5HT-6 receptor antagonist) (Morozova 

et al., 2012), EVP-6124, TC-5619 (α7 nicotinic receptor partial agonists) (Lieberman et al., 

2013; Prickaerts et al., 2012; Tregellas et al., 2011), rimonabant (a cannabinoid-1 receptor 

antagonist) (Boggs et al., 2012), and rosiglitazone (a peroxisome proliferator-activated 

receptor-γagonist) (Yi et al., 2012). Unfortunately, these drugs lack enough efficacy for 
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therapeutic utilization. Thus, there is an urgent need to identify new therapeutic strategies for 

cognitive dysfunction in neuropsychiatric disorders.

The dopaminergic (DAergic) system has been implicated in cognitive function through 

animal and human research, including studies of molecular genetics and neuroimaging 

(Backman et al., 2006; Cole et al., 2012). Interestingly, animal and human studies have 

demonstrated that there is an inverted-U curve between DAergic signaling and cognition, 

where too little or too much DAergic signaling impairs cognitive performance. Mid-level 

DAergic signaling appears necessary for optimal cognitive performance (Baunez and 

Robbins, 1999; Boussaoud and Kermadi, 1997; Cools and D’Esposito, 2012; Glickstein et 

al., 2005).

The present article reviews the data on dopamine (DA) D3 receptors as a target for novel 

pro-cognitive treatments. Initially, the role of the DAergic system in cognition is presented. 

Then, the D3 receptor predominant brain regions related to cognitive function are discussed, 

in particular, the limbic regions that modulate memory, emotions and motivation (Gurevich 

and Joyce, 1999; Murray et al., 1992, 1994). Next, the characteristics and in vivo 

quantification of D3 receptors are described and the relationship between D3 receptors and 

cognition from previously reported animal and human studies are reviewed. Finally, D3 

receptor antagonists are proposed as a pro-cognitive therapy for cognitive dysfunction in 

individuals with neuropsychiatric disorders.

2. Search strategies and selection criteria

PubMed, Medline, EMBASE and references from relevant studies, review articles and books 

were searched using the terms ‘dopamine,’ ‘D3 receptor’ and ‘cognition.’ Only publications 

written in English pertaining to the relationship between D3 receptors and cognition were 

selected. The search yielded 164 articles, which formed the empirical basis of this review. 

The last search was conducted on April 14, 2013. Cross-referencing of the identified 

publications was also performed. The literature search was conducted independently by two 

of the authors (S.N. and A.G.).

3. Characteristics and in vivo quantification of dopamine D3 receptors

Dopamine receptors are divided into two subclasses, D1- and D2-like receptor families. The 

D1-like receptor family contains the D1 and D5 receptors, and the D2-like receptor family 

contains the D2, D3, and D4 receptors (Ilani et al., 2001; Le Foll et al., 2009). As a member 

of the D2-like receptor family, D3 is a G-protein coupled receptor (GPCR). In the simplest 

conceptualization, GPCRs work as a switch. When a G-protein is attached to the cellular 

side of a GPCR, the GPCR exists in high-affinity for its ligand, but when the G-protein 

detaches from the GPCR, the GPCR has very low affinity for DA. D3 receptors are unique 

among the D2-like receptors, exhibiting sustained high affinity for DA (>20-fold higher than 

D2 receptors), suggesting that D3 receptors in vivo may be occupied by endogenous DA for 

extended periods of time, leading to high spontaneous activation of D3 receptors (Richtand 

et al., 2001; Vanhauwe et al., 2000). Unlike D2 receptors, D3 receptors can be stimulated by 

tonic DA levels in the brain due to their high affinity for DA (Sokoloff et al., 1990), and may 
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attenuate any effects of DA fluctuation related to phasic DA release. Accordingly, small 

changes in the number or function of D3 receptors may lead to dramatic effects on synaptic 

transmission, suggesting that D3 receptors could be critical modulators of normal DAergic 

function, and consequently, cognition (as described below). Other DA receptors such as D1, 

D2, D4 and D5 are also involved in cognition. As the focus of this review is D3 receptors and 

cognition, please see El-Ghundi et al. (2007), Floresco and Magyar (2006), and Takahashi et 

al. (2012) for a review on other DA receptors and cognition.

D3 receptors are expressed both as autoreceptors on DA neurons and as post-synaptic 

receptors (Diaz et al., 1995, 2000; Levesque et al., 1992). They are present in the ventral 

striatum (nucleus accumbens (NAc)) and other limbic areas (Bouthenet et al., 1991; 

Sokoloff et al., 1990). There are low D3 receptor levels in the dorsal striatum and a variety of 

cortical regions, including the frontal cortex in humans (Hall et al., 1996; Suzuki et al., 

1998) and nonhuman primates (Morissette et al., 1998); whereas the dorsal striatum is 

almost entirely devoid of D3 receptor expression in rodents. D3 receptors are also found in 

the islands of Calleja and cerebellum (Diaz et al., 2000; Levesque et al., 1992). It is 

important to note that there are significant inter-species differences in the distribution of D3 

receptors in the central nervous system, which may limit generalization of D3 receptor-

mediated behaviors from one species to another (Levant, 1998).

Some of the brain structures expressing D3 receptors encompass a proposed feedback loop 

for modulating attention, memory, emotions, motivation and reward. The output neurons of 

the NAc have a high density of D3 receptors and receive DAergic innervation from the 

ventral tegmental area (VTA). The outputs of the NAc reach the entorhinal and prefrontal 

cortices (PFC) after relaying in the ventral pallidum and mediodorsal thalamus. In turn, the 

shell of the NAc receives projections from the cerebral cortex, hippocampus and amygdala 

and projects to the VTA (Sokoloff et al., 2006). The D3 receptors in the VTA and substantia 

nigra may function as autoreceptors and affect DAergic feed-forward loops; potentially 

influencing theta oscillations that seem essential for coordinating neuronal activity among 

these loops (Fujisawa and Buzsaki, 2011). These feed-forward loops have a unique 

configuration, and the preferential distribution of D3 receptors in the regions that modulate 

attention, memory and emotions (Gurevich et al., 1997) suggests that D3 receptors may play 

a role in regulating cognitive function.

Our group has developed [11C]-(+)-4-propyl-9-hydroxy-naphthoxazine ([11C]-(+)–PHNO) 

(Wilson et al., 2005), the only available radiotracer for imaging D3 receptors with a 53-fold 

D3/D2 receptor selectivity in vivo in humans (Gross and Drescher, 2012). [11C]-(+)–PHNO 

is a D2/3 PET agonist with high in vitro affinity for both D2 and D3 receptors, but shows 

preferential in vivo affinity and selectivity for D3 receptors in D3-receptor brain regions. 

PET studies in mice and baboons using [11C]-(+)-PHNO in the presence and absence of a 

D3 receptor antagonist, SB-277011, confirm that D3 receptors are highly expressed and 

quantifiable in vivo in the ventral pallidum, substantia nigra, thalamus, and habenula; to a 

lesser extent in the ventral striatum; and negligibly in the dorsal caudate and putamen 

(Rabiner et al., 2009). The development of [11C]-(+)-PHNO as a D3 receptor PET ligand 

provides the possibility of in vivo exploration of the role of D3 receptors in normal and 

abnormal cognition. The use of [11C]-(+)-PHNO, however, is limited by its non-selective 
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binding to both D3 and D2 receptors, chiefly because D2 receptors tend to prevail in brain 

regions where there is an abundance of D3 receptors (Gurevich and Joyce, 1999; Suzuki et 

al., 1998). The binding of the [11C]-(+)-PHNO may also be influenced by endogenous DA 

levels due to its higher affinity for D3 receptors, especially in the presence of compounds 

that block auto-receptors, which enhance endogenous DA release (Gross and Drescher, 

2012). Thus, a highly selective D3 receptor antagonist PET tracer is still needed as [11C]-

(+)-PHNO may not be a suitable radiotracer to detect D3 receptors in areas with low D3 

receptor concentrations or in regions where D2 receptors prevail over D3 receptors.

The relationship between cognition and D3 receptors in healthy individuals is inconsistently 

reported (Ball et al., 1998; Czermak et al., 2009; Keri et al., 2005; Lane et al., 2008). While 

the D3 receptor gene, DRD3, was not associated with enhanced general cognitive ability or 

reasoning skill (Ball et al., 1998; Gong et al., 2011), the DRD3 Ser/Ser genotype was linked 

to fewer perseverative errors during the Wisconsin Card Sorting Test (WCST) (Lane et al., 

2008). In contrast, elderly individuals carrying the DRD3 Ser/Gly genotype had more 

benefit from multimodal cognitive training than the carriers of the Ser/Ser genotype 

(Pieramico et al., 2012). Only one study has directly investigated whether differences in 

midbrain D3 receptor availability are associated with functional interactions between large-

scale networks and brain regions involved in cognition in healthy individuals (Cole et al., 

2012). Combining [11C]-(+)-PHNO PET and resting-state functional magnetic resonance 

imaging (fMRI), this study of healthy individuals demonstrated that high midbrain D3 

receptor availability is associated with reduced functional connectivity between the 

orbitofrontal cortex (OFC) and frontopar-ietal networks, which are implicated in executive 

control and salience processing (Seeley et al., 2007). This result suggests that D3 receptor 

availability can modulate the pathway underlying cognitive control in healthy individuals.

4. Potential mechanisms between dopamine D3 receptors and cognition

The preclinical evidence suggests that D3 receptors influence cognition by modulating PFC 

function despite the relatively few D3 receptors in this region (Loiseau and Millan, 2009; 

Watson et al., 2012a). PET studies of baboons have shown that D3 receptor-mediated 

regional cerebral blood flow responses are restricted to the prefrontal and limbic cortices 

(Black et al., 2002). Executive function as measured with a PFC-dependent task is enhanced 

in D3 receptor knockout (KO) mice and is accompanied by increased c-fos expression in the 

PFC (Glickstein et al., 2005). Bilateral microinjection of D3 receptor antagonists into the 

PFC of rats improves social recognition, social discrimination and object recognition, while 

microinjection into the NAc or striatum has no effect (Loiseau and Millan, 2009; Watson et 

al., 2012a). Moreover, the blockade of D3 receptor enhances the release of acetylcholine 

(ACh) in the PFC of rats (Gobert et al., 1995; Lacroix et al., 2003, 2006; Millan and Brocco, 

2008; Millan et al., 1995, 2007), whereas D3 receptor agonists do not increase ACh levels 

(Gobert et al., 2003). The mechanism by which D3 antagonism results in elevated cortical 

ACh levels is unclear. Given a high expression of D3 receptors in the thalamus and a lack of 

D3 receptor expression in the PFC, modulation of thalamocortical projections via D3 

antagonism may indirectly enhance the release of ACh in the PFC. This, in turn, may 

facilitate the PFC’s top-down control of subcortical brain regions that process cognitive cues 
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(Loiseau and Millan, 2009; Millan et al., 2007; Perio et al., 1989; Soffie and Bronchart, 

1988; Watson et al., 2012a; Winslow and Camacho, 1995).

DAergic system enhancement by D3 receptor antagonists may contribute to the cognitive 

control exerted by the frontal cortex through other mechanisms (Sesack and Grace, 2010). 

D3 receptor KO mice have extracellular levels of DA in the NAc that are twice as high as 

those of wild type (WT) mice (Joseph et al., 2002; Koeltzow et al., 1998; Le Foll et al., 

2005a). Low, D3-selective doses of preferential D3 receptor agonists decrease DA synthesis 

measured by microdialysis in the mesolimbic area in rats (Pugsley et al., 1995). The 

antisense mutation of D3 receptors increases DA turnover in the limbic forebrain and NAc in 

rats (Nissbrandt et al., 1995). In contrast, selective D3 receptor antagonists block the 

inhibitory effect of D3 receptor agonism on DA release and synthesis in the frontal cortex 

(Banasikowski et al., 2010; Gobert et al., 1995, 1996; Millan et al., 2008). Lastly, a 

combined PET-fMRI study showed that high mid-brain D3 receptor availability was 

associated with reduced functional connectivity between the OFC and frontoparietal 

networks implicated in executive control in healthy individuals (Cole et al., 2012). These 

findings suggest that D3 receptors can modulate cortical control of cognitive functions via 

their inhibitory effect on mesocortical DAergic activity (Gross and Drescher, 2012). Further 

work is needed to elucidate the mechanism of the relationship between D3 receptors, the 

frontal cortex and cognition, as the PFC has relatively few D3 receptors. A recent study 

reported that D3 receptors may control N-methyl-D-aspartate (NMDA) receptor signaling by 

acting on pyramidal cells either directly at post-synaptic levels in the NAc or indirectly at 

presynaptic levels in the PFC. The D3 receptor selective antagonist, F17141, reversed 

hyperactivity and social interaction deficits induced by NMDA receptor blockade by 

MK-801 in mice (Sokoloff et al., 2013). Thus, glutamatergic–D3 receptor interactions may 

shed light on these relationships.

Another potential mechanism by which D3 receptor antagonists may improve cognition is 

cAMP/PKA/CREB signaling in the hippocampus, which has a modest density of D3 

receptors (Basile et al., 2006; Bouthenet et al., 1991; Khan et al., 1998; Richtand et al., 

1995; Stanwood et al., 2000). D3 receptor antagonists do not appear to influence ACh levels 

in the hippocampus as they do in the PFC (Bouthenet et al., 1991; Joyce, 2001; Joyce and 

Millan, 2005; Stanwood et al., 2000). Aged D3 receptor KO mice showed better spatial 

memory performance than age-matched WT mice along with a higher degree of 

hippocampal CREB phosphorylation, which may have neuroprotective effects on memory 

consolidation (Lee et al., 2005). Whereas no difference was found in the level of CREB 

phosphorylation in the PFC between the aged D3 receptor KO mice and age-matched WT 

mice (Swant et al., 2008; Taubenfeld et al., 1999; Walton et al., 1999; Xing et al., 2010b). 

Thus, the cognitive effects of D3 receptors may be attributable to the activation of 

cAMP/PKA/CREB signaling in the hippocampus.

Alternatively, given that D3 receptor stimulation potentiates D1 receptor-mediated behavioral 

effects (Le Foll et al., 2009; Marcellino et al., 2008), the interaction between D3 and co-

expressed D1 receptors may cause dysregulation of CREB signaling in the aged 

hippocampus (Xing et al., 2010b). In support of this, D1 receptor KO mice do not acquire 

spatial memory or show activation of the underlying CREB signaling pathways compared to 
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the WT mice; however, D3 receptor KO mice exhibited normal learning abilities and normal 

activation of these signaling pathways. The results suggest that D1 receptors, but not D3 

receptors, may be critical for hippocampus-dependent spatial learning.

In summary, the above findings suggest that D3 receptors may influence cognition by 

modulating PFC function (Loiseau and Millan, 2009; Watson et al., 2012a) and by 

regulating CREB signaling in the hippocampus (Xing et al., 2010b); however, further 

research into this relationship is required.

5. Dopamine D3 receptors and cognition in neuropsychiatric disorders with 

cognitive dysfunction

Dopamine D3 receptors are implicated in the pathophysiology of neuropsychiatric disorders 

that are commonly accompanied by cognitive dysfunction, including schizophrenia 

(Dubertret et al., 1998; Gross and Drescher, 2012; Keefe and Harvey, 2012), drug addiction 

(Khaled et al., 2010; Le Foll et al., 2002, 2003, 2005b), PD (Bezard et al., 2003; Boileau et 

al., 2009), dementia (Sokoloff et al., 2006), mood disorders (Sokoloff et al., 2006), and 

autism (de Krom et al., 2009), although not consistently (Chiaroni et al., 2000; Cosentino et 

al., 2009; Heidbreder and Newman, 2010; Kim et al., 2008; Kumar and Patel, 2007; Serretti 

et al., 2000). However, only a few studies have directly explored the relationship between D3 

receptors and cognition in these conditions.

5.1. Dopamine D3 receptors in Alzheimer’s disease

Dementia is associated with D3 receptor anomalies. Piggott et al. (1999) demonstrated that 

D3 receptor binding is increased in the striatum of AD when compared to healthy controls in 

a [3H]-7-OH-DPAT autoradiography study of postmortem brains. Preclinical studies have 

found that the brains of D3 receptor KO mice have reduced levels of neurofibromin (NF1). 

The heterozygous loss of NF1 causes neurofibromatosis type I disease and increases 

amyloid precursor protein (APP) levels, which are involved in the pathogenesis of AD. 

These findings suggest that a link between NF1, APP and D3 receptors may contribute to 

cognitive dysfunction in spatial learning and memory in neurofibromatosis type 1 disease 

(Castorina et al., 2011; Donarum et al., 2006).

5.2. Dopamine D3 receptors in schizophrenia

Some genetic and postmortem studies have shown elevated D3 receptor expression in the 

central nervous system and blood lymphocytes in individuals with schizophrenia (Gurevich 

et al., 1997; Ilani et al., 2001). Our group found no difference in D3 receptor availability as 

measured with [11C]-(+)-PHNO PET between unmedicated individuals with schizophrenia 

and healthy controls. The limitations of [11C]-(+)-PHNO are described in the section 

“Characteristics and in vivo quantification of dopamine D3 receptors” (Graff-Guerrero et al., 

2009).

A few studies have explored the relationship between cognitive performance and DRD3 

Ser9Gly polymorphisms in individuals with schizophrenia. Szekeres et al. (2004) found that 

Ser/Ser carriers perform better on the WCST than Gly carriers, which is indicative of better 
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working memory performance. Keri et al. (2005) found that Gly carriers have more efficient 

striatal habit learning both in healthy controls and in individuals with schizophrenia. In 

contrast, Bombin et al. (2008) showed that Ser/Ser carriers perform better on an executive 

functioning task than Gly/Gly carriers. Conversely, Rybakowski et al. (2005) did not find 

any association between working memory and the various DRD3 polymorphisms. Given the 

fact that the Ser allele is associated with a lower affinity for DA than the Gly allele 

(Jeanneteau et al., 2006; Lundstrom and Turpin, 1996; Lundstrom et al., 1998), these results 

indicate that the lower DRD3 Ser/Ser affinity for DA and higher DA-mediated response may 

be associated with better frontal/executive functioning, such as set-shifting.

5.3. Dopamine D3 receptors in addictions

Dopamine D3 receptors may play an important role in the pathophysiology of substance use 

disorders. D3 receptors are distributed in the mesolimbic DA system where they may 

mediate the influence of drug-associated cues on drug-seeking behaviors (for reviews, please 

see Heidbreder (2013); Heidbreder et al. (2005)). A PET study found that methamphetamine 

polydrug abusers had higher [11C]-(+)-PHNO binding in the D3 receptor-rich regions, 

indicating that the D3 receptor might be upregulated in this population (Boileau et al., 2012).

Few studies have explored the relationship between cognitive function and DRD3 Ser9Gly 

polymorphisms in individuals with substance use disorders. An association was found 

between a single nucleotide polymorphism of the DRD3 gene (rs6280TC) and cognitive 

dysfunction in human immunodeficiency virus (HIV)-positive individuals who were 

dependent on methamphetamine (Gupta et al., 2011). The study found that DRD3 Gly allele 

carriers have more cognitive dysfunction than the Ser/Ser carriers in the presence of recent 

methamphetamine use. Although no association was found between the DRD3 gene and 

HIV viral load in this study, simian models of the neurological complications of acquired 

immune deficiency syndrome showed that methamphetamine administration may increase 

the viral load in the frontal lobe, caudate, and hippocampus (Marcondes et al., 2010). It was 

proposed that DA enhances replication of the HIV virus in macrophages within the central 

nervous system. Due to the Gly allele’s higher affinity for DA than the Ser allele, the 

presence of Gly may facilitate increased replication of the virus by methamphetamine, 

which, in turn, may induce greater cognitive dysfunction. Further research is required to 

determine the utility of DRD3 genotype as a biological marker in clinical settings.

The relationship between DRD3 and cognition has also been explored in alcohol-dependent 

subjects. Homozygosity for the DRD3 Ser9Gly polymorphism is significantly increased in 

alcohol-dependent individuals with low cognitive impulsiveness. Impulsivity secondary to 

alcohol intoxication may, in part, be related to increased DAergic activity, which was 

proposed to foster dependence in individuals with low cognitive impulsiveness (Limosin et 

al., 2005).

In summary, the findings from the few post-mortem, neuroimaging, and genetic studies point 

to a relationship between D3 receptors and cognitive dysfunction in individuals with 

neuropsychiatric disorders.
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6. Pharmacological dopamine D3 receptor intervention and cognition in 

humans

Few data have been published on the effects of selective DA D3 receptor antagonists on 

cognitive dysfunction in humans due to the lack of selective D3 receptor antagonists 

available on the market. Although many antipsychotics have high affinity for D3 as well as 

D2 receptors, the high affinity of endogenous DA for D3 receptors has been postulated to 

result in only minimal or no D3 receptor occupancy by antipsychotics in DA rich areas 

(Graff-Guerrero et al., 2009; Gross and Drescher, 2012; Mizrahi et al., 2011; Schotte et al., 

1996). Mugnaini et al. (2013) demonstrated that abstinent smokers took significantly longer 

to color-name words related to smoking than to color-name neutral control words in the 

Stroop test (Mugnaini et al., 2013). This attentional bias of the abstinent smokers was 

partially reversed by a selective D3 receptor antagonist, GSK598809. ABT-925 is the only 

selective D3 receptor antagonist that has survived for testing in a clinical phase II trial in 

individuals with schizophrenia. Although it did not show significant clinical improvement, 

positive effects were found in individuals with the G allele of the DRD3 Ser9Gly 

polymorphism (Bhathena et al., 2011). Further, ABT-925 showed significant effect on 

executive function and emotion recognition in the same sample (Gross et al., 2013). Most of 

the evidence is derived from the effects of preferential D3 receptor-agonists, pramipexole (5- 

to 7-fold D3/D2 and D4 receptor selectivity) (Brusa et al., 2003; Hubble, 2000; Rektorova et 

al., 2005; Samuels et al., 2006a, b, 2007) and rotigotine (20-fold D3/D2 and 100-fold D3/D1 

receptor selectivity) (Bunten and Happe, 2006; Sanford and Scott, 2011; Scheller et al., 

2009) on cognition in healthy individuals and those with PD or bipolar disorder. Thus far, 

the cognitive effects of preferential D3 receptor agonists in humans are mixed (Brusa et al., 

2005). Rotigotine, for example, did not significantly influence cognition in individuals with 

PD (Trenkwalder et al., 2011); while pramipexole improved working memory in individuals 

with cognitively-impaired PD (Costa et al., 2009) and euthymic bipolar disorder (Burdick et 

al., 2012). In other studies, pramipexole had deleterious or no effects on working memory in 

healthy individuals (Ersche et al., 2011; Hamidovic et al., 2008) and impaired reversal 

learning in individuals with PD (Cools et al., 2006). Moreover, ropinirole (10-fold D3/D2 

and D4 receptor selectivity) induced cognitive adverse events less frequently than 

pramipexole in individuals with early PD (Zagmutt and Tarrants, 2012). These inconsistent 

findings may derive from the fact that preferential D3 receptor agonists have other 

mechanisms, such as 5-HT1A agonism (e.g., rotigotine). Further, preferential D3 receptor 

agonists can contribute to excess DAergic activity based on the baseline DAergic activity, 

which may have negative effects on cognitive function. For example, in individuals with PD 

there was an inverted U-shaped curve relationship between DAergic signaling and cognition 

(Svenningsson et al., 2012).

7. Pharmacological dopamine D3 receptor intervention and cognition in 

animals

Numerous animal studies have explored the cognitive effects of pharmacological 

interventions targeting D3 receptors. Table 1 summarizes the cognitive domains that have 

been investigated. Interventions have included both D3 receptor agonists and antagonists 
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(Gross and Drescher, 2012). Cognitive dysfunction was produced through several distinct 

perturbations, including the use of drugs such as scopolamine, inter-trial intervals, isolation 

rearing, and aging. D3 receptor antagonists either enhanced or had no impact on cognitive 

performance, including the agents S33084 (Loiseau and Millan, 2009), S33138 (Millan and 

Brocco, 2008), SB277011 (Loiseau and Millan, 2009), (+)S14297 (Millan et al., 2007), 

nefadotride (Sigala et al., 1997), RGH-1756 (Laszy et al., 2005), U-99194A (Laszy et al., 

2005), and RG-15 (Gyertyan et al., 2008). In contrast, the D3 receptor agonists impaired 

cognitive performance in WT mice, including PD128907 (Watson et al., 2012a) and 7-OH-

DPAT (Bernaerts and Tirelli, 2003). Moreover, the D3 receptor antagonist, S33138, reversed 

age-related cognitive decline in a delayed matching-to-sample task of working memory in 

old rhesus monkeys, suggesting that D3 receptor blockade is pro-cognitive independent of 

age (Millan et al., 2010). The specificity of D3 receptors for their pro-cognitive effects is 

supported by the failure of L741,626, a preferential D2 antagonist, to improve cognition after 

it was infused in the frontal cortex (Loiseau and Millan, 2009).

D3 receptors may also participate in the DA-related pro-cognitive effects of angiotensin AT4 

receptor agonists through unclear mechanisms (Braszko, 2010). A partial D3/2 receptor 

agonist that preferentially binds to presynaptic receptors abolished the memory-enhancing 

effects of angiotensin AT4 receptor agonists (Stragier et al., 2007).

In summary, animal studies suggest that D3 receptor blockade enhances cognitive function, 

while D3 receptor activation impairs cognition independent of age, which would justify 

clinical trials to examine the effect of D3 receptor antagonists on neuropsychiatric disorders 

(Laszy et al., 2005).

8. Genetic dopamine D3 receptor intervention (D3 receptor knockout) and 

cognition in animals

The performance of D3 receptor KO mice on various cognitive tasks, such as the two-choice 

perceptual discrimination test, SND, the step-through passive-avoidance test, T-maze and the 

delayed alternation test, were also examined to further characterize the roles of the D3 

receptor (Table 2) (Chourbaji et al., 2008; Glickstein et al., 2002, 2005; Micale et al., 2010; 

Watson et al., 2012a; Xing et al., 2010b).

D3 receptor KO mice showed better set-shifting and social discrimination than WT mice 

(Glickstein et al., 2005; Watson et al., 2012a). While the D3 receptor antagonist, S33084, 

improved social discrimination in WT mice, it had no effect on the performance of the D3 

receptor KO mice (Watson et al., 2012a). This suggests that S33084-mediated improvement 

can be explained by D3 receptor antagonism, and not by other non-specific effects of 

S33084. In addition, a stereological assessment of the set-shifting test-induced neuronal 

expression of c-fos in the anterior cingulate and prelimbic/infralimbic cortices revealed 

higher activation in the D3 receptor KO mice than in the WT mice (Glickstein et al., 2005). 

These findings indicate that the increased set-shifting performance in the D3 receptor KO 

mice correlates with the magnitude of the activation of the PFC.
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Aged D3 receptor KO mice displayed ameliorated age-related spatial memory dysfunction 

and smaller decreases in hippocampal CREB activation in comparison with aged WT mice 

(Xing et al., 2010b). Given that CREB may have neuroprotective effects and that the 

persistent elevation of hippocampal CREB may be associated with memory consolidation, 

these findings suggest that D3 receptor-regulated CREB signaling in the hippocampus may 

be involved in these age-associated cognitive alterations (Xing et al., 2010b). In contrast, the 

D3 receptor KO mice were impaired or showed no difference compared to the WT mice in 

spatial working memory (Chourbaji et al., 2008; Glickstein et al., 2002). Of note, spatial 

working memory was partially rescued by a D1 receptor agonist, which caused a parallel 

increase in neuronal DRD3 Ser9Gly l c-fos expression in the PFC (Glickstein et al., 2002). 

This indicates that this cognitive task is partially dependent on optimal functioning of the 

D1R (Millan et al., 2010; Watson et al., 2012a).

In summary, D3 receptor KO mice showed better performance than WT mice in measures of 

selective attention (mainly olfactory), aversive/associative learning, spatial memory and 

executive function (cognitive flexibility) independent of age. In addition, D3 receptor 

antagonists enhanced the cognitive performance of the WT mice and did not affect the 

cognitive performance of the D3 receptor KO mice, supporting the finding from 

pharmacological interventions that D3 receptor blockade enhances cognitive function.

9. Implications for dopamine D3 receptor antagonists as pro-cognitive 

agents

Deficits across multiple cognitive domains are common in neuropsychiatric disorders 

(Millan et al., 2012), contributing to worse clinical outcomes, social dysfunction, poorer 

QOL and greater caregivers’ burden (Demirtas-Tatlidede et al., 2013). Despite this impact, 

the cognitive enhancing effects of currently available treatments are limited. Various pro-

cognitive drug candidates, including AZD3480 (Velligan et al., 2012), dimebon (Morozova 

et al., 2012), EVP-6124 (Prickaerts et al., 2012), rimonabant (Boggs et al., 2012), 

rosiglitazone (Yi et al., 2012) and TC-5619 (Lieberman et al., 2013), have been investigated 

in clinical trials for neuropsychiatric disorders; however, most of them have failed to show 

clinically relevant effects. Thus, there is an urgent need to identify new therapeutic strategies 

that target cognitive dysfunction. There is great heterogeneity in the pathological 

mechanisms underlying symptom expression in neuropsychiatric disorders. Even within the 

same condition, subtypes present symptomatically different with regard to the presence and 

severity of psychosis, mood, anxiety, and cognitive impairment (e.g. schizophrenia spectrum 

disorders), depending on individual host factors and age of illness onset (Millan et al., 2012). 

Likewise, cognitive dysfunction is common to different neuropsychiatric disorders, 

suggesting that treatment interventions aimed at specific targets may be effective for 

cognitive dysfunction common across the different disorders (Millan et al., 2012).

As described in the present review, D3 receptor antagonists hold promise as pro-cognitive 

drugs across a variety of cognitive domains, and are particularly attractive for age-related 

cognitive dysfunction, due to the improved side effect profile over traditional DA 

antagonists, which are associated with extrapyramidal symptoms, tardive dyskinesia, and 
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metabolic effects (Millan and Brocco, 2008). Selective D3 receptor antagonists were not 

associated with catalepsy (Millan et al., 1995, 2000; Reavill et al., 2000) and were shown to 

counteract this effect of haloperidol in rodents (Gyertyan and Saghy, 2007). Thus, unlike 

most dopamine blocking agents, selective D3 receptor antagonists do not appear to be 

associated with negative/cognitive symptoms and may also treat these adverse effects 

attributable to antipsychotics (Gross and Drescher, 2012).

This review has to be considered in light of the limitations within the literature. First, this 

review only focuses on the relationship between D3 receptors and cognition. Many other 

mechanisms, from receptors to complex networks, should be taken into consideration when 

exploring cognitive treatments for neuropsychiatric disorders, assuming the possibility that 

some cognitive domains may be related to D3 receptor signaling, while others may not, such 

as exploratory abilities and hippocampus-dependent spatial learning (Xing et al., 2010a; Zhu 

et al., 2010). Thus, D3 receptor antagonists should also be studied as adjuncts to other 

cognitive treatments. Second, few studies have specifically addressed the relationship 

between D3 receptors and cognition in humans. Most of the studies referred to in this review 

were animal studies that used cognitive modeling procedures, which may not reflect human 

cognition. Further, few animal models of cognitive dysfunction in the context of 

neuropsychopathology exist compared with those available for normal cognition. This 

hampers direct translation from animal models to real world clinical settings. Third, the 

results obtained from D3 receptor KO mice may be due to the effects of a lack of D3 

receptors on adaptive developmental processes (Glickstein et al., 2005). Fourth, although D3 

receptor antagonists are promising as pro-cognitive drugs, few data have been published on 

the effects of selective D3 receptor antagonists on cognitive dysfunction in humans. This is 

likely due to the lack of selective D3 receptor antagonists available on the market.

In conclusion, human studies indicate that a relationship exists between D3 receptors and 

cognitive dysfunction in individuals with neuropsychiatric disorders. Preclinical studies 

suggest that D3 receptor antagonists may improve cognitive performance by enhancing the 

release of ACh in the PFC, disinhibiting the activity of DA neurons projecting to the NAc or 

PFC, or activating CREB signaling in the hippocampus. Given that currently available 

treatments have limited value for the management of cognitive dysfunction, D3 receptor 

antagonists are worthy candidates for the enhancement of cognitive function in individuals 

with neuropsychiatric disorders. Clinical trials are needed to confirm their effects.
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