
The GA and the GWAS: Using Genetic Algorithms to Search for
Multi-locus Associations

Michael A. Mooney,
Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University,
Portland, OR 97239., mooneymi@ohsu.edu

Beth Wilmot,
Oregon Clinical & Translational Research Institute and the Department of Medical Informatics &
Clinical Epidemiology, Oregon Health & Science Univeristy, Portland, OR 97239.,
wilmotb@ohsu.edu

Bipolar Genome Study, and
Directed by John Kelsoe at the University of California, San Diego, La Jolla, CA 92093.,
jkelsoe@ucsd.edu

Shannon K. McWeeney
Division of Bioinformatics and Computational Biology, Department of Medical Informatics &
Clinical Epidemiology; the OCTRI Translational Bioinformatics Program; and the OHSU Knight
Cancer Institute, Oregon Health & Science University, Portland, OR 97239.,
mcweeney@ohsu.edu

Abstract
Enormous data collection efforts and improvements in technology have made large genome-wide
association studies a promising approach for better understanding the genetics of common
diseases. Still, the knowledge gained from these studies may be extended even further by testing
the hypothesis that genetic susceptibility is due to the combined effect of multiple variants or
interactions between variants. Here we explore and evaluate the use of a genetic algorithm to
discover groups of SNPs (of size 2, 3, or 4) that are jointly associated with bipolar disorder. The
algorithm is guided by the structure of a gene interaction network, and is able to find groups of
SNPs that are strongly associated with the disease, while performing far fewer statistical tests than
other methods.
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1 Introduction
In the past five years, nearly 500 large-scale genome-wide association (GWA) studies have
been performed in an attempt to better understand the genetic component of complex
diseases [1]. Unfortunately, for many of the diseases studied only a small fraction of disease
risk can be explained by the SNP associations discovered so far. A number of hypotheses
may be able to explain this lack of success. For instance, a large portion of disease
susceptibility may be due to types of genetic variation that are not measured in a GWAS,
such as rare variants or epigenetic variation. However, one hypothesis that can be explored
with the currently available data is that multi-locus associations (interactions among SNPs)
may explain a greater proportion of risk than individual SNPs alone.

The search for multi-locus associations is hardly a trivial problem, given the enormous
combinatorial complexity and the inherent statistical issues (i.e., the multiple testing
problem). Despite the difficulty of the problem, a number of different approaches have been
used to discover multi-locus associations [2], [3], [4], [5], [6]. For the most part, previous
approaches have dealt with the issue of combinatorial complexity by reducing the number of
SNPs included in the analysis or by looking only for SNP pairs, ignoring the possibility of
higher-order interactions.

Several researchers have proposed the use of genetic algorithms (GAs) to detect multi-locus
associations or solve similar problems [7], [8], [9], [10], but to our knowledge no GA has
yet been applied to a large-scale GWA study. The GA is a general purpose search and
optimization algorithm—based on the process of natural selection—that has been used in a
number of diverse areas, from engineering design to RNA structure prediction [11], [12],
[13], [14]. The technique is particularly useful for exploring large search spaces, and when
the problem may have multiple solutions. The current problem of discovering multi-locus
associations definitely fits these criteria.

2 Methods
2.1 The Data

The main goal of this study was to show the feasibility of discovering multi-locus
associations in a full-scale case-control GWA study. The genotype data is from the Bipolar
Genome Study (BiGS) and consists of 1865 individuals genotyped by the Translational
Genomics Research Institute (TGen) [15]. The Affymetrix Human Genome SNP 6.0 array,
with over 900000 SNPs, was used to genotype all subjects, and genotype calls were made
with the CRLMM algorithm [16].

Only cases with a diagnosis of bipolar I disorder were included in the study. In addition, the
following criteria were used to remove low quality samples/SNPs: low genotyping call rates
per sample (< 0.97), excessively high or low sample heterozygosity rates, low genotyping
call rates per SNP (< 0.95), low minor allele frequency (< 0.01), and deviation from Hardy-
Weinberg Equilibrium (p-value < 0.000001). After these quality control measures were
applied, 1117 cases, 402 controls, and 636169 SNPs remained.

Given the large number of SNPs and the fact that we are attempting to find associations with
groups of two to four SNPs, the combinatorial complexity represents a serious challenge. To
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address this problem, a gene interaction network was used to constrain the search space.
This technique was previously used by Emily, et al. to some success [17].

Gene interaction data was gathered from the STRING database (ver. 8.1) [18], while gene
definitions were taken from Ensembl (ver. 54, NCBI build 36) [19]. To integrate the SNP
data and the interaction data, all SNPs were mapped to the genes in the interaction network.
A SNP was mapped to a gene if it fell within the gene itself or within a 3 kb window
upstream or downstream of the gene. Of the 636169 SNPs that passed quality control,
217012 SNPs mapped to 12793 genes in the interaction network. The interaction network
contained 1695444 gene interactions.

In an attempt to focus the search even further, we compiled results from various studies
about the pathophysiology and genetics of bipolar disorder. Evidence from previous linkage
studies, gene association studies, and gene expression studies was used to assign scores to
genes in the interaction network. In addition, gene function information and network
connectivity were also used to score genes. The algorithm is able to use the gene scores to
preferentially select the most promising genes—those with prior evidence of involvement in
bipolar disorder—as it searches the network for multi-locus associations. All of the previous
research used to assign gene scores in the interaction network can be found in the
Supplemental Materials.

2.2 The Algorithm
A standard genetic algorithm was adapted to the task of searching for groups of SNPs that
are jointly associated with bipolar disorder, in the context of a standard case-control GWAS.
The algorithm is constrained by the structure of a gene interaction network, where each node
in the network represents a gene and all SNPs that are located within or near that gene.

Fig. 1 gives a basic overview of the algorithm, and the algorithm’s mutation procedure is
illustrated in Fig. 2. The fitness value used by the algorithm is the p-value from a simple
Chi-square, but any statistical test of association could have been used. A Chi-square test
was chosen because it is easily and quickly calculated. For all multi-SNP associations tested,
an r × 2 contingency table was created, where the rows represent each possible genotype
combination. For instance, for a pair of SNPs, a 9 × 2 contingency table is created and a Chi-
square test with 8 degrees of freedom is calculated (for a group of three SNPs, a 27 × 2
contingency table would be needed).

Two different hypotheses about the nature of the SNP groups were tested. Hypothesis 1
requires that all members of a SNP group be within a connect sub-network of genes (i.e.,
each gene must interact with at least one other gene in the group). Hypothesis 2 is the more
general case and does not require that the genes be connected. Because Hypothesis 2 does
not require that the network connections between genes be preserved, an additional genetic
operator, the crossover function, can be used to introduce variation into the population of
SNP groups. In this case, uniform crossover with a probability of 0.5 was used. This means
that if two SNP groups were chosen for crossover (based on the specified crossover rate),
the members of each group would be sorted and the two groups compared. Any non-
matching members would then be swapped with a 50 % probability.

3 Results
3.1 Small-scale Searches

Evaluation of the algorithm was done in five steps. First, to test the performance of the
algorithm and to determine the most appropriate parameter values for the task at hand, a
number of small-scale searchers were performed, each with different parameter
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combinations. While not meant to be a formal evaluation of all aspects of the algorithm,
several features of the algorithm’s behavior were demonstrated. (A quick note: we use the
term “search” to mean a single execution of the algorithm, and the term “run” to mean a set
of several searches all done with the same parameter values.)

Six different parameter combinations were tested for Hypothesis 1 and ten were tested for
Hypothesis 2. For each parameter combination, five small-scale searches (200 generations)
were performed and the results averaged. Various measures related to the effectiveness and
efficiency of the search were recorded. Details on all the small-scale searches can be found
in the Supplemental Materials.

Although the results vary significantly from one search to the next, certain trends were
observed, which can inform the use of this approach. For instance, it is clear that a higher
mutation rate produces a broader search (more SNP groups are tested). This, of course, is
expected since mutation is the method by which new candidate solutions (new SNP groups)
are created. The same result can be achieved by increasing the GA population size (Fig. 3).
Furthermore, a larger population size, when paired with an elitist selection method (one that
necessarily selects the groups with the highest fitness), allows the algorithm to reach a good
solution more quickly than a smaller population size (Fig. 4). A larger population size
increases the chance that good solutions (or potentially good solutions) are created in the
early generations, and an elitist selection method ensures that those good candidates are
carried on to the next generation. However, because of the tendency for the algorithm to
become trapped in local minima, converging on a solution too quickly may be detrimental.
This discussion about population size and early convergence will be revisited later.

From the results of searches performed under Hypothesis 2, it appears the crossover rate had
very little, if any, impact on performance. This suggests that exploring entirely new
solutions created through mutation (and migration) is more important than recombining the
current candidate solutions. But it is also clear that the impact of crossover depends on the
selection method used and the rate at which new candidate solutions are introduced into the
population (either through mutation or migration). However, a high crossover rate did not
appear to have a negative effect, on solutions found or computation time (Fig. 5), and it may
be that the benefits of crossover were simply too subtle to be noticed in these small-scale
searches. Crossover, as an additional method of creating diversity among candidate
solutions, should not be discounted based on the results so far.

Results from the small-scale searches have revealed a number of important points about the
behavior of the search algorithm. First, it’s clear that creating and maintaining diversity
among the population of candidate solutions is essential. A fairly high mutation rate and the
creation of a few entirely new candidate solutions (“migrants”) at each generation are
important for broadening the search and discovering good solutions. Second, the Hybrid
selection method appears to be the best choice. It ensures that a predefined number of “best”
candidate solutions are passed on to the next generation, and it maintains diversity by
allowing for probabilistic selection of the remaining candidate solutions. Third, population
size should be chosen carefully. A larger population size broadens the search and may allow
for quicker discovery of good solutions, but also increases computation time. In addition,
good solutions found early in a search may not always be the best possible solutions.

3.2 Large-scale Searches
In the second stage of algorithm evaluation, larger-scale searches were performed with the
most appropriate parameter combinations learned from the earlier small-scales searches. The
goals here were to determine the number of generations needed to consistently find
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associations of genome-wide significance, to refine the algorithm parameters further, and to
take a closer look at how thoroughly the algorithm is exploring the gene network.

The algorithm appears to have no problem exploring the vast majority of the gene
interaction network. The large-scale searches visited between 85 and 99 percent of all genes
in the network, and over 98 percent of all chromosome cytobands. However, the majority of
the search space complexity is due to the fact that multiple SNPs map to each gene
(approximately 17 SNPs per gene on average). Despite nearly all genes in the network being
visited during a typical large-scale search, fewer than 25 percent of SNPs were ever included
in a group and tested for association. So, while the search may be wide, its depth depends on
how long the search is allowed to run. As seen so far, the algorithm may need many
thousands of generations to adequately explore the search space.

Also, typical of GAs, the algorithm appears to be rather sensitive to starting conditions and
therefore is somewhat inconsistent. While nearly all parameter combinations tested in this
stage were able to find statistically significant multi-locus associations, the best solutions
varied significantly from one search to the next (Fig. 6).

These larger-scale searches also shed more light on the impact of GA population size on the
algorithm’s efficiency. And it appears that the impact may be different for Hypothesis 1
versus Hypothesis 2. When searching for connected sub-networks (Hypothesis 1) it seems
that there is no benefit to increasing the population size beyond a certain point. Although
searches with larger population sizes reached their best solutions more quickly, they were
never able to reach solutions as good as some found with a moderate population size.

For Hypothesis 2, larger population size did appear to have some benefit. A larger search
space (i.e., groups are not limited to connected sub-networks) and the addition of the
crossover function as a source of variation in the population, may allow the algorithm to
take advantage of a larger population size under Hypothesis 2.

Table 1 shows the parameter values that were found to be most successful in the large-scale
searches.

Next, in an effort to deal with the problem of inconsistency and to help improve the depth of
the searches, two strategies were implemented. The first strategy was to run the algorithm
for a longer time (10000 generations), while periodically (every 1000 generations) re-
initializing the GA population. In essence a new search with new starting conditions is
created every 1000 generations. The second strategy, similar to the first, was to re-initialize
the population only when no improvement is seen in the previous 1000 generations. These
searches were stopped if they reached a p-value < 5 × 10−10.

Nearly all the larger-scale searches were able to find multi-locus associations with genome-
wide statistical significance. And the strategy of increasing the search time while
periodically re-initializing the GA population, improved the results further (Fig. 7). Not only
was it possible to find multi-locus associations, it was possible to do so while performing far
fewer statistical tests than a standard GWAS. For instance, Run 30 (three separate searches,
with a total of 470467 SNP groups tested) was able to find 54 multi-locus associations that
are statistically significant even after Bonferroni correction (alpha = 1.063 × 10−7).
Furthermore, nearly half of these associations (23 of 54) are interactions among three SNPs,
which demonstrate the importance of looking for higher-order interactions. These results
highlight an advantage of this approach over previous epistasis detection methods, which
have mostly looked for interactions among pairs of SNPs.
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3.3 Simulated Data, Permutation Tests & Cross-validation
To examine whether the distribution of p-values found with the algorithm is different from
what is expected by chance, large-scale searches were performed on two sets of simulated
data, one simulated using MERLIN and another simulated with PLINK [20], [21]. MERLIN
is able to simulate genotype data while maintaining the patterns of missing data and linkage
disequilibrium found in the actual bipolar disorder dataset (TGen). The distribution of p-
values found when searching the simulated datasets was compared to the distribution of p-
values found when searching the actual data (Fig. 8). Clearly, the search performed on the
actual bipolar disorder data discovered an excess of SNP groups with p-values smaller than
10−7. Very similar results were seen with the data simulated in PLINK (data not shown).

In addition, large-scale searches were performed on 10 different permutations of the data
(case and control labels were randomly assigned, while maintaining the same number of
samples in each group as in the original data set). Again, we found that p-values smaller
than approximately 10−7 were detected more frequently in the original data than in the
permuted data (Fig. 9). Furthermore, the most significant associations discovered in the
original data set have p-values smaller than any detected in the permuted data sets or the
simulated null data set (Fig. 10).

In an attempt to provide statistical validation for the most significant multi-locus
associations, we created 10 non-overlapping partitions (subsets) of the original data set and
tested the associations in each subset. Multi-locus associations with p-values < 5.5 × 10−8

were significantly more likely to be nominally significant (p-value < 0.05) in the subsets
than randomly selected multi-locus associations with larger p-values, ranging between
0.00057 and 0.021 (two sample t-test p-value = 0.003). In addition, the most significant
multi-locus associations had a significantly smaller median p-value across all 10 subsets
than the group of randomly selected associations with less significant p-values (t-test p-
value = 0.002).

3.4 Single-locus Analysis & Location Analysis
A single-locus analysis revealed only two SNPs that show a significant association with the
BPI group (p-values of 2.70×10−9 and 1.97×10−7). Nevertheless, numerous multi-locus
associations were found during the large-scale searches described in the previous section. To
better understand the types of associations discovered, all statistically significant
associations found during the most successful runs (Runs 28 - 31) were categorized in two
ways. “Significant Interactions” were those where the joint p-value is smaller than all of the
group members’ individual p-values. And SNP groups were said to be “Absent of Main
Effects” if none of the group members had an individual p-value that reached genome-wide
significance (p-value < 5 × 10−7) (Table 2).

The algorithm was able to find statistically significant multi-locus associations, both with
main effects and with-out (pure interactions), under Hypothesis 1 and 2. However, it appears
that finding pure interactions is more difficult under Hypothesis 1. This is not surprising,
given that Hypothesis 1 requires that a SNP group be part of a connected sub-network,
which limits the number of possible gene combinations.

Given the nature of the search algorithm there was some concern that the search may
become focused on a small area of the gene network, and therefore a small area of the
genome. To determine the distribution of these significant associations across the genome,
the number of chromosomes, cytobands, genes, and SNPs present in the SNP groups were
counted (Table 3). It’s clear that these multi-locus associations are made up of genes spread
widely across the genome. For instance, in Run 30, three searches detected 169 significant
associations that contained 164 different genes (174 SNPs) from 23 chromosomes.
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However, it is sometimes the case that a few SNPs dominate the most significant SNP
groups. For instance, consider the situation where a SNP with a very strong main effect is
directly connected to ten other SNPs in the interaction network. It is possible that the
algorithm will report all ten of these SNP pairs (the one strongly associated SNP paired with
each of its neighbors) as significant multi-locus associations (Fig. 11). While the algorithm
presented here is a good first step in the search for multi-locus associations, it is obvious that
the SNP groups found will have to be scrutinized before being considered for any further
study. Following best practices for the analysis of GWAS data, we manually examined the
cluster plots of SNPs in the most significant multi-locus associations. No anomalies were
detected that would render the SNPs and corresponding associations as suspect (data not
shown).

3.5 Prioritizing Genes in the Network
Although the results shown so far are promising, it’s clear that the enormity of the search
space poses a considerable challenge. One technique that may increase the chances of
discovery is to assign scores to genes in the interaction network. Those genes with the
highest scores (i.e., those thought to be involved in the disease of interest), and the SNPs
located in or near them, will be preferentially chosen by the algorithm. While this method
may help to focus the search on the most promising genes, it does not reduce the search
space outright.

All searches done so far in this study were done with a uniform distribution of gene scores
(i.e., all genes had a score of 1). In this stage of the algorithm evaluation, various types of
evidence (linkage studies, association studies, gene expression studies, gene functions, and
network connectivity [22], [23]) will be used to score the genes in the network. Points were
assigned based on the strength of the evidence for involvement in the disease (e.g., the
number of studies that have reported a particular finding). For each evidence type, genes
with weak evidence were assigned 50 points; those with a moderate amount of evidence
were assigned 100 points, and so on. For example, if GeneA has been implicated by two
previous linkage studies and is also associated with a single Gene Ontology term that is
relevant to bipolar disorder, its linkage score will be 50 and its function score will be 50.
GeneA’s cumulative score will be 100. References for all the studies used as evidence are
listed in the Supplemental Materials, along with details about the methods used to assign
scores to genes.

The distribution of gene scores in the network follows an exponential distribution. Of the
12793 genes in the network, over half (6444 genes) are not thought to be involved in bipolar
disorder; 3643 genes have a score of 100 or greater (meaning they were implicated by more
than two studies of the same type, or by two or more different types of evidence); and only
45 genes have a score of 300 or greater.

The genetics of bipolar disorder have been studied extensively, so there is a great deal of
information about the genes and cellular processes that are hypothesized to play a role in the
disease. But it is very difficult to say that what works in the case of bipolar disorder will also
work for other diseases (or even other datasets). Here we will simply point out some
examples that show the potential value of integrating prior knowledge about the disease
when searching for multi-locus associations.

Three searches (3000 generations each) were performed for each evidence type alone, and
another three searches were done with all evidence cumulatively (i.e., the scores from all
evidence types were added together). P-values from the most significant multi-locus
associations detected during these searches are shown in Fig. 12. It’s difficult to make
definitive conclusions from just a few searches, but it appears that linkage studies and gene
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association studies were helpful in guiding the search. The other evidence types were not
helpful, and may actually have been detrimental.

When linkage regions previously associated with bipolar disorder were used to assign gene
scores, the algorithm consistently found associations of genome-wide significance within
650 generations. Furthermore, of the 258 SNPs that were part of all significant multi-locus
associations discovered, 155 (60 %) lie within the linkage regions previously associated with
the disease.

When gene scores were based on previous implication in an association study, one search
found a multi-locus association with the second smallest p-value (3.4 × 10−11) found among
all the searches performed so far. This association contained one SNP with a main effect and
another that is directly connected in the network to a gene (BDNF) that has been previously
implicated in two association studies of bipolar disorder (see Supplemental Materials).

To determine whether or not the gene scores were actually influencing the searches, gene
scores from the top hits were compared between the searches done with the cumulative
genes scores and Runs 30 and 31, which were done before gene prioritization. For the SNPs
from the top hits found with the cumulative gene scores, 86 % were in genes with a
cumulative score of 100 or greater (moderate evidence of involvement with bipolar
disorder). When gene scores were not used (Runs 30 and 31), only 39 % and 44 % of top-hit
SNPs, respectively, were in genes with cumulative scores of 100 or greater. These results
suggest that using a scoring method to prioritize the genes in the interaction network may
truly be able to improve the algorithm’s efficiency by focusing the search on a set of
particularly promising genes.

3.6 The GA vs. Random Search
In the final stage of the algorithm evaluation an attempt was made to show the
computational benefit gained from using the genetic algorithm. This was done by comparing
the results achieved when searching the network using the GA versus the results achieved
when using a purely random search (i.e., at each generation SNP groups were chosen
randomly, without any information from previous generations). Three searches using the GA
and three random searches were performed. All searches were allowed to run for 10,000
generations, but were stopped early if a p-value of 5 × 10−10 was reached.

It’s clear that the GA was much more efficient in finding SNP groups with small p-values
compared to the purely random search. Although the random search was able to find SNP
groups with p-values less than 5×10−10, the GA was able to find many more good solutions
while performing far fewer statistical tests (Table 4), offering an advantage with regard to
computing time and multiple testing in a discovery framework.

4 Discussion & Conclusions
Detection of multi-locus associations is becoming an important way to extend the amount of
information gained from a GWAS. While the method we have presented shows promise, this
is an area of research that remains relatively unexplored, and there are a number of
challenges that still need to be addressed.

Determining the threshold for statistical significance has always been a major issue in
genomic studies, and this is especially true when dealing with multi-locus associations. In
1995, Lander and Kruglyak provided an important summary of the statistical issues relevant
to genetic studies of complex traits. And while their discussion was aimed specifically at
genome-wide linkage analyses, their arguments are directly applicable to GWAS. Following
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Lander and Kruglyak’s description of a linkage study, the process of a genome-wide
association study can be demonstrated by three fairly simple steps: 1) perform a scan of a
large number of SNPs across the entire genome, 2) calculate an appropriate measure of
association at each SNP position, and 3) identify SNPs with association measures that
deviate substantially from the null hypothesis of no association. However simple these three
steps appear, the crucial question remains: since the measure of association “fluctuates
substantially just by chance across an entire genome scan, what constitutes a ‘significant’
deviation?” As Lander and Kruglyak explain, it’s clear that the true significance (or
importance) of any particular measure of association, say a p-value of 5 × 10−7, depends on
how often such a p-value occurs by chance across the entire genome [24].

By convention, a false-positive rate of 5 % is considered acceptable, and is often used in
biological and epidemiological research. When multiple statistical tests are performed on the
same data set, the probability of a false-positive test result occurring increases, and the
threshold for statistical significance must be adjusted accordingly. For instance, in the case
of a GWAS where 106 SNPs are tested for association, a significance level of 5 × 10−8 will
provide the same 5 % probability of a false positive occurring in the analysis (i.e., the 5 ×
10−8 threshold provides a 95 % probability that no false-positive results will occur in the
entire analysis) [25].

Because of the varying number of SNPs analyzed in GWAS, the conventional thresholds
used have ranged between 10−5 and 10−8, with the more stringent significance levels being
more common. As Lander and Kruglyak pointed out in 1995, the selection of a standard
threshold for statistical significance would have important consequences for a relatively
young area of research. Too lax a threshold would flood the field with false-positive results,
and would have a negative impact on the credibility of these types of studies. Too strict a
threshold would cause initial studies to fail to produce meaningful results, and might inhibit
progress in the field. However, thanks to improvements in technology over the past decade,
GWAS are being conducted routinely, and hundreds, if not thousands, of genetic
associations have been reported in the literature. We now have the opportunity to examine
the overall outcome of the application of these theoretical thresholds for statistical
significance. Has the application of the standard threshold produced a high proportion of
replicable results, or has it led to the reporting of large numbers of false-positive
associations?

The Human Genome Research Institute maintains a database of all published large-scale
GWAS, which includes 42 diseases (or traits) that have been examined by five or more
studies [1]. In an attempt to estimate the probability of replication for genetic associations at
various levels of statistical significance, 5 of the 42 well studied diseases/traits were chosen
randomly (breast cancer, Crohn’s disease, Parkinson’s disease, LDL cholesterol, and
smoking behavior). For each disease, the proportion of gene associations (at various
significance levels) that were reported in at least two studies was recorded, and the results
were averaged across the five diseases (Fig. 13).

As expected, the likelihood of replication increases with smaller and smaller p-values.
However, it is interesting to note that for associations with p-values near what is considered
the standard threshold for statistical significance (between 10−5 and 10−11), the probability
of being reported in two or more studies is less than 50 %. In fact, it appears that a p-value
smaller than 10−15 may be required for there to be a high level of confidence in an
association.

The question remains whether or not the significance threshold used for single-SNP
associations is appropriate for studies looking for multi-locus associations (SNP
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interactions). There are two things that make the search for multi-locus associations different
from the standard GWAS: 1) the enormous amount of combinatorial complexity, especially
when looking for higher-order SNP interactions (i.e., interactions among groups of more
than two SNPs), means that the number of possible statistical tests is increased substantially,
and 2) the high level of correlation among statistical tests due to that fact that many SNP
groups will have individual members in common. The first observation suggests that the
threshold for statistical significance may need to be more stringent for multi-locus
associations than for single SNP associations, simply due to the increased number of
statistical tests. However, because the tests are not independent, it may not be necessary to
adjust the significance threshold for all possible SNP combinations. Emily and colleagues
calculated a “number of effective tests”, which takes into account the correlation among
SNP groups [17]. Although they tested approximately 3000000 SNP pairs for association in
the WTCCC data set, they concluded that the effective number of tests ranged from 506173
to 600010 across the seven diseases in the data set, which correspond to significance
thresholds very similar to those used in a standard GWAS (between 8.3 × 10−8 and 9.9 ×
10−8).

It is difficult to estimate the null distribution of p-values—those expected to occur by chance
—when searching for multi-locus associations. And while we do not propose to report any
disease-specific association found in our data set as significant, we have presented results
from a number of different methods for assessing the statistical significance of multi-locus
associations—using simulated genotype data, permutation tests, and cross-validation. But all
of these methods have limitations, and it is clear this is an issue that will need to be
addressed further. Others have suggested the use of permutation tests for addressing the
huge multiple-testing problem of large-scale GWAS [26]. However, the computational
burden of permuting large data sets (i.e., randomly assigning case/control labels) and
performing multilocus association analyses for each permutation is very heavy. Still, this
type of analysis may have benefits over the use of idealized simulated data. Cross-
validation, or sample splitting methods, have also been used in similar applications [3], and
may provide further evidence to help determine an appropriate threshold for statistical
significance in multi-locus association studies.

One question that is particularly difficult to answer is whether or not it is possible to find
interactions among SNPs that are not at least weakly associated individually. Our study did
not directly address this issue, but because our algorithm searches for epistasis without
taking into account the effects of individual SNPs beforehand, it has the potential to provide
important insight into this question. This is an issue we aim to address in the future, and
others have begun to bring attention to this question as well. A recent eQTL study suggests
that SNPs with marginally significant main effects are more likely to be involved in
epistasis, even though the majority of interacting SNPs did not have main effects [27].

Although not many studies have done full-scale, genome-wide searches for multi-locus
associations, it appears that the significance thresholds used so far for reporting multi-locus
associations have not been substantially different than those used for single-SNP
associations [17, 24]. But, interactions among SNPs are becoming an area of focus for
researchers exploring the genetic component of complex diseases, and it is only a matter of
time before these types of studies become commonplace. The more data sets that are
explored in this way, and the more focus placed on statistical methods for epistasis
detection, the better prepared we will be to interpret the significance of the results.

Beyond the question of statistical significance, the search for multi-locus associations also
presents a considerable computational challenge, particularly when looking for higher-order
interactions among SNPs. As seen from the results presented, one of the limitations of using
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a genetic algorithm to search for multi-locus associations is the inconsistency of the results.
While the algorithm may be able to consistently find good solutions (i.e., SNP groups with
small p-values), the solutions may differ from one search to the next. This is not surprising
given the nature of the GA and the enormity of the search space. As a hypothesis generating
and discovery technique the GA is clearly successful.

Moreover, we have suggested a number of ways to increase the consistency and
thoroughness of the algorithm. For example, assigning scores to the genes in the network
may be able to focus the search on a set of particularly promising genes. And allowing the
algorithm to run for an extended period of time will undoubtedly make for a more thorough
search.

In addition, the incorporation of uncertainty in the supporting data types with regard to
network inference and guiding the search should also improve the results. However, at this
time, a limitation to this approach is the availability of the appropriate meta-data, data
lineage and raw data to make useful estimates of uncertainty.

The main advantage of the method presented here is its flexibility. The algorithm is able to
search for multilocus associations within a full-scale GWAS dataset, and can search for
interactions among any number of SNPs (of course the size of the SNP group is limited by
the study sample size, since large SNP groups will result in very sparse contingency tables).
And testing different genetic models or hypotheses is merely a matter of changing the fitness
function within the GA. For instance, rather than looking for interactions between SNPs, one
could easily look at the additive risk of multiple alleles similar to the analysis done by Baum
and colleagues [28].

We have shown that our algorithm is able to discover significant multi-locus associations,
even among SNPs that are not strongly associated with the disease. There has been some
controversy about the idea of gene interactions without main effects, but our results and
others [9] suggest the possibility of such interactions should not be ignored. This is true for
the simple fact that any threshold used to define a significant main effect is arbitrary, and
using such a threshold necessarily excludes any interactions that may be found among SNPs
with a weak but real association with the disease. Furthermore, we have provided guidelines
with regard to the behavior of the algorithm to assist others in implementing this approach.

There are numerous ways that the genetic algorithm we have described can be adapted to fit
the needs of researchers interested in similar problems. And when used in conjunction with
new statistical methods, such as the calculation of “number of effective tests” presented by
Emily and colleagues [17], it has the potential to extract a great deal of information from the
wealth of large-scale GWAS data already available.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The genetic algorithm applied to a gene interaction network. The nodes in the gene
interaction network represent genes and the SNPs that lie within or near each gene. The
algorithm first selects a gene and then randomly chooses one of the gene’s SNPs (top left).
A) Using the structure of the interaction network, a population of SNP pairs is created
randomly. B) The fitness of each SNP pair is calculated and, based on those fitness scores,
half of the population is selected to become “parents” for the next generation. C) A specified
proportion of parents are randomly altered, or mutated, to create “offspring”. D) The parents
plus the offspring become the new population and the process repeats, beginning with the
calculation of fitness for each of the new offspring.
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Fig. 2.
The “mutation” of a SNP group can occur in three ways, and is constrained by the structure
of the gene interaction network. The nodes labeled A-F represent genes (each of which
contain one or more SNPs, as shown in Fig. 1), and the edges represent some evidence for
interaction between genes (e.g., physical interaction, correlated expression, etc.).
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Fig. 3.
The number of SNP groups tested increases with GA population size and mutation rate.
Each column shows the results of five searches done with the same parameters. M =
mutation rate; P = population size. (Runs 1 through 6 in the Supplemental Materials)
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Fig. 4.
Larger population size, when paired with an elitist selection method, allows the algorithm to
converge on good solutions more quickly. Here we show the generation at which the best
solution was found. P = population size. (Runs 1 through 6 in the Supplemental Materials)
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Fig. 5.
Algorithm run time was significantly impacted by the mutation rate, but NOT the crossover
rate. M = mutation rate; C = crossover rate. (Runs 13 through 16 in the Supplemental
Materials)
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Fig. 6.
Results were inconsistent from one search to the next. Although differences in population
size and run time didn’t significantly impact the results across runs, the best solution found
varied significantly within runs. All runs shown here were carried out under Hypothesis 1.
Each column shows the results of three searches. P = population size; G = number of
generations the GA was allowed to run. (Runs 17 through 21 in the Supplemental Materials)

Mooney et al. Page 21

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 August 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
With a longer run time and periodic re-initialization of the GA population, the algorithm was
able to consistently find solutions of genome-wide significance (p-values < 5 × 10−7; the
dashed line). Runs 28 and 30 were re-initialized every 1000 generations; Runs 29 and 31
were re-initialized only when there was no improvement in the previous 1000 generations.
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Fig. 8.
A quantile-quantile plot of the log scale p-values from a large-scale search for multi-locus
associations among the actual bipolar disorder GWAS data versus data simulated with
MERLIN. The simulated data was created so that no markers are associated with the
disease. Also, patterns of missing data and linkage disequilibrium were simulated to match
those of the real data.
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Fig. 9.
A quantile-quantile plot of the log scale p-values from a large-scale search for multi-locus
associations among the actual bipolar disorder GWAS data, versus p-values from searches
of the permuted data.
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Fig. 10.
A summary of the p-values of the most significant associations detected in searches of the
original data set (Run 30), the ten permuted data sets, and the simulated data set.
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Fig. 11.
Some SNPs are found in multiple significant SNP groups. Here the columns represent each
of the SNPs that were members of significant multi-locus associations found in the three
searches of Run 28. In the first search (blue) there is one SNP that is involved in nearly all
of the multi-locus associations (20 out of 23 SNP groups).
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Fig. 12.
Not all evidence types were useful for guiding the search. Here we show the results from the
searches done after gene prioritization. Each column represents the results from three
searches. L = linkage studies; G = gene association studies; D = differential expression; F =
gene functions (GO terms); N = network connectivity (hubs); C = cumulative (all evidence
types).
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Fig. 13.
The probability of a genetic association being reported in two or more studies increases with
the statistical significance of the association.
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TABLE 1
Genetic Algorithm Parameter Values

Hypothesis 1

 Population Size 100

 Mutation Rate 0.6 – 0.8

 Crossover Rate NA

 Selection Method Hybrid

 No. of Migrants 10

Hypothesis 2

Population Size 100 – 152 
a

Mutation Rate 0.4 – 0.6

Crossover Rate 0.4 – 0.6

Selection Method Hybrid

No. of Migrants 10

After testing a variety of parameter values in multiple small- and large-scale searches, these values produced the best results.

a
For Hypothesis 2 the population size must be a multiple of 4.
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TABLE 2
Types of Associations Detected

Run Significant
Groups

Significant
Interactions

Absent of
Main Effects

28 37 26 16

29 73 9 8

30 169 88 84

31 82 59 57

The algorithm is able to detect multi-locus associations both with and without main effects. It appears that the algorithm is more successful under
Hypothesis 2 (Runs 30 and 31). Each run represents the combined results of three individual searches.
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TABLE 4
Genetic Algorithm vs. Random Search

Search Type Total SNP
Groups Tested

Sig. SNP Groups
(p-val < 5 × 10−7)

GA 470467 168

Random Search 1988215 43

The GA was able to detect four times as many significant multi-locus associations, while performing four times fewer tests, compared to a purely
random search. The numbers shown are the combined results of three searches.
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