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Introduction

Autophagy is an intracellular degradative pathway that targets 
cytosolic components to lysosomes to be degraded for the pur-
poses of maintaining cellular homeostasis and supplying sub-
strates for energy generation. Our understanding of the functions 
and regulation of this lysosomal degradative pathway has grown 
tremendously over the past few years in large part through inves-
tigations conducted in yeast and Drosophila, but increasingly 
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Autophagy has emerged as a critical lysosomal pathway that 
maintains cell function and survival through the degradation 
of cellular components such as organelles and proteins. 
Investigations specifically employing the liver or hepatocytes 
as experimental models have contributed significantly to our 
current knowledge of autophagic regulation and function. 
The diverse cellular functions of autophagy, along with unique 
features of the liver and its principal cell type the hepatocyte, 
suggest that the liver is highly dependent on autophagy for 
both normal function and to prevent the development of 
disease states. However, instances have also been identified in 
which autophagy promotes pathological changes such as the 
development of hepatic fibrosis. Considerable evidence has 
accumulated that alterations in autophagy are an underlying 

Functions of autophagy in normal  
and diseased liver

Mark J. Czaja,1,* Wen-Xing Ding,2 Terrence M. Donohue, Jr.,3 Scott L. Friedman,4 Jae-Sung Kim,5 Masaaki Komatsu,6  
John J. Lemasters,7 Antoinette Lemoine,8 Jiandie D. Lin,9 Jing-hsiung James Ou,10 David H. Perlmutter,11 Glenn Randall,12  

Ratna B. Ray,13 Allan Tsung14 and Xiao-Ming Yin15

1Department of Medicine; Marion Bessin Liver Research Center; Albert Einstein College of Medicine; Bronx, NY USA; 2Department of Pharmacology, Toxicology and 
Therapeutics; University of Kansas Medical Center; Kansas City, KS USA; 3Liver Study Unit; Department of Veterans Affairs; VA Nebraska-Western Iowa Health Care System; 
Omaha, NE USA; 4Division of Liver Diseases; Icahn School of Medicine at Mt. Sinai; New York, NY USA; 5Department of Surgery; University of Florida College of Medicine; 

Gainesville, FL USA; 6Protein Metabolism Project; Tokyo Metropolitan Institute of Medical Science; Tokyo, Japan; 7Center for Cell Death, Injury and Regeneration, Departments 
of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology; Medical University of South Carolina; Charleston, SC USA; 8AP-HP; Hôpital Paul Brousse; 

Service de Biochimie et Biologie Moléculaire; Villejuif, France; 9Life Sciences Institute and Department of Cell and Developmental Biology; University of Michigan Medical 
Center; Ann Arbor, MI USA; 10Department of Molecular Microbiology and Immunology; University of Southern California Keck School of Medicine; Los Angeles, CA USA; 

11Departments of Pediatrics and Cell Biology; University of Pittsburgh School of Medicine; and Children’s Hospital of Pittsburgh of UPMC; Pittsburgh, PA USA;  
12Department of Microbiology; Biological Sciences Division; The University of Chicago; Chicago, IL USA; 13Department of Pathology; Doisy Research Center;  
Saint Louis University; St. Louis, MO USA; 14 Division of Hepatobiliary and Pancreatic Surgery; University of Pittsburgh Medical Center; Pittsburgh, PA USA;  

15Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis, IN USA

Keywords: autophagy, liver, hepatocyte, hepatitis, ischemia/reperfusion, liver injury, hepatotoxin, hepatocellular carcinoma,  
drug toxicity

Abbreviations: ADH, alcohol dehydrogenase; ALD, alcoholic liver disease; APAP, acetaminophen; ATD, SERPINA1/α
1
-

antitrypsin deficiency; ATG, autophagy-related; CBZ, carbamazepine; CEBPB, CCAAT/enhancer-binding protein (C/EBP), β; 
CMA, chaperone-mediated autophagy; CYP2E1, cytochrome P450, family 2, subfamily E, polypeptide 1; DENV, dengue virus; 
ECM, extracellular matrix; ER, endoplasmic reticulum; FFAs, free fatty acids; FOXO, forkhead box O; GFP, green fluorescent 

protein; HBsAg, hepatitis B virus surface antigen; HBV, hepatitis B virus; HBx, hepatitis B virus protein X; HCC, hepatocellular 
carcinoma; HCV, hepatitis C virus; HFD, high-fat diet; I/R, ischemia/reperfusion; LC3, microtubule-associated protein 1 light 
chain 3; LD, lipid droplet; LPS, lipopolysaccharide; MFN, mitofusin; miRNA, microRNA; MPT, mitochondrial permeability 

transition; MTOR, mechanistic target of rapamycin; NAFLD, nonalcoholic fatty liver disease; NAPQI, N-acetyl-p-benzoquinone 
imine; NASH, nonalcoholic steatohepatitis; PI3K, class I phosphoinositide 3-kinase; PINK1, PTEN-induced putative kinase 
1; PPARGC1A, peroxisome proliferator-activated receptor gamma, coactivator 1 α; PtdIns3K, class III phosphatidylinositol 

3-kinase; ROS, reactive oxygen species; SERPINA1, serpin peptidase inhibitor, clade A (α-1 antiproteinase, antitrypsin), member 
1; SERPINA1-Z, SERPINA1 Z allele; SQSTM1, sequestosome 1 (p62); T

3
, 3,3′5-triiodo-thyronine; TGs, triglycerides; TLR, toll 

like receptor; UPR, unfolded protein response; UVRAG, UV radiation resistance associated

mechanism of a number of common hepatic diseases 
including toxin-, drug- and ischemia/reperfusion-induced liver 
injury, fatty liver, viral hepatitis and hepatocellular carcinoma. 
This review summarizes recent advances in understanding the 
roles that autophagy plays in normal hepatic physiology and 
pathophysiology with the intent of furthering the development 
of autophagy-based therapies for human liver diseases.
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from studies in mammalian cells and tissues as well. Of the three 
known primary types of autophagy, macroautophagy, chaperone-
mediated autophagy (CMA) and microautophagy, most of our 
current knowledge is concentrated on macroautophagy (hereafter 
referred to as autophagy), which is the focus of this review. In 
autophagy, cytosolic constituents are encircled by a double-mem-
brane structure termed an autophagosome that fuses with a lyso-
some. In the resulting autolysosome, enzymes degrade the cargo 
of the autophagosome for release back into the cytosol. The fac-
tors controlling this pathway are complex and include more than 
30 autophagy-related (ATG) genes. The components of the auto-
phagic pathway and their regulation have been well described in 
other recent reviews.1,2

Features and functions peculiar to the liver identify it as an 
organ in which autophagy potentially plays an important role. 
For these reasons the liver has served as a frequent model for 
very basic investigations of autophagy. As a result, several selec-
tive forms of autophagy, mitophagy3,4 and lipophagy,5 were first 
described in studies of cultured hepatocytes and whole liver. A 
number of features of hepatocytes and the liver as a whole make 
this organ particularly dependent on autophagy. First, the liver is 
unique in its regenerative properties in that hepatocytes are nor-
mally in a quiescent state but retain the ability to quickly enter 
the cell cycle when there is a loss of liver mass from injury or 
surgical resection. The lack of cell turnover makes hepatocytes 
particularly vulnerable to the effects of impaired autophagy, as 
long-lived cells have time to accumulate high levels of products 
that are normally disposed of by cell division and/or autophagy. 
When excessive levels of damaged organelles and oxidized or 
aggregated proteins are allowed to accumulate, cellular injury or 
transformation can occur. In addition, autophagy may have other 
metabolic or proliferative functions during the rapid regenera-
tion that occurs in the liver, but this possibility has not yet been 
examined. Second, the liver is an important metabolic organ, not 
only in terms of the requirements of its own cells which have a 
large number of mitochondria, but also for the whole body as 
the liver produces glucose and stores fat. The recently described 
ability of autophagy to regulate these metabolic pathways impli-
cates autophagy as an important modulator of hepatic metabo-
lism. The anatomy of the liver also makes it unique in that it 
directly receives all of the portal blood supply from the intestines. 
As a result, the liver is the largest immune organ in the body 
and faces the continual challenge of exposure to orally-ingested 
antigens as well as products released by intestinal bacteria such as 
lipopolysaccharide (LPS). The potent innate immune response 
of the liver, which is normally protective against exogenous anti-
gens, can become overactivated during liver injury, and promote 
cellular damage. Finally, the hepatocyte is the primary site of 
infection for a number of various liver trophic viruses that cause 
some of the most common infectious diseases worldwide. The 
emerging importance of autophagy in regulation of the immune 
response6 is another important area of involvement for autophagy 
in the liver.

This review discusses some of the critical functions of auto-
phagy in normal hepatic physiology as well as the evidence 
for mechanistic roles of autophagy in diseases of the liver. 

Considerable data already link autophagic function with the 
pathophysiology underlying the most common diseases of 
the liver. A critical question in these investigations is whether 
autophagic function is impaired in these disease states, which 
has important implications for whether therapeutic strategies 
designed to alter hepatic levels of autophagy may be effective 
treatments for these diseases. The careful demonstration of a 
defect in autophagy in the genetic liver disease of SERPINA1/
α

1
-antitrypsin deficiency (ATD) has already prompted a human 

clinical trial of the effects of an autophagy-inducing drug in this 
disease. However, basal levels of autophagy are critical, particu-
larly in the liver, as evidenced by the spontaneous development of 
liver disease in mice with a hepatocyte knockout of autophagy.7 
Thus, maintaining or augmenting constitutive levels of auto-
phagy may be an important therapeutic strategy as well.

Basic Functions of Autophagy in the Liver

Autophagy in hepatic protein degradation. The lysosomal path-
way was first implicated in the turnover of cellular proteins in the 
1940s, and it was recognized subsequently that proteins along 
with other intracellular constituents were degraded in lysosomes 
by the process of autophagy.8 Initially autophagy was considered 
a pathway in which long-lived cytosolic proteins and organelles 
were degraded nonselectively. More recently it has been recog-
nized that autophagy is also able to target specific cytosolic com-
ponents such as aggregated proteins, damaged/excess organelles 
and lipids for selective degradation.

The liver has a basal level of autophagic function that is signif-
icantly increased in response to starvation. In rodents housed in 
environmentally controlled rooms, the liver is undergoing basal 
levels of autophagy during the day when the animals are not feed-
ing. Using perfused liver systems it has been estimated that basal 
autophagic function degrades 1.5% of total hepatic protein per 
hour.9 In response to starvation, the rate of protein degradation 
increases to 4.5% of total liver protein per hour.9 When rodents 
are starved for 48 h, increased levels of autophagy can account for 
the degradation of 40% of total liver protein.10 Thus, changes in 
hepatic autophagic function can have dramatic effects on hepatic 
physiology. Hepatocytes are thought to have higher levels of auto-
phagy than other cell types because of their increased abundance 
of lysosomes and lysosomal enzymes such as CTSL/cathepsin 
L.11 This increased autophagy is another reason why the liver is 
a convenient organ in which to examine autophagic regulation 
and function.

Early studies of the regulation of hepatic autophagy dem-
onstrated that the nutritional control of autophagy could be 
explained in part due to its suppression by amino acids and 
insulin, and its stimulation by glucagon.12 Studies in cultured 
primary hepatocytes have shown that autophagy is inhibited by 
3-methyladenine, implicating the class III phosphatidylinositol 
3-kinase (PtdIns3K) as a regulator of hepatic autophagy.12,13 The 
suppressive effect of amino acids becomes apparent when their 
levels reach 2–4 times normal,9 and leucine and glutamine are 
the most potent of the amino acids having this effect.14,15 The 
mechanism by which glucagon exerts its activating effect on 
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hepatic autophagy is not completely understood, but the inhibi-
tion of autophagy by insulin signaling is mediated by effects on 
the kinase mechanistic target of rapamycin (MTOR). Binding to 
the insulin receptor leads to phosphoinositide 3-kinase (PI3K)-
AKT activation and inactivation of the tuberous sclerosis TSC1-
TSC2 complex which, in turn, releases inhibition of RHEB that 
then activates MTOR.16 Studies in perfused liver have suggested 
that the G protein GNAI3/Giα3 is required for suppression of 
autophagy by insulin, as Gαi3 knockout mice fail to downregu-
late autophagy in response to insulin.17

A more definitive understanding of the role of autophagy in 
hepatic protein degradation has come from studies of a liver-spe-
cific autophagy-knockout mouse model generated by conditional 
deletion of the autophagy gene Atg7.7 The livers of these mice 
are markedly enlarged, taking up to 30% of the body weight of 
the mouse, and the cells are characterized by marked structural 
alterations of mitochondria and peroxisomes, and the intracel-
lular accumulation of polyubiquitinated proteins. These findings 
therefore provide sophisticated evidence for the essential role of 
autophagy in the disposal of damaged and aggregated proteins 
and turnover of organelles. Interestingly, the aggregates of polyu-
biquitinated proteins disappeared when the liver-specific ATG7-
knockout mouse was bred to a mouse null for SQSTM1/p62, a 
scaffolding protein degraded by autophagy. These findings dem-
onstrate that SQSTM1 is essential to direct damaged or aggre-
gated cytosolic proteins into the autophagic pathway.18

The increase in autophagy that occurs in response to starva-
tion plays an essential role in supplying amino acids and substrates 
for energy production that hepatocytes need to survive nutrient 
deprivation. There is also evidence that starvation-induced auto-
phagy contributes to hepatic glucose production through the 
action of glucogenic amino acids. In the liver-specific Atg7-null 
mouse, blood glucose levels decline during starvation to a sig-
nificantly greater extent than in control mice.19 Taken together, 
these studies establish the essential role of basal autophagy in the 
turnover of intracellular organelles, degradation of long-lived 
cytosolic proteins and damaged proteins, and the contribution 
of induced autophagy to cell survival by supplying amino acids, 
glucose and energy needed for cellular integrity during stress.

Selective mitochondrial autophagy (mitophagy). Mitophagy 
during nutrient deprivation and mitochondrial turnover. 
Mitochondria are a major source of the substrates supplied by 
hepatocytes from the increase in autophagy during starvation. 
Mitochondria are particularly rich in protein and lipids, and 
approximately 85% of autophagic events during nutrient depri-
vation of cultured hepatocytes involve selective autophagy of 
mitochondria, a process termed mitophagy.20,21 In healthy liver, 
despite minimal cell proliferation, individual mitochondria turn 
over with a half-life of 10 to 25 d, as basal levels of mitophagy 
remove worn out mitochondria in balance with the biogenesis 
of new mitochondria.22,23 Elimination of aged and damaged 
mitochondria protects cells against mitochondrial release of pro-
apoptotic proteins, generation of toxic reactive oxygen species 
(ROS) and futile hydrolysis of ATP after mitochondrial depo-
larization.3,21,24,25 Mitophagy also eliminates mitochondria dur-
ing cytoplasmic remodeling under nutrient-replete conditions 

and degrades mitochondrial DNA, including DNA that has 
been damaged or mutated.20,26,27 Both inadequate and excessive 
mitophagy promote cell injury and death.24,28,29 Thus, a balanced 
regulation of mitophagy is vital for cellular homeostasis.

Time course of mitophagy. Microtubule-associated protein 1 
light chain 3 (LC3) associates with forming and newly formed 
autophagosomes, and the fusion protein, green fluorescent pro-
tein-LC3 (GFP-LC3), is a fluorescent marker of autophagosome 
formation.30 Mostly diffuse in the cytosol under nutrient-replete 
conditions, with an induction of autophagy GFP-LC3 incor-
porates into small (0.2–0.3 μm) pre-autophagic structures in 
proximity to mitochondria.20 After nutrient deprivation, these 
pre-autophagic structures grow into cup-shaped phagophores 
that envelop and then sequester individual mitochondria within 
autophagosomal vesicles termed mitophagosomes (Fig.  1A). 
Sequestration frequently occurs coordinately with mitochon-
drial fission and once initiated is complete within 6–7 min. 
Mitochondria maintain their membrane potential during seques-
tration and depolarize only after sequestration is complete, as 
indicated by loss of the red fluorescence of the membrane poten-
tial-indicating fluorophore tetramethylrhodamine methylester. 
After sequestration, mitophagosomes fuse with lysosomes and 
acidify. Mitochondrial contents are then digested within approx-
imately 10 min.4,20 The pharmacological PI3K and PtdIns3K 
inhibitors wortmannin and 3-methyladenine block mitophagic 
sequestration almost completely, signifying that nutrient depriva-
tion-induced mitophagy involves the classical BECN1-PIK3C3/
VPS34 autophagic pathway.4,20,31

Damage-induced mitophagy. Global mitochondrial injury 
from mitochondrial uncoupling (depolarization) and oxidative 
stress induces a robust autophagic response.32,33 Evidence that 
depolarization of single mitochondria induces mitophagy comes 
from photodamage experiments in cultured hepatocytes where 
small groups of mitochondria are exposed to 488-nm laser light 
which damages mitochondrial flavoproteins and promotes ROS 
production.3,34-36 Light exposure in this way depolarizes mito-
chondria transiently at lower illumination, but with a stronger 
light exposure sustained irreversible depolarization occurs, which 
is accompanied by inner membrane permeabilization akin to the 
mitochondrial permeability transition (MPT).

In nutrient-replete hepatocytes, GFP-LC3 fluorescence begins 
to decorate the edges of depolarized mitochondria approximately 
30 min after laser-induced photodamage when depolarization is 
sustained and not transient. Subsequently, the GFP-LC3 fluores-
cence coalesces, and individual mitophagosomes form that then 
acidify. However, no stimulation of autophagy occurs outside 
the region of photoirradiation. Surprisingly, PI3K and PtdIns3K 
inhibitors do not block photodamage-induced mitophagy 
(Fig. 1B).

Variants of mitophagy: Type 1 and type 2. These observations 
suggest that mitophagy has two variants (Fig.  1C). Nutrient 
deprivation-induced mitophagy typifies type 1 mitophagy in 
which pre-autophagic structures grow to envelop and seques-
ter mitochondria into mitophagosomes, often in coordination 
with mitochondrial fission. In type 2 mitophagy, as exemplified 
by photodamage-induced mitophagy, aggregates of GFP-LC3 
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decorate the periphery of damaged depolarized mitochondria 
and coalesce into mitophagosomes. In type 2 mitophagy, cup-
shaped phagophores do not appear to form, and mitochondrial 
fission is absent. Nonetheless, once formed, mitophagosomes 
acidify and degrade their contents in both variants of mitophagy. 
Importantly, PI3K and PtdIns3K inhibition with 3-methylad-
enine or wortmannin blocks type 1 mitophagy completely, but 
type 2 mitophagy not at all.

In type 1 mitophagy, mitochondrial depolarization does 
not occur until after a mitochondrion is captured inside a 

mitophagosome, whereas depolarization is required to 
initiate sequestration in type 2 mitophagy. In mamma-
lian cells, PTEN-induced putative kinase 1 (PINK1) 
and PARK2 (an E3 ubiquitin ligase) are implicated in 
mitophagy induced by uncoupling.33,37-40 PINK1 and 
PARK2 are proteins in which mutations cause famil-
ial forms of Parkinson disease. PINK1 recruits PARK2 
to the outer membranes of depolarized mitochondria, 
which in turn ubiquitinates outer membrane proteins 
to target mitochondria for mitophagy. Future work will 
be needed to determine whether involvement of PINK1 
and PARK2 is unique to type 2 mitophagy or whether 
PINK1 and PARK2 also play a role in type 1 mitoph-
agy where mitochondrial depolarization follows rather 
than precedes autophagic sequestration. Nonetheless, 
an important distinction between type 1 and type 2 
mitophagy is that type 1 mitophagy sequesters mito-
chondria that are polarized and apparently normal, as 
during nutrient deprivation and cytoplasmic remodel-
ing, whereas type 2 mitophagy specifically targets depo-
larized mitochondria as a mechanism to clear cells of the 
dysfunctional organelles. Another open question is the 
role of the MPT in type 1 and 2 mitophagy. Although 
mitochondrial depolarization after MPT onset seems 
sufficient to induce type 2 mitophagy, MPT inhibi-
tors such as cyclosporin A and nonimmunosuppres-
sive N-methyl-4-isoleucine cyclosporine (NIM811) 
also block type 1 mitophagy, apparently by preventing 
mitochondrial depolarization after sequestration.4,26,41-43 
Future studies will be needed to address these and other 
questions about mitophagy.

Autophagy mediates hepatocellular lipid metabo-
lism. Another one of the organ-specific functions of the 
liver that make it highly dependent on autophagy is that 
the liver serves as the second largest repository of stored 
lipids in the body after adipose tissue. Hepatocytes are 
a major cellular storehouse for neutral lipids in the form 
of triglycerides (TGs) and cholesterol esters contained 
in specialized organelles termed lipid droplets (LDs).44,45 
Until recently the breakdown of these lipid stores had 
been thought to occur exclusively from the actions of 
cytosolic lipases. A curious difference between liver 
and adipose tissue, despite their common function in 
lipid storage, is the relative paucity of cytosolic lipases 
in hepatocytes as compared with adipocytes. For this 
reason it had been previously unclear as to how hepato-

cytes could rapidly mobilize their lipid stores in times of meta-
bolic need.46 Lipids can be degraded in lysosomes which contain 
acidic lipases and break down exogenous lipoproteins. This fact, 
together with the realization that autophagy and lipolysis have 
similar functions and hormonal control, suggested that auto-
phagy may degrade endogenous lipids as well. Studies have now 
clearly demonstrated that autophagy mediates the breakdown of 
intracellular LD stores through the process of lipophagy.5

Lipophagy was first identified in the liver by studies of a phar-
macological or genetic inhibition of autophagy in hepatocytes in 

Figure 1. Type 1 and type 2 mitophagy. In (A and B), GFP-LC3 transgenic hepa-
tocytes were loaded with red-fluorescing tetramethylrhodamine methylester, 
an indicator of mitochondrial polarization. (A) Nutrient deprivation-induced 
(type 1) mitophagy in a GFP-LC3 transgenic hepatocyte. Note the presence of a 
pre-autophagic structure (arrow), phagophores forming around mitochondria 
(double arrows) and a mitophagosome containing a red-fluorescing polarized 
mitochondria (asterisk). (B) Photodamage-induced (type 2) mitophagy in a 
wortmannin-treated GFP-LC3 transgenic hepatocyte. In this form of mitophagy, 
mitophagosomes indicated by green rings contain depolarized mitochondria, 
which therefore lack fluorescence. (C) Scheme of type 1 and 2 mitophagy. In type 
1 mitophagy induced by nutrient deprivation, PtdIns3K-BECN1 activation leads to 
formation of a GFP-LC3-labeled phagophore, which sequesters a polarized mito-
chondrion into a mitophagosome, often in coordination with mitochondrial fis-
sion. Mitochondrial depolarization follows sequestration, which can be blocked by 
inhibitors of the MPT. The mitophagosome then undergoes PtdIns3K-dependent 
fusion with lysosomes, and hydrolytic digestion of the entrapped mitochondrion 
occurs. In Type 2 mitophagy induced by photodamage, photoirradiation causes 
MPT onset and sustained mitochondrial depolarization. GFP-LC3 attaches to the 
depolarized mitochondrion and by coalescence forms a mitophagosome in a 
PtdIns3K-independent fashion. Further mitophagosome processing occurs identi-
cally to the type 1 pathway.
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culture or in vivo. A block in autophagy increases cultured hepa-
tocyte TG content and LD number and size in response to a lipid 
challenge.5 The trafficking of intracellular lipids and LD proteins 
through autophagosomes and lysosomes was demonstrated by 
fluorescence and electron microscopy and the movement of lipid 
through the autophagic pathway increases with lipid supplemen-
tation.5 These findings were confirmed in mice with a hepato-
cyte-specific knockout of Atg7. The loss of hepatocyte autophagy 
leads to a marked increase in hepatic TG and cholesterol content, 
demonstrating that lipophagy limits hepatocyte lipid accumu-
lation in vivo.5 In addition to serving as a mechanism to regu-
late intracellular lipid stores, lipophagy controls cellular energy 
homeostasis by providing free fatty acids (FFAs) from the break-
down of TGs. FFAs drive rates of mitochondrial β-oxidation and 
cellular ATP generation.5 Thus, lipophagy not only regulates 
amounts of passively stored lipid, but also controls active rates of 
cellular metabolism and energy generation.

Increased movement of lipid droplets into autophagic compart-
ments occurs in cultured hepatocytes with lipid supplementation, 
and in mouse livers during nutrient deprivation. Biochemical and 
electron microscopy findings of an increased association of the 
autophagosomal protein LC3 with LDs were seen in mouse livers 
in response to starvation. With starvation a remarkable switch 
of cargo selection occurs in autophagosomes as the number with 
lipid cargo increases markedly with the lengthening time of star-
vation.5 These findings identified lipophagy as another selective 
form of autophagy that could mobilize cellular lipid stores at vari-
able rates that depend on the exogenous supply of lipids and other 
nutrients.

How LDs are selectively targeted for autophagy in response to 
nutritional signals is not yet known, but likely involves protein-
protein interactions between membrane proteins on the phago-
phore and the LD. Numerous proteins have been identified that 
are part of the phospholipid coating of LDs.44,45 Recent studies 
have demonstrated that the autophagosomal protein LC3, which 
is critical for autophagosome membrane formation,2 associates 
with LDs. The association of LC3 with LDs in the apparent 
absence of a phagophore membrane5,47 suggests an additional 
possible function for this protein in the recognition of LDs by 
the autophagic pathway. Other possibilities include the soluble 
NSF attachment protein receptors (SNAREs) which have been 
co-implicated in LD fusion48 and autophagosome biogenesis.49,50 
The eventual identification of the structural components that 
trigger the selective process of lipophagy may suggest new thera-
peutic targets to prevent hepatocyte steatosis.

By supplying FFAs that can be incorporated into lipopro-
teins for export, hepatic lipophagy may serve as a mechanism 
to regulate whole body metabolism. This possibility implies that 
extrahepatic controls must exist to integrate levels of hepatic 
lipophagy with global nutritional status. Studies have begun to 
identify such pathways of crosstalk between hepatic autophagy 
and external metabolic signals. One example is hormonal control 
of hepatic lipophagy by thyroid hormone.51 This association was 
suggested by the known function of the active form of thyroid 
hormone, 3,3′5-triiodo-thyronine (T

3
), as a critical regulator 

of tissue metabolism including the induction of mitochondrial 

β-oxidation in the liver.52 T
3
 induces autophagy in cultured hepa-

tocellular carcinoma cells and mouse liver.51 The ability of T
3
 to 

increase hepatic β-oxidation is dependent on autophagy, as an 
ATG5 knockdown prevents this effect. T

3
 induces lipophagy that 

increases the delivery of FFAs to mitochondria to elevate rates of 
β-oxidation. The mechanism of induction of autophagy by T

3
 

remains to be determined, but AMP-activated protein kinase is 
likely involved, as this kinase modulates mitophagy in response 
to changes in cellular energy levels.53 The ability of T

3
 to cause 

lipid breakdown by inducing lipophagy may explain the known 
but unexplained inverse relationship in humans between thyroid 
hormone levels and the development of steatosis in nonalcoholic 
fatty liver disease.54

Another example of the responsiveness of hepatic lipophagy 
to external signals is that which occurs from circadian rhythms. 
Hepatic lipophagy is regulated by changes in ATG14 mediated 
by the forkhead box O (FOXO) family of transcription factors 
and circadian rhythms,55 which will be discussed in more detail 
subsequently. Additional regulatory pathways of hepatic lipo-
phagy will likely be delineated, including ones mediated by the 
central nervous system, as part of a complex regulation of hepatic 
lipid metabolism.

The finding that autophagy mediates endogenous lipid 
metabolism provides a new mechanism by which cellular levels 
of autophagy may regulate liver physiology and pathophysiology. 
The most obvious implication is that levels of autophagy may 
modulate the excessive cellular lipid accumulation that under-
lies the steatotic liver diseases of alcoholic and nonalcoholic fatty 
liver.56,57 However, the critical involvement of lipophagy in the 
maintenance of mitochondrial β-oxidation suggests a much 
broader function for lipophagy in any instance in which lipid 
metabolism is supporting cellular energy homeostasis. Lipophagy 
may therefore be an important survival mechanism against cellu-
lar injury, and a reduction in autophagy sensitizes hepatocytes to 
cell death from oxidant stress as the result of ATP depletion from 
impaired β-oxidation.58 Lipophagy is also essential to sustain lev-
els of β-oxidation for the energy-dependent process of hepatic 
stellate cell activation that occurs in response to fibrogenic stim-
uli.59 This finding emphasizes the fact that lipophagy functions 
in all cells, not just the fat-storing hepatocyte, and studies are 
needed in other liver cell types to fully define the role of lipoph-
agy in the liver. The function of this selective form of autophagy 
in specific examples of hepatic pathophysiology will be discussed 
in more detail in subsequent sections.

Autophagy modulates cell death. Autophagy has long been 
recognized as a critical pathway in the regulation of cell death 
and survival.60-63 The role of autophagy in cell death can be con-
fusing. Frequently, the same stimulus triggers autophagy and cell 
death simultaneously. In fact, a category of cell death termed 
autophagic cell death was proposed early on based on the coex-
istence of these two phenomena in cells.64 However, the true role 
of autophagy, which can be prodeath or prosurvival, was often 
not clearly defined in these early studies due to a reliance on non-
specific pharmacological inhibitors of autophagy. The currently 
recommended approach to differentiate the role of autophagy 
in cell death is to inhibit key autophagy genes through genetic 
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deletion or RNAi-mediated knockdown. In this way it can be 
determined whether cell death or long-term cell survival is sup-
pressed, enhanced or not changed at all by autophagy.65

Recent studies with careful genetic inhibition of autophagy 
have established that autophagy functions mainly as a prosurvival 
pathway. Obvious functions of autophagy that may be mecha-
nisms of cell survival are the removal of damaged or harmful 
intracellular components or factors, or the supply of nutrients to 
maintain cellular energy homeostasis under adverse conditions. 
However, autophagy may promote cell death when the process is 
dysfunctional, resulting in excessive catabolism, cargo misrecog-
nition and/or activation of the apoptotic machinery.

Autophagy promotes cell survival. Autophagy can play a prosur-
vival role under normal physiological conditions or pathological 
stress. In neonatal mice, autophagy is required for the endogenous 
generation of nutrients in energy-dependent organs like heart and 
diaphragm as the newborn adapts to taking in nutrients from 
an exogenous source, the mother’s milk.66 A global inhibition of 
autophagy therefore leads to the rapid postnatal death of new-
born mice.66 At the cellular level, the importance of autophagy 
for survival during nutrient or growth factor deprivation has been 
well defined in mammalian and yeast cells.67

Autophagy is also important for cellular survival under stress-
ful conditions. In mammalian cells, autophagy is activated in 
response to metabolic stress, ischemia or hypoxia.68 Suppression 
of autophagy in these instances can result in increased cell death. 
In the context of liver injury, autophagy is protective against liver 
injury caused by alcohol, acetaminophen (APAP) and ischemia/
reperfusion injury as will be discussed in subsequent sections. 
Thus, it may be beneficial to promote autophagic function in 
these conditions. In other instances the involvement of autophagy 
in cell death may make it advantageous to inhibit autophagic 
function. Cytotoxic compounds, including many chemothera-
peutic agents, can activate autophagy, likely secondary to their 
induction of cellular damage. For example, the multikinase 
inhibitor sorafenib is a beneficial treatment for advanced hepato-
cellular carcinoma (HCC). However, the response of tumor cells 
to ER stress or MTOR suppression during treatment can induce 
protective autophagy, which reduces efficacy of the drug.69,70 
Simultaneous suppression of autophagy can be used to enhance 
sorafenib-induced tumor cell death and tumor regression.

Autophagy promotes cell survival through its basic function 
of degrading intracellular components. In nutrient/growth factor 
depletion, autophagic degradation recycles the cellular proteins 
and glycogen to provide amino acids and glucose for ATP genera-
tion.71 Under pathological conditions, autophagy may promote 
cell survival by the clearance of misfolded proteins, accumulated 
lipids and/or damaged mitochondria. Removal of misfolded pro-
teins resulting from ER stress, proteasome inhibition or genetic 
mutation is an important mechanism by which autophagy main-
tains cell viability,72 and will be discussed later in the context 
of liver injury and cellular toxicity in SERPINA1/α

1
-antitrypsin 

deficiency. In alcoholic liver injury, autophagy may remove lipid 
droplets and damaged mitochondria to reduce oxidative stress 
and lipid peroxidation to protect hepatocytes.73 Thus, consid-
erable interest exists in the modulation of autophagy as both a 

mechanism of hepatic cell death, and as a potential pathway to 
exploit in order to prevent liver injury.

Autophagy can mediate cell death. Although the function of 
autophagy is mainly prosurvival, the possibility exists that auto-
phagy promotes cell death in some situations. The clearest exam-
ple in which autophagy mediates cell death is in the development 
of the salivary glands in Drosophila.74 In mammalian cells, cell 
death related to autophagy has been reported in stressful condi-
tions in response to certain chemotherapeutic drugs, radiation, 
hypoxia and ischemia.62 In these cases, deletion or RNAi-
mediated knockdown of key autophagy genes can significantly 
reduce cell death, while overexpressing these genes promotes 
death. The mere ability of a knockdown of autophagy to protect 
against cell death is not sufficient proof that autophagy is pro-
moting death, as cells lacking macroautophagy may be resistant 
to cell death because of crosstalk among autophagic pathways 
that leads to the protective upregulation of CMA.75

How autophagy promotes cell death is not entirely clear. 
Although it is tempting to assume that excessive self-digestion 
could lead to the depletion of key molecules or organelles essen-
tial to cell survival, the mechanisms of killing may be as diverse 
as the stress signals that induce autophagy in the first place. The 
autophagic machinery may directly interface with apoptotic fac-
tors or necrotic pathways to promote cell death. For example, 
ATG5 has been reported in nonhepatic cells to bind to FADD 
[Fas (TNFRSF6)-associated via death domain] and activate 
CASP8 and downstream caspases after death receptor engage-
ment.76 Another example is that ATG5 overexpression leads to its 
cleavage by calpains into a 24-kDa ATG5 N-terminal fragment 
that translocates to mitochondria. There, this cleavage product 
binds to BCL2L1 and inactivates it, resulting in cytochrome c 
release and cell death.77 Finally, the autophagy factor BECN1, 
which possesses the conserved BH3 domain of the BCL2 fam-
ily proteins, can interact with multiple antideath BCL2 family 
members, such as BCL2 and BCL2L1,78 which leads to mutual 
suppression. In these cases, autophagy is linked to the classical 
apoptosis pathway and cell death is actually mediated by the 
apoptotic machinery. Whether such mechanisms mediate hepatic 
cell death remains uninvestigated.

Factors that determine whether autophagy is prosurvival or pro-
death. The role of autophagy in cell death could switch between 
promotion and inhibition depending on the context. One deter-
minant could be the level of autophagy. In C. elegans, physi-
ological levels of autophagy during starvation are prosurvival, 
whereas excessive autophagy can be prodeath.79 The presence 
of a compensatory mechanism, such as CMA, may also deter-
mine whether inhibition of macroautophagy renders cells sen-
sitive or resistant to certain stressful signals. Murine fibroblasts 
prepared from ATG5-knockout embryos have increased levels of 
death receptor-initiated death, but are more resistant to mena-
dione- and UV radiation-induced death due to a compensatory 
increase in CMA.75 Cellular transformation could also affect how 
autophagy functions. Autophagy induced by ER stress,80 or pro-
teasome inhibitors,81 is protective in tumor cells, but indifferent 
or detrimental in nontransformed cells. The context-dependent 
function of autophagy in cell death needs to be better understood 
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so that this role of autophagy may be manipulated for the control 
of liver injury and treatment of liver cancer.

Regulation of the immune response by autophagy. 
Autophagy plays multiple roles in immunity, both in the sensing 
of infection and as an effector of the immune response.82,83 As 
a mechanism of delivering cytoplasmic content to endosomes/
lysosomal compartments that are enriched in immune sensors, 
autophagy functions in the detection of microbial infection. 
Interferon production in response to vesicular stomatitis virus 
infection requires the autophagic delivery of cytosolic replica-
tion intermediates to the endosome and subsequent activation of 
toll-like receptor (TLR) 7.84 Similarly, autophagy is required for 
TLR3 stimulation in coxsackievirus B3 infection.85 Additionally, 
activation of innate immune signaling molecules, such as TLRs 
or EIF2AK2/protein kinase R stimulates autophagy.86-89 Thus, 
autophagy is part of a feedforward mechanism in innate immune 
sensing, wherein autophagy stimulates TLR signaling, which in 
turn increases the induction of autophagy. The LPS-TLR path-
way is important to many pathophysiological conditions in the 
liver such as hepatocellular injury and fibrosis,90 suggesting that 
TLR-mediated effects on autophagy may affect many of these 
processes.

In addition to sensing infection, autophagy performs two 
related antimicrobial effector functions: microbial destruction, 
and the processing of antigen for MHC presentation. The spe-
cific degradation of microbes is by a process of selective auto-
phagy termed xenophagy. Although the mechanism is likely to 
vary somewhat depending on the infectious agent, the process 
is typified by the post-translational modification of microbial 
protein(s), the binding of an autophagy adaptor protein such 
as SQSTM1, and the association of an autophagosome with the 
adaptor-microbe complex.91 The degraded microbial peptides can 
then be delivered for MHC presentation to stimulate the adaptive 
immune response. Roles for autophagy have been proposed in 
the cross-presentation of peptides to MHC-I and the presenta-
tion of endogenous peptides to MHC-II.92-96 Autophagy or com-
ponents of the autophagic machinery can also degrade membrane 
compartments that protect microbes, including phagosomes, 
vacuoles and microbe-induced membrane compartments.91,97 
Xenophagy has been described in epithelial cells, macrophages 
and neurons, whereas roles for autophagy in antigen presentation 
have been observed in epithelial cells, macrophages, lymphocytes 
and dendritic cells.

Studies of autophagic function in liver immunity have been 
limited and generally restricted to hepatitis viruses. Many suc-
cessful pathogens have evolved ways to inhibit autophagy and 
blunt the immune response; or alternatively, redirect autophagy 
for promicrobial purposes.83 Interestingly, viruses that target 
the liver, including hepatitis B virus (HBV), hepatitis C virus 
(HCV) and dengue virus (DENV), all usurp autophagy for pro-
viral functions. Multiple roles for autophagy have been proposed 
for these viruses. One of the potential roles for HCV-induced 
autophagy is the suppression of innate immunity by an unknown 
mechanism.98-100 It is currently unclear whether this is a unique 
feature of HCV-induced autophagy. It may relate to the observa-
tion that HCV requires the autophagy immune effector IRGM 

(immunity-related GTPase family, M) for autophagy induction 
and replication.101 Additionally, studies of mice transgenic for 
hepatocyte-specific HCV NS3/4A expression indicate differen-
tial effects of type I interferon on autophagy. IFN/interferon,  
α 1 induces amphisomes, which may stimulate TLR recognition 
of viral antigen, whereas IFNB1 stimulates autolysosome forma-
tion and viral protein degradation.102 Thus, the regulation of 
immune responses in the liver by autophagy has several layers of 
complexity.

Circadian regulation of autophagy. Many biological pro-
cesses in mammals exhibit robust diurnal rhythms, particularly 
pathways involved in nutrient and energy metabolism.103-105 The 
restriction of metabolic functions to a certain time window during 
the day may provide advantages for organisms as they anticipate 
and synchronize their body metabolism to feeding and activity 
cycles. At the molecular level, the biological clock is comprised of 
transcriptional activators and repressors that are assembled into 
positive and negative feedback loops that act in concert to drive 
rhythmic gene transcription.106 The temporal synchronization 
of tissue metabolism is achieved by reciprocal signaling between 
the clock and metabolic regulatory networks in response to light 
and nutrient cues. For example, the transcriptional coactivator 
PPARGC1A (peroxisome proliferator-activated receptor gamma. 
coactivator 1 α) integrates clock and metabolic gene programs 
and is modulated by CSNK1D/casein kinase 1, delta, an integral 
clock component.107,108

In the 1970s, a series of electron microscopy studies by Pfeifer 
and colleagues demonstrated that the abundance of autophagic 
vacuoles varies throughout the day in several tissues, including 
hepatocytes, retinal rod cells, cardiomyocytes, pancreatic acinar 
cells and the renal proximal tubules in rats.109,110 In addition, 
certain lysosomal hydrolases exhibit rhythmic activities in the 
liver.111 Using more specific molecular markers for autophagy, 
recent work has demonstrated that autophagic activity is tempo-
rally restricted in several mouse tissues, including the liver, heart 
and skeletal muscle.112 Autophagic flux, as measured by the rate of 
LC3-II degradation, peaks at noon and decreases to lower levels 
in the dark phase. A cell-autonomous role of clock in autophagy 
regulation is supported by the observations that mice lacking 
liver clock have aberrant autophagy gene expression and activity. 
These findings add a temporal dimension to the regulation of 
autophagy in normal physiology.

The cyclic activation of autophagic flux in the liver is asso-
ciated with rhythmic mRNA and protein expression of genes 
involved in different aspects of autophagy, including Ulk1, 
Bnip3, Gabarapl1, Ctsl and Atp6v1d.112 Transcriptional con-
trol is emerging as an important aspect of autophagy regula-
tion. To date, several transcription factors have been identified 
that regulate autophagy gene expression in cultured cells and in 
vivo, including FOXO3,113,114 TFEB (transcription factor EB),115 
CEBPB [CCAAT/enhancer-binding protein (C/EBP), β]112 and 
SREBF2 (sterol regulatory element binding transcription factor 
2).116 In the context of circadian autophagy, CEBPB appears to 
play a critical role. Adenoviral expression of CEBPB is sufficient 
to stimulate the autophagy gene program and autophagic pro-
tein degradation in cultured primary hepatocytes, whereas RNAi 
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knockdown of this factor in the liver impairs autophagy gene 
expression and leads to significant accumulation of SQSTM1.112 
CEBPB is required for autophagy induction in response to star-
vation as well as during light/dark cycles, suggesting that this 
factor links nutritional and circadian signals to autophagy.

Close coupling of autophagic degradation to the biological 
clock may provide distinct advantages for multicellular organisms 
to maintain nutrient homeostasis.117 In fact, the concentrations 
of plasma amino acids and metabolites exhibit robust circadian 
oscillations that are partially mediated through autophagy.19,118 
The expression of genes involved in de novo lipogenesis, choles-
terol biosynthesis and fatty acid β-oxidation is highly rhythmic 
in the liver, suggesting that the circadian regulation of these met-
abolic cycles is synchronized with autophagy to optimize nutrient 
storage or fuel oxidation. Cyclic activation of autophagy by the 
mechanisms discussed (Fig. 2) may also play an important role in 
temporal remodeling of hepatic cellular proteomes and organelles 
as well as reconfiguration of their bioenergetic properties during 
light/dark cycles.

Role of Autophagy in Hepatic Diseases

SERPINA1/α
1
-anti-trypsin deficiency. The classical form of 

ATD caused by homozygosity for the SERPINA1 (α
1
-antitrypsin) 

Z allele SERPINA1-Z is the most common genetic liver disease 
in children.119 This childhood disease then leads to cirrhosis and 
HCC in many more adults than previously recognized.120 The 
deficiency is caused by a point mutation that renders the hepatic 
secretory glycoprotein SERPINA1 prone to misfolding, polym-
erization and aggregation. The mutant SERPINA1-Z molecule 
accumulates in hepatocytes, and levels of SERPINA1 in the blood 

and body fluids are reduced to 10–15% of normal. Accumulation 
of mutant SERPINA1-Z in the endoplasmic reticulum (ER) of 
hepatocytes leads to liver damage by a gain-of-function, proteo-
toxic mechanism as demonstrated by the presence of liver damage 
in the PiZ transgenic mouse model of ATD. The PiZ mouse was 
generated with a transgene that consists of a genomic fragment 
encompassing coding regions, introns and extensive upstream 
and downstream flanking regions of the human SERPINA1-Z 
gene.121 The marked accumulation of polymerized and aggre-
gated SERPINA1-Z in mouse hepatocytes leads to liver damage 
closely resembling what is seen in the human disease with ste-
atosis, hepatocyte hyperproliferation and carcinoma.122,123 These 
mice express the endogenous murine ortholog of SERPINA1 so 
there is no loss of function, and the liver damage must be the 
result of a gain-of-function effect.

Although liver disease in ATD is caused by a toxic mechanism, 
studies of a human ATD cohort have shown that only a subpopu-
lation of those with the genetic defect develop liver disease.124,125 
This fact implies that additional genetic and/or environmental 
modifiers determine whether an affected individual is susceptible 
to, or protected from, liver disease. It had been theorized that 
these modifiers influence the fate of mutant SERPINA1-Z once 
it accumulates in the ER. These modifiers could be working by 
either altering intracellular degradative mechanisms or activating 
cellular response pathways that protect the cell from the conse-
quences of SERPINA1-Z accumulation in the ER. Investigations 
have led to the recognition that intracellular degradation of 
SERPINA1-Z involves both the proteasomal and autophagic 
pathways.126 SERPINA1-Z accumulation leads to a distinct set 
of cellular responses including induction of autophagy,127 activa-
tion of CASP3, 7, 8 and 9 and the ER-localized CASP12,128 and 
increased NFKB signaling without eliciting the unfolded protein 
response (UPR).129

Autophagy was first implicated in ATD with the observation of 
a marked increase in autophagosomes in fibroblast cell lines engi-
neered to express mutant SERPINA1-Z.130 Increased numbers of 
autophagosomes were also seen in the livers of both PiZ mice and 
patients with ATD.130 The mechanistic involvement of autophagy 
in SERPINA1-Z degradation was demonstrated by the finding 
that there was a marked delay in degradation of SERPINA1-Z 
expressed in an ATG5-null fibroblast cell line that was reversed 
by reconstitution of wild-type ATG5.127 Furthermore, massive 
accumulation of SERPINA1-Z with very large cytoplasmic inclu-
sions was observed in ATG5-null cells. In addition to providing 
definitive evidence that autophagy contributes to the disposal of 
SERPINA1-Z, these results suggest that autophagy plays a pro-
teostatic role in the SERPINA1-deficient state, preventing the 
toxic cytoplasmic accumulation of SERPINA1-Z through piece-
meal digestion of insoluble aggregates.

The importance of autophagy in the disposal of SERPINA1-Z 
has been confirmed in yeast using a completely different experi-
mental approach.131 A library of yeast mutants was engineered to 
express human SERPINA1-Z and then screened for its impaired 
degradation. One strain with defective SERPINA1-Z degrada-
tion had a mutation of a yeast gene that is orthologous with 
mammalian BECN1/VPS30/ATG6. In the absence of this VPS30 

Figure 2. Circadian regulation of autophagy. The expression of auto-
phagy genes is regulated by the biological clock through a CEBPB-
mediated transcriptional pathway. In parallel, autophagy activity is 
modulated by nutrient- and energy-sensing pathways to drive rhythmic 
autophagy induction that maintains homeostasis. These pathways in-
clude the AMPK and MTOR pathways as well as the transcription factors 
TFEB, FOXO3 and SREBF2.



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com	 Autophagy	 1139

ortholog or the ortholog of ATG16, there was a marked delay 
in SERPINA1-Z disposal. This study was particularly revealing 
because delayed SERPINA1-Z degradation was most apparent 
when SERPINA1-Z was expressed at high levels. At lower levels 
of expression, SERPINA1-Z degradation was not significantly 
different from that in wild-type yeast. These results indicate that 
at lower levels of expression SERPINA1-Z in the ER is predomi-
nantly soluble and degraded by the proteasome. At higher levels 
of expression SERPINA1-Z accumulates as insoluble polymers/
aggregates that require autophagy for disposal. Studies in yeast by 
Kruse et al.,132 also discovered that autophagy degrades a mutant 
subunit of fibrinogen that forms insoluble aggregates in the ER 
of hepatocytes in an inherited form of fibrinogen deficiency. 
Degradation of the mutant fibrinogen was slowed in yeast strains 
lacking Vps30/Atg6 and Atg16. The fibrinogen deficiency that 
was modeled in these studies has been associated with chronic 
liver disease characterized by distinct fibrillar aggregates in the 
ER of hepatocytes, similar to what is seen in ATD. The results of 
these yeast studies substantiate the concept that autophagy is spe-
cialized for the disposal of aggregation-prone proteins that cause 
liver disease by the proteotoxic consequences of their accumula-
tion in the ER of hepatocytes.

Accumulation of SERPINA1-Z in the ER also activates hepatic 
autophagy in a mouse model of ATD. A novel mouse model with 
hepatocyte-specific inducible expression of SERPINA1-Z, the Z 
mouse, was bred with the GFP-LC3 mouse to generate a Z mouse 
with green fluorescent autophagosomes.131 Green fluorescent 
autophagosomes appear in the livers of GFP-LC3 mice only after 
24 h of starvation. In the Z × GFP-LC3 mouse, fluorescent auto-
phagosomes appear spontaneously after induction of hepatocyte 
expression of the SERPINA1-Z gene.127 GFP+ autophagosomes 
are not seen in the liver of the Saar × GFP-LC3 mouse, which 
has hepatocyte-specific inducible expression of the SERPINA1 
Saar variant that accumulates in the ER but does not polym-
erize. Thus, autophagy is activated when SERPINA1-Z polym-
erizes and aggregates, and plays a critical role in disposing of 
SERPINA1-Z to prevent massive intracellular aggregates.

The ability of autophagy to degrade ER SERPINA1-Z aggre-
gates suggested that this pathway would be an ideal therapeutic 
target in ATD. Recently a drug that enhances autophagy, car-
bamazepine (CBZ), was found to be effective in cell line and 
mouse models of ATD.123 CBZ increases autophagic degradation 
of SERPINA1-Z in cultured cells, and when administered by oral 
gavage to the PiZ mouse model of ATD reduces the hepatic load 
of SERPINA1-Z. Importantly, CBZ treatment reduces hepatic 
fibrosis in vivo as demonstrated by immunohistochemical stain-
ing for fibrous tissue and by quantification of hepatic hydroxy-
proline. The mechanism by which CBZ enhances autophagic 
degradation has not been described, but the lack of effectiveness 
of rapamycin suggests that an MTOR-independent mechanism 
may be involved.123 CBZ is currently being investigated in a phase 
II/III trial for severe liver disease due to ATD.

Recently a novel C. elegans model of ATD was adapted to 
a high content screening platform for identification of poten-
tial therapeutic agents.133 An initial screen of the LOPAC drug 
library provided additional evidence for the potential strategy 

of employing autophagy enhancer drugs because four of the 
five most impressive hit compounds appear to act by increasing 
autophagy.133 Administration of each of these drugs induced the 
formation of autophagosomes in a C. elegans line engineered for 
expression of red fluorescent-LGG-1, a worm autophagosomal 
membrane-specific protein. One of these drugs, pimozide, was 
also identified in a mammalian cell-based assay for enhancing 
autophagic degradation of HTT (huntingtin).134,135 One of the 
newly identified drugs, fluphenazine, appears to reduce the cellu-
lar load of SERPINA1-Z in a cell line model and reduces hepatic 
fibrosis in the PiZ mouse model of ATD (Perlmutter D, personal 
communication).

Taken together, these studies show that autophagy plays a key 
role in the proteostatic response in ATD. Genetic and/or environ-
mental modifiers that alter autophagic function may be at least 
partially responsible for the wide variation in the incidence and 
severity of liver disease among patients with ATD. Drugs that 
enhance autophagy are therefore attractive candidates for amelio-
rating the liver disease that develops in some patients with ATD.

Nonalcoholic fatty liver disease. Nonalcoholic fatty liver 
disease (NAFLD) is an important component of the metabolic 
syndrome together with obesity and diabetes. NAFLD encom-
passes a spectrum of hepatic abnormalities ranging from simple 
fatty liver or steatosis, to fatty liver with hepatocellular injury and 
inflammation, termed nonalcoholic steatohepatitis (NASH).57 
NAFLD is now the most prevalent liver disease in the United 
States,136,137 accounting for 75% of all chronic liver disease.138 
The previously described functions of autophagy in the liver sug-
gest a number of mechanisms by which autophagy may affect 
the development or progression of NAFLD.139 Autophagy may 
modulate the excessive storage of lipid in this disease, develop-
ment of inflammation, the progression to hepatocyte injury and 
cell death and the chronic complications of NASH such as fibro-
sis and HCC.

With the description of lipophagy, the most important role of 
autophagy in fatty liver disease could be to regulate the process of 
excessive lipid accumulation. High fat diet (HFD)-fed mice with a 
hepatocyte-specific knockout of Atg7 develop markedly increased 
liver TGs and cholesterol content, clearly indicating that defects 
in autophagy can promote hepatic steatosis.5,140 Insulin resistance 
is thought to be critical to the development of NAFLD,141,142 and 
a complex interrelationship exists between autophagy and both 
insulin resistance and lipid accumulation. Insulin downregulates 
autophagy in response to nutrient supplies, but autophagy mod-
ulates insulin sensitivity as well. Hyperinsulinemic, HFD-fed 
mice have decreased levels of autophagy,143 which is not surpris-
ing given the ability of insulin to inhibit autophagy. However, 
the direct effect of insulin occurs through MTOR signaling, 
and in these studies levels of ATG5 and ATG7 were decreased, 
suggesting a different mechanism for the effects of insulin on 
liver autophagy in obesity. In addition, reduced levels of ATG7 
and autophagic function have been demonstrated in the livers 
of genetically obese Ob/Ob mice. ATG7 levels were not restored 
to normal by the reversal of the hyperinsulinemia,140 suggesting 
that the defect in autophagy is not secondary to insulin. In both 
diet-induced and genetically obese mice, impaired autophagy has 
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been associated with insulin resistance with decreased hepatic 
insulin signaling occurring in concert with increased ER stress.140 
Adenoviral-mediated ATG7 overexpression decreases ER stress 
and improves insulin sensitivity in these animals. Defective auto-
phagy may lead to insulin resistance from increased ER stress, a 
known mechanism of insulin resistance, but this remains to be 
directly proven. Adding further complexity to the relationship 
between autophagy and steatosis is that not only does autophagy 
regulate cellular lipid stores, but also levels of lipid content in 
turn affect autophagic function. HFD feeding leads to a defect in 
the movement of lipids into the autophagic pathway.5 The mech-
anism of this effect remains unclear. Decreases in autophagic 
pathway proteins have been reported;140,143 however, other studies 
of diet-induced obesity have failed to reveal any decrease in levels 
of these proteins at times when significant amounts of hepatic 
lipid accumulation had occurred (Czaja MJ, personal communi-
cation). Alternative reported mechanisms include defects in the 
process of autophagosome-lysosome fusion,144 and reduced levels 
of lysosomal enzymes.145 Likely, the mechanism is multifactorial, 
but the important implication is that a harmful cycle may exist 
in which independent factors promote both impaired autophagy 
and hepatic steatosis, but then the decrease in autophagy exacer-
bates steatosis, which further impairs autophagy. This cycle thus 
creates a perpetual worsening of both cellular autophagic func-
tion and lipid accumulation. The ability of lipid accumulation to 
depress autophagic function extends to other forms of autophagy 
such as CMA.146 Interestingly, aging is a risk factor for the devel-
opment of the metabolic syndrome including NAFLD,147 and a 
cause of decreased autophagy.148 Aging may therefore promote 
NAFLD development in part through decreased autophagy, 
although a study of HFD-fed aged mice indicates that aging pro-
motes liver injury, but does not affect the degree of steatosis.149

Simple steatosis is a benign condition, but progression to 
inflammation and hepatocellular injury marks the development 
of NASH that can then progress to chronic liver disease and liver 
failure. Inflammation in adipose tissue as well as in liver is not just 
a passive marker of NASH but considered critical to its pathogen-
esis.150 Proinflammatory signaling mediated by LPS through the 
TLR4 pathway has been implicated in NASH development,151 
suggesting a mechanism by which immune cell autophagy may 
mediate the inflammatory reaction in NASH. Further studies are 
needed to address the possibility that the previously discussed 
effects of autophagy on TLR4 signaling may affect NASH devel-
opment. Whether obesity and insulin resistance affect levels of 
autophagy in macrophages similar to hepatocytes needs to be 
determined as well.

The mechanisms of hepatocellular injury and cell death in 
NASH are unknown, but FFA-induced lipotoxicity, oxidative 
stress and cytotoxic cytokines, particularly TNF, have all been 
implicated.152 As previously discussed, autophagy is involved in 
all of these forms of death. Specifically in hepatocytes there is 
evidence that hepatocyte autophagy mediates resistance to injury 
from FFAs and oxidant stress. Studies in HepG2 hepatocellular 
carcinoma cells demonstrated that the saturated FFA palmitate 
inhibits autophagy, which contributes to its ability to induce 
apoptosis.153 In contrast, the nontoxic unsaturated FFA oleate 

induces autophagy. Cell death from oxidant stress is increased in 
a rat hepatocyte cell line in the absence of either macroautophagy 
or CMA.58 Further studies in primary hepatocytes and in vivo 
rodent models are needed to confirm these findings and to specif-
ically examine whether autophagy mediates these forms of death 
in the setting of steatosis.

The numerous potential mechanisms of involvement of auto-
phagy in NAFLD suggest that autophagy may be a potent thera-
peutic target in NASH treatment or prevention. Therapeutic 
efforts to increase hepatic autophagy may not only reverse the 
hepatic manifestations of NAFLD such as hepatocellular steato-
sis and injury, but also some of the underlying metabolic abnor-
malities of the disease through effects on insulin resistance. In 
addition, altering autophagy may prevent common end-stage 
complications of NAFLD including HCC, as will be discussed 
in subsequent sections.

Alcoholic liver disease. Alcoholic liver disease (ALD) is 
a major cause of chronic liver disease in the United States and 
globally. Similar to NAFLD, ALD has a wide spectrum of patho-
genic features ranging from steatosis to more severe acute alco-
holic hepatitis, fibrosis, cirrhosis and even HCC.154 Although 
more than 90% of alcohol drinkers develop steatosis, only 30% 
develop fibrosis and cirrhosis.56,155 This fact has led to attempts 
to identify genetic factors that may affect human susceptibility 
to the development of advanced ALD. For example, genetic vari-
ants of PNPLA3 (patatin-like phospholipase domain-containing 
3), a protein that regulates hepatic lipid metabolism,156 have been 
linked to ALD development.157,158 Individual variability in protec-
tive pathways that mitigate against the harmful hepatic effects 
of ethanol may be particularly important in modifying disease 
susceptibility. Recent findings have implicated autophagy induc-
tion by ethanol as a cellular protective mechanism against acute 
ethanol-induced steatosis and liver injury (Fig. 3).73,155 Ethanol is 
oxidized mainly by alcohol dehydrogenase (ADH) and partially 
by CYP2E1 (cytochrome P450, family 2, subfamily E, polypep-
tide 1). A chemical inhibitor of both ADH and CYP2E1, 4-meth-
ylpyrazole, significantly blocks ethanol-induced autophagosome 
formation. This suggests that the induction of autophagy requires 
ethanol metabolism and is mediated by ethanol’s reactive metabo-
lites.73,159 This concept is further supported by the finding that 
ethanol induces autophagy only in HepG2 cells that stably express 
ADH and CYP2E1 and not in control HepG2 cells expressing 
vector alone.73 Moreover, ethanol oxidation generates ROS that 
are required for autophagy induction because ethanol-induced 
autophagy is blocked by antioxidants. Finally, both acute and 
chronic ethanol exposure suppresses AKT in vitro and in mouse 
liver.160,161 AKT is a positive regulator of MTOR, suggesting that 
decreased MTOR signaling from reduced AKT activity contrib-
utes to the increase in autophagy from ethanol in mouse liver.

Intriguingly, ethanol-induced autophagy does not tar-
get proteins for degradation, but selectively removes dam-
aged mitochondria and lipid droplets that accumulate in liver 
cells with ethanol treatment.73,155 Pharmacological induction 
of autophagy by rapamycin significantly suppresses acute alco-
hol-induced steatosis. Torin 1, a more potent, selective and ATP-
competitive MTOR inhibitor, almost completely blocks acute 
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ethanol-induced steatosis and liver injury in 
mice (Ding W-X, personal communication). 
However, although acute ethanol can induce 
autophagy in cultured primary hepatocytes 
and mouse liver, the effect of chronic ethanol 
exposure on autophagy is not yet clear. Mice 
chronically fed an ethanol-containing liquid 
diet have increased liver weight and hepatic 
protein content, suggesting impaired hepatic 
catabolism.162 Chronic ethanol consumption 
impairs proteasome function resulting in the 
retention of proteins that may contribute to 
increased liver mass. However, increased pro-
tein retention is also consistent with an etha-
nol-induced decrease rather than increase in 
autophagy.163 Also suggestive of a decrease in 
autophagy with chronic ethanol is that one of 
the typical features of chronic alcohol abuse is 
the formation of the hepatic protein aggregates 
Mallory-Denk bodies which are cytosolic 
inclusion bodies enriched with KRT8/keratin 
8 and KRT18, as well as other proteins includ-
ing ubiquitin and SQSTM1. Treatment with 
rapamycin significantly decreases the num-
ber of Mallory-Denk bodies in proteasome 
inhibitor-treated KRT8 transgenic mice.164 
Therefore, regardless of the effects of acute 
or chronic ethanol exposure on hepatocel-
lular autophagy, pharmacologically enhanc-
ing hepatic autophagy seems to be beneficial 
in alcohol-induced liver disease. However, 
rapamycin has multiple effects other than to 
increase autophagy,165,166 and off-target effects 
of rapamycin may have accounted for the ben-
eficial effects in these studies. More investiga-
tions are needed to determine the effects of chronic ethanol use 
on autophagic function, as well as the ability of more specific 
enhancers of autophagy to prevent or reverse ALD.

Drug-induced liver injury. Most drugs are metabolized and 
detoxified in the liver, making this organ the principal target for 
drug damage. Drug-induced liver injury is a major problem in 
drug development, and a common cause for the withdrawal of 
approved drugs from the market. In the United States, drug-
induced hepatotoxicity is the etiology of more than 50% of the 
cases of acute liver failure. APAP, a widely used antipyretic and 
analgesic drug, is the most common source of severe drug hepato-
toxicity. While APAP is safe at therapeutic levels, an overdose can 
cause severe liver injury in animals and in humans.167 It has been 
well documented that APAP-induced hepatotoxicity is medi-
ated mainly by its reactive metabolite, N-acetyl-p-benzoquinone 
imine (NAPQI) which is generated from APAP metabolism by 
cytochrome P450, mainly by the CYP2E1 isoform. NAPQI can 
deplete hepatic stores of glutathione (GSH), an intracellular anti-
oxidant that regulates cellular redox homeostasis. Once GSH is 
depleted, NAPQI reacts with many cellular proteins, including 
mitochondrial proteins, to form protein adducts.168 APAP-induced 

mitochondrial protein adducts may lead to mitochondrial dam-
age and subsequent necrosis. APAP induces autophagy to remove 
damaged mitochondria which prevents APAP-induced necrosis 
(Fig.  3).169 When autophagy is further enhanced by treatment 
with rapamycin, APAP-induced necrosis is significantly inhibited 
in cultured primary hepatocytes and in mouse liver. Rapamycin 
does not affect APAP-induced GSH depletion, indicating that 
the effect of rapamycin is downstream of APAP metabolism. 
Treatment with rapamycin 2 h after APAP administration sig-
nificantly ameliorates APAP-induced liver injury, despite the fact 
that APAP metabolism and hepatic GSH depletion have already 
occurred.169 This finding is particularly important because most 
patients at risk for serious hepatotoxicity from an acute APAP 
overdose do not receive medical care until they are past the meta-
bolic phase. Therefore, pharmacological induction of autophagy 
may have a potential therapeutic application in humans with 
APAP hepatotoxicity because of this advantage.

Currently, the mechanism by which mitophagy protects 
against APAP cell death is unknown. APAP-induced ROS pro-
duction is suppressed by rapamycin but exacerbated by chloro-
quine,169 indicating that mitophagy may attenuate mitochondrial 

Figure 3. Proposed model for the role of autophagy in alcohol- and APAP-induced liver in-
jury. Both ethanol and APAP are first metabolized in the liver by the enzymes CYP2E1 (ethanol 
and APAP) and ADH (ethanol). The metabolism of APAP generates reactive metabolites which 
deplete hepatic GSH and bind to cellular and mitochondrial proteins to initiate mitochondrial 
damage. Consequently, the metabolism of both ethanol and APAP lead to increased ROS pro-
duction and damaged mitochondria. Damaged mitochondria can lead to necrotic/apoptotic 
cell death and further ROS production. ROS may inactivate MTOR to trigger autophagy, which 
helps to remove ethanol-induced excessive lipid droplets and damaged mitochondria and 
in turn attenuate alcohol-induced liver injury. Pharmacological induction of autophagy by 
rapamycin and Torin 1 significantly protects against ethanol- and APAP-induced liver injury in 
mice. In hepatocytes exposed to APAP, damaged mitochondria can be removed by canonical 
mitophagy resulting in reduced necrosis. A portion of damaged mitochondria can also form 
mitochondrial spheroids which may also attenuate APAP-induced liver injury.
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ROS formation and release of prodeath factors. Mitochondria are 
central regulatory components in cell death and common tar-
gets for drug injury, suggesting that increased mitophagy could 
be a central mechanism of cell survival after drug-induced liver 
injury. Efavirenz, a non-nucleoside reverse transcriptase inhibitor 
used to treat HIV infection, induces mitochondrial damage and 
subsequent hepatocyte death. Similar to APAP, efavirenz trig-
gers mitophagy and pharmacological suppression of autophagy 
enhances efavirenz-induced cell death.170,171 Although these stud-
ies must be extended to other forms of drug hepatotoxicity, levels 
of mitophagy may prove to be a critical determinant of the devel-
opment of drug-induced hepatocyte injury.

Although mitophagy seems to be important in many patho-
physiological contexts including drug hepatotoxicity, the molec-
ular mechanisms that mediate mitophagy in mammalian cells 
in general, or specifically in hepatocytes, are not completely 
understood. Multiple molecules and signaling pathways have 
been implicated in mitophagy in mammalian cells, includ-
ing the BH3-only BCL2 family proteins BNIP3 and BNIP3L, 
FUNDC1 (a mitochondrial outer membrane protein that 
directly interacts with LC3), and the MPT and PINK1-PARK2 
signaling pathway as previously discussed.172-175 Among these fac-
tors, PINK1-PARK2 signaling has been most extensively stud-
ied. Cytosolic PARK2 is recruited to damaged mitochondria by 
PINK1, a mitochondrial serine/threonine protein kinase.33,176-178 
Once on mitochondria, PARK2 promotes the ubiquitination 
of a subset of mitochondrial outer membrane proteins includ-
ing VDAC1, TOMM20, MFN1 (mitofusin 1) and MFN2.179-181 
PARK2 also recruits SQSTM1 to mitochondria likely through 
the direct binding of SQSTM1 with ubiquitinated mitochon-
drial proteins. Although SQSTM1 is required for mitochondrial 
perinuclear clustering, this protein is not essential for mitophagy 
in mammalian cells.178,182 It should be noted that in all these 
studies, immunostaining for TOMM20, a mitochondrial outer 
membrane protein, was used as a mitophagy marker to assess 
the role of SQSTM1 in mitophagy. It has recently been dem-
onstrated that PARK2-dependent degradation of mitochon-
drial outer membrane proteins such as TOMM20, MFN1 and 
MFN2 is mediated by the proteasome and not autophagy.180,181 
Therefore, a current challenge in investigations of mitophagy is 
to develop more reliable, quantitative assays to assess mitophagy, 
in particular for in vivo studies of the liver

Mitochondria are dynamic organelles that constantly undergo 
fission and fusion, and it has been speculated that mitochondrial 
fission may promote mitophagy because smaller mitochon-
dria are more easily enveloped by autophagosomes than larger 
mitochondria. Mitochondrial fusion is regulated by MFN1 and 
MFN2, and their levels are controlled by PARK2-mediated ubiq-
uitination and proteasomal degradation. In various mammalian 
cells, exogenous overexpression of PARK2 promotes MFN1 
and MFN2 degradation resulting in mitochondrial fragmenta-
tion and mitophagy.180,181 However, in APAP-treated primary 
mouse hepatocytes and in mouse liver, there is no significant 
degradation of MFN1 and MFN2 even though APAP treatment 
increases mitochondrial translocation of PARK2 (Ding W-X, et 
al., unpublished observations). The E3 ligase function of PARK2 

is regulated by post-translational modifications such as phos-
phorylation, ubiquitination and S-nitrosylation,183 and it is possi-
ble that APAP may induce some of these modifications resulting 
in inactivation of PARK2. Further work is needed to identify 
the post-translational modifications of PARK2 that are induced 
by APAP in mouse liver. It is also likely that the lack of degrada-
tion of MFN1 and MFN2 after APAP treatment could be due 
to the uneven lobular distribution of CYP2E1 and NAPQI in 
mouse liver. Indeed, autophagy and mitophagy are only induced 
in areas adjacent to the APAP-induced necrotic areas, which are 
mainly located near the central vein. Moreover, APAP has been 
demonstrated to induce a unique dynamic change in mouse 
hepatic mitochondria, which has been termed the mitochondrial 
spheroid.184,185 Under conventional electron microscopy, a mito-
chondrial spheroid is a ring-like or cup-like spherical structure 
which forms a lumen surrounded by mitochondrial membranes, 
similar to a phagosome-like structure. The lumen contains 
cytosolic proteins, ER membranes, lipid droplets or other mito-
chondria. Mitochondrial spheroids are formed in response to 
APAP-induced oxidative mitochondrial damage independent of 
mitophagy, require MFN1 or MFN2, and are negatively regu-
lated by PARK2. The mitochondrial spheroids acquire lysosomal 
markers and limited degradation capacity for some mitochondrial 
intermembrane space and inner membrane proteins. Although 
the physiological significance of the mitochondrial spheroid is 
not clear, it may represent a different mechanism of maintaining 
mitochondrial homeostasis in response to APAP-induced mito-
chondrial damage. A better understanding of these structures 
may offer a promising approach for drug-induced hepatotoxicity 
in which damaged mitochondria play an essential role.

Ischemia/reperfusion injury. The liver is dependent on oxy-
gen to maintain function and cell survival, and is highly suscepti-
ble to hypoxic and ischemic stress, particularly in the pericentral 
zone. Although prolonged ischemia induces severe tissue acidosis 
and by itself eventually causes liver cell death, a recovery of blood 
flow and return to normal pH paradoxically worsens short-term 
ischemic damage, an event termed reperfusion injury. Ischemia/
reperfusion (I/R) injury is a causal factor contributing to the 
morbidity and mortality in hepatic sinusoidal obstruction syn-
drome, hemorrhagic shock, trauma and cardiac arrest.186 In addi-
tion, the vulnerability of the liver to I/R injury is a major obstacle 
to liver resection and transplantation surgery where reperfusion 
after sustained ischemia is unavoidable during hepatectomy and 
vascular reconstruction.

Hepatocellular death after reperfusion has been attributed to 
numerous mechanisms that include reactive oxygen and nitrogen 
species generation, disruption of Ca2+ homeostasis, loss of cellular 
antioxidants, stimulation of catabolic enzymes, ATP depletion 
and mitochondrial dysfunction.186-188 In isolated rat hepatocytes, 
I/R sequentially induces an increase in mitochondrial Ca2+ and 
ROS, onset of the MPT and hepatocyte death.189 Thus, mito-
chondrial dysfunction is a critical downstream event leading to 
I/R-mediated cell death.188,190,191

The mitochondrial inner membrane is virtually impermeable 
to all solutes except for those with specific transporters. Some 
pathological conditions including I/R trigger the opening of high 
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conductance permeability transition pores in the mitochondrial 
inner membrane leading to the MPT.190,192-196 Loss of the per-
meability barrier in the inner membrane following the onset of 
MPT causes an abrupt nonselective diffusion of various solutes.197 
Barrier breakdown results in an uncoupling of electron transport 
chains from ATP production, and ultimately both the pH gra-
dient and mitochondrial membrane potential collapse, which 
causes ATP depletion and necrosis.192 The MPT can also trigger 
apoptosis by releasing pro-apoptotic mitochondrial proteins such 
as cytochrome c that are normally sequestered in the intermem-
branous space.190,191,198,199 Apoptosis is an active ATP-dependent 
process, and therefore the levels of cellular ATP serve as a molecu-
lar switch that determines the mode of cell death after I/R.190

Autophagy and I/R injury in young livers. Autophagy clears 
abnormal or dysfunctional mitochondria to ensure optimal cel-
lular function and survival. In addition to supplying cellular 
energy, mitochondria are the major source of ROS generation,200 
and mitochondrial DNA is prone to ROS-mediated damage.201 
With impaired or insufficient mitophagy, the cell accumulates 
damaged mitochondria, leading to uncontrolled ROS formation, 
mitochondrial DNA mutation, energetic failure and ultimately 
cell death. Furthermore, the release of cell death-signaling mol-
ecules from one mitochondrion to neighboring mitochondria 
rapidly propagates this injurious signal cascade throughout the 
cell.202,203 The failure of mitophagy to remove even a small sub-
set of damaged mitochondria during I/R can therefore have a 
significant impact on hepatocellular function and viability. The 
function of mitophagy is therefore essential for hepatic function 
and cell survival after I/R.

Ischemia exposes hepatocytes to nutrient deprivation, acido-
sis and ATP depletion. Although starvation rapidly stimulates 
autophagy in normal livers, the lack of ATP during ischemia 
suppresses the induction of autophagy, which is a highly energy-
dependent process.204,205 Prolonged ischemia also substantially 
reduces the levels of key autophagic proteins, particularly ATG7 
and BECN1, which in turn further decreases autophagic func-
tion.204 Pharmacological studies revealed that the decreased 
expression of ATG7 and BECN1 during ischemia is caused at 
least in part by the Ca2+-dependent proteases, CAPN/calpains. 
The causality of Ca2+ overloading and subsequent activation of 
calpains in I/R injury has been well documented in a variety 
of organs.189,206,207 With the combination of ATP depletion and 
ATG loss, the formation of autophagic vesicles is impeded and 
autophagic flux becomes minimal during prolonged ischemia.

During reperfusion the hepatocellular pH recovers and the 
supply of oxygen resumes. In the early phase of reperfusion the 
mitochondria temporarily repolarize and begin generating ATP, 
which induces autophagy.204,205 At the same time, reperfusion of 
ischemic hepatocytes triggers Ca2+ and ROS accumulation in a 
subset of mitochondria.189 Prominent hepatocyte injury occurs 
when the increase in autophagy is insufficient to neutralize 
the reperfusion stress. When the capacity of autophagic clear-
ance counterbalances or surpasses reperfusion-induced mito-
chondrial changes, altered mitochondria are eliminated in a 
timely fashion by autophagy, and hepatocyte viability is main-
tained. Determinations of autophagic flux with chloroquine 

or bafilomycin A
1
 and fluorescence imaging of GFP-LC3 show 

that reperfused hepatocytes have increased autophagic flow and 
mitophagy during the early phase of reperfusion.205 However, 
when intramitochondrial loading of Ca2+ and ROS exceed 
autophagic clearance during the later phase, autophagy fails to 
remove all dysfunctional mitochondria and widespread onset of 
the MPT ensues. The MPT leads to irreversible uncoupling of 
oxidative phosphorylation, ATP depletion, energetic failure and 
ultimately hepatocyte death. Confirming this sequence of events, 
strategies that enhance autophagy, including pre-ischemia nutri-
ent depletion, and ATG7 or BECN1 overexpression, all suppress 
the MPT and increase hepatocyte survival after reperfusion.205 
Thus, impaired or insufficient autophagy is a crucial mechanism 
underlying I/R injury to the liver.

Autophagy and I/R injury in aged livers. Life expectancy has 
increased 1.6-fold over the past century,208 and aging is strongly 
associated with an increased incidence and severity of disease. 
Clinically, the steady rise in life span has increased the number of 
elderly patients who require surgical treatment for hepatic malig-
nancies. However, the aged liver has significantly less reparative 
capacity following I/R injury associated with hepatectomy and 
liver transplantation.209-211

As in young livers, autophagy plays a paramount role in I/R 
injury in aged livers. Among the three types of autophagy, CMA 
declines with aging in the liver.212,213 In contrast, studies with 
livers from 3- and 26-mo old mice demonstrated that levels of 
some autophagy-related proteins and basal autophagic flux are 
increased in aged hepatocytes, suggesting that old hepatocytes 
acquire an enhanced basal autophagy as a protective or adap-
tive response to aging.205 Moreover, hepatocytes from both ages 
show a comparable autophagic response to a mild stress such as 
normoxia or starvation.205 Therefore, constitutive hepatocellular 
autophagy is less likely to be compromised by aging alone, as 
is widely thought, and other studies have similar findings.214 A 
striking reduction in autophagy is evident when aged cells suc-
cumb to moderate I/R from short-term ischemia. Whereas young 
livers initiate a strong autophagic response to moderate ischemia 
and reperfusion and tolerate this stress, aged livers fail to increase 
autophagy due to I/R-mediated depletion of ATG4B, a key auto-
phagic protein necessary for the formation of autophagosomes 
and the recycling of LC3.205,215 As a consequence, aged hepato-
cytes and livers are highly prone to I/R injury. Similar to young 
livers after prolonged ischemia, aged livers after short-term isch-
emia accumulate dysfunctional mitochondria, undergo MPT 
and lose viability soon after reperfusion.

Future perspectives. A growing body of evidence has accumu-
lated indicating that autophagy is protective against hepatic I/R 
injury.204,205,215-218 Enhancing autophagy has emerged as a new 
potential strategy to improve liver function after I/R. Despite 
its therapeutic potential, many unanswered questions remain, 
such as how autophagy in nonparenchymal cells is affected by 
I/R and how different liver cell types respond to cold vs. warm 
ischemia. In addition, current approaches to increase hepatocel-
lular autophagy, including pretreatment with inducers of auto-
phagy before ischemia and the viral delivery of specific autophagy 
genes, are limited in their clinical applications. Future studies are 
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warranted to better understand the relationship between auto-
phagic dysfunction and hepatic I/R injury in order to better tar-
get therapeutics to address this problem.

Hepatitis B virus. HBV is a hepatotropic virus which can 
cause severe liver disease including hepatitis, liver cirrhosis and 
HCC. HBV is a small DNA virus with a circular, partially dou-
ble-stranded 3.2-kb genome. Upon infection of hepatocytes, this 
DNA is converted into a covalently closed circular DNA in the 
nucleus where it directs the transcription of viral RNAs. The 
HBV genome contains only four genes. The S gene codes for three 
co-C-terminal envelope proteins named large, middle and small 
HBV surface antigens (HBsAgs). The C gene codes for the viral 
core protein and a related protein termed the precore protein. The 
core protein packages its own mRNA, which is also known as the 
pregenomic RNA, to form the viral core particle. In contrast, the 
precore protein is a nonstructural protein with immunomodula-
tory functions. The P gene codes for the viral DNA polymerase 
which is also a reverse transcriptase. The X gene codes for a mul-
tifunctional protein (HBx) that enhances viral replication. After 
its packaging by the core protein, the pregenomic RNA, which 
contains the entire genomic sequence, is converted into the viral 
DNA in the core particle by the viral DNA polymerase that is 
also packaged. The core particle subsequently interacts with the 
surface antigens in intracellular membranes for the formation of 
the mature virus which is then released from infected cells via a 
pathway that likely involves multivesicular bodies.219

HBV has been consistently demonstrated to activate auto-
phagy in cell culture, in the livers of transgenic mice that carry 
the HBV genome and during natural infection.220-222 However, 
differences in the mechanism by which HBV activates the auto-
phagic pathway have been reported. HBx has been shown to acti-
vate the promoter of the BECN1 gene to stimulate its expression 
and increase autophagy in response to starvation.223 However, it 
has also been demonstrated that HBx can bind to and activate 
PtdIns3K.220,224 PtdIns3K activation increases cellular levels of 
phosphatidylinositol-3-phosphate and the number of autophagic 
vacuoles including autophagosomes and autolysosomes. It is con-
ceivable that HBx may induce autophagy via several pathways 
due to its multiple activities. In contrast, Li et al.,221 demonstrated 
that HBx plays a lesser role in the induction of autophagy than 
the small HBsAg protein. Small HBsAg increases autophagy via 
the induction of ER stress and activation of the UPR, and an 
HBV genome incapable of expressing small HBsAg does not acti-
vate the UPR or autophagy. This finding is surprising, as previ-
ous studies have implicated HBx,225,226 large HBsAg protein,227 
and an HBV mutant with a deletion in the preS2 region,228,229 in 
the induction of ER stress by HBV. Small HBsAg has not been 
reported in the past to induce ER stress, and also a reduction in 
levels of this protein has been shown to lead to large HBsAg accu-
mulation.230,231 Increased large HBsAg levels can cause ER stress 
and hepatocellular injury.232,233 Since small HBsAg mutations 
can promote the retention of this protein in the ER and Golgi,234 
a possible explanation is that the specific HBV strains used by Li 
et al.221 in their studies harbor mutations that induce ER stress 
secondary to their ER retention. However, this possibility would 
not explain why they did not observe an induction of ER stress 

when they abolished the expression of the small HBsAg by a mis-
sense mutation of its initiation codon, which should lead to accu-
mulation of the large HBsAg in the ER.221 Further research is 
needed to resolve these disparate results from different laborato-
ries regarding the mechanism by which HBV induces autophagy. 
Interestingly, although HBV could induce autophagosomes and 
autolysosomes,220,221 it could not enhance autophagic protein 
degradation, possibly due to the inability of HBV to enhance the 
sequestration of protein cargos destined for autophagic degrada-
tion, which is a selective process.235

An additional factor that influences the induction of auto-
phagy by HBV is the specific viral genotype. HBV genotype C, 
which is associated with an increased risk of HCC,236 is more 
potent than genotype B in the induction of autophagy.222 It is 
unclear whether the greater ability of genotype C HBV to induce 
autophagy is related to its increased virulence.

Autophagy functions to promote HBV replication, as inhi-
bition of autophagy reduces HBV replication in cells.220,221,224 
Autophagy marginally affects HBV RNA transcription and does 
not regulate the encapsidation of viral pregenomic RNA. In one 
study, the inhibition of autophagy abolished HBV DNA replica-
tion.220 In another study, however, the inhibition of autophagy 
only marginally affected viral DNA replication, but prevented 
the envelopment of HBV.221 The reason for this discrepancy is 
unclear, but the recent observation that the ablation of autophagy 
by a liver-specific knockout of Atg5 abolishes HBV DNA repli-
cation in mouse liver strongly supports a role for autophagy in 
HBV DNA replication.237 How autophagy enhances HBV DNA 
replication or envelopment is unclear, but the observation that 
HBsAg and the core protein colocalize with autophagic vacuoles 
suggests that these membrane vesicles participate in HBV DNA 
replication and/or morphogenesis.220 Although HBx is required 
to enhance HBV replication in vivo and in HepG2 hepatocel-
lular carcinoma cells, HBx is not required for HBV replication 
in Huh7 hepatocellular carcinoma lines. In addition, inhibition 
of autophagy has no effect on the replication of an HBx-negative 
HBV mutant in Huh7 cells, indicating that HBV may employ 
autophagy-independent pathways for its replication under certain 
conditions.220 Thus far, HBV is the only DNA virus known to 
capitalize on the autophagic pathway for the benefit of its own 
replication.238 It remains to be determined, however, whether the 
activation of the autophagic pathway by HBV plays any role in 
the pathogenesis of HBV-induced liver disease.

Hepatitis C virus. Similar to HBV, HCV is hepatocyte-
trophic virus that is a major worldwide health problem due to 
the high prevalence of HCV chronic infection that can progress 
to cirrhosis and HCC.239 HCV is a member of the Flaviviridae 
family, and its genome is a positive-strand RNA ~9.6-kb long. 
The HCV genome encodes a polyprotein precursor of ~3,000 
amino acids which is cleaved by both viral and host proteases into 
structural (core, E1, E2 and p7) and nonstructural (NS2, NS3, 
NS4A, NS4B, NS5A and NS5B) proteins.240-242 HCV-infected 
cells accumulate lipid droplets that play an important role in the 
assembly of virus particles.

The ability of HCV to induce autophagy was first reported in 
HCV-infected cell cultures. Autophagic vacuoles are increased in 
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HCV-infected human hepatocytes, and HCV genotype 1a (clone 
H77)- or genotype 2a (clone JFH1)-infected hepatocytes display 
LC3-positive puncta on the autophagic vacuoles.243 A similar 
increase in autophagic vacuoles has been reported in hepato-
cytes harboring subgenomic or full-length replicons, and with 
infection with cell culture-grown HCV.244-248 In HCV infec-
tion, autolysosome formation is observed, although contradic-
tory findings have been reported for autophagy maturation in 
hepatocytes bearing HCV subgenomic replicons or individual 
proteins.247,249-252 Furthermore, elimination of HCV RNA by 
treatment with IFN abrogates the lipidation of LC3 and puncta 
formation in cells harboring a subgenomic HCV replicon.248,253 
Increased numbers of autophagic vacuoles have been observed by 
electron microscopy in the livers of chronically infected HCV 
patients, but the number of vesicles does not correlate with the 
infecting HCV genotype or viral load.248,250,253

Confocal microscopy of HCV-infected cells has not revealed a 
significant colocalization of HCV core or nonstructural proteins 
with the autophagic marker proteins LC3 or ATG5.243,244 In con-
trast, an association between HCV RNA and autophagosomes, 
or between nonstructural proteins and autophagic proteins, has 
been demonstrated.101,246,254,255 These differences could be due to 
distinct experimental conditions used in these studies, includ-
ing the cell types employed for transfection of HCV RNA or 
infection with cell culture-grown HCV, and the incubation times 
examined for the association of viral and autophagic proteins. 
Future studies need to clarify the association of specific viral 
proteins and RNA with the autophagosome in HCV infection. 
Several HCV proteins, including NS3, NS4B and NS5A, induce 
autophagy,101,251,252 implicating the involvement of multiple HCV 
proteins in autophagosome formation.

Autophagic machinery promotes HCV replication. HCV-
mediated induction of autophagy is well established, however 
the precise role of autophagy in HCV biology is poorly under-
stood. It is clear that an inhibition of infectious HCV particle 
production occurs in hepatocytes with a knockdown of auto-
phagy.100,244,256 The IFNG-inducible IRGM protein directly asso-
ciates with several autophagy proteins, and favors infectious viral 
particle production.101 Silencing of the autophagy genes encod-
ing LC3 or ATG7 inhibits HCV genomic RNA replication in 
Huh7.5 cells.247,257 However, Tanida et al.256 observed that the 
intracellular expression of HCV mRNA and proteins remains 
unchanged in ATG7 and BECN1 knockdown HCV-infected 
cells. In contrast, a requirement for complete autophagosome 
maturation for promotion of HCV RNA replication has also 
been reported.249 Thus, it is clear that autophagy is necessary 
for virus production, because all of the studies are in agreement 
with the fact that an impairment of autophagy inhibits infectious 
HCV particle release. One additional mechanism by which auto-
phagy may have this effect is that a knockdown of autophagy 
proteins in HCV-infected cells induces apoptosis, suggesting that 
increased autophagy promotes the survival of infected cells.100,248 
The ability of autophagy to promote HCV infection is clear, but 
further studies need to clarify the mechanism(s) of this effect 
and specifically whether autophagy mediates HCV replication 
and assembly.

Mechanism of HCV-mediated autophagy induction. The sig-
naling pathways implicated in the induction of autophagy by 
HCV vary with the infected cell type. HCV infection induces 
autophagy independent of BECN1-BCL2 dissociation. BECN1 
expression is increased at the transcriptional level in HCV-
infected cells.251 On the other hand, knockdowns of RAB5 or 
PIK3C3/VPS34 do not completely block autophagosome for-
mation.252,255 HCV-mediated enhancement of the UPR has also 
been implicated as a mechanism for autophagy induction,247,249 
and the UPR is increased in liver biopsies of HCV-infected 
patients.247,249,258 The MTOR signaling pathway is a negative reg-
ulator of autophagy;1,259 however, HCV infection in hepatocytes 
activates MTOR.1,251,259,260 Paradoxically, an inhibition of MTOR 
and EIF4EBP1 phosphorylation has been reported in autophagy 
knockdown HCV-infected cells, suggesting that alternatively 
HCV-mediated autophagy acts upstream of MTOR signaling.251 
Only transient PtdIns3K-AKT activation early in HCV infec-
tion is seen, raising the possibility that MTOR is not an impor-
tant regulator of autophagy in HCV infection.261 In total, these 
findings suggest that multiple signaling pathways are involved in 
HCV induction of autophagy.

Autophagy regulates the innate immune signaling pathway. 
Autophagy regulates the innate immune response as previously 
discussed, and can either activate or inactivate antiviral mole-
cules in virus-infected cells.84,262,263 Altered autophagy therefore 
may affect the immune response to HCV infection. The abil-
ity of BECN1 or ATG7 knockdowns in HCV-infected hepa-
tocytes to increase interferon signaling,100 may be secondary 
to mitochondrial ROS generation.264 Mitochondrial ROS pro-
duction is increased in BECN1-knockdown cells infected with 
HCV or transduced with HCV NS5A as compared with control 
cells.251 HCV pathogen-associated molecular pattern induced 
RIG-I signaling is also enhanced in ATG5 and LC3 knockdown 
virus-infected cells.249 In contrast, silencing of ATG7 in hepa-
tocytes harboring the HCV replicon does not alter the induc-
tion of OAS1 (2′,5′-oligoadenylate synthetase 1, 40/46Da), an 
interferon-stimulated gene.255 The differences in these findings 
may again represent the nature of the experimental conditions, 
particularly the use of different cell lines and infectious HCV vs. 
a replicon.

Future perspectives. The underlying mechanism of HCV-
mediated autophagy induction is still emerging. HCV-mediated 
autophagy promotes infectious virus production and evades the 
innate immune response. Several viruses, such as influenza virus 
and HIV-1, have evolved strategies to prevent lysosomal degrada-
tion of viral particles by blocking the fusion of autophagosomes 
with lysosomes.265,266 However, HCV-mediated autophagosome 
maturation is poorly understood. Furthermore, infection of 
HCV in autophagy-impaired cells inhibits virus growth, suggest-
ing a close connection between autophagy induction and HCV 
replication. With the emerging knowledge of the intersection 
of autophagic signaling pathways and HCV infection, a better 
understanding of the role of autophagy in the HCV life cycle will 
hopefully be achieved.

Dengue virus. Like HCV, DENV is a Flaviviridae family 
member. It is transmitted to humans via the mosquito vectors 
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Aedes aegypti and Aedes albopictus. Although hepatic DENV 
infection does not lead to chronic hepatitis, DENV is a major 
global health problem, producing 50–100 million infections 
annually, resulting in the clinical syndromes of dengue fever, 
dengue hemorrhagic fever and dengue shock syndrome.267 
DENV infects many cell types including hepatocytes; however, 
cells of the myeloid lineage are thought to be the primary target 
in vivo.268 Multiple findings have demonstrated that autophagy 
plays a proviral role in DENV replication in hepatocytes.269-273 
DENV infection induces autophagy, and an inhibition of auto-
phagy reduces viral replication and titers.

Both direct and indirect roles for autophagy in DENV repli-
cation have been proposed.274 DENV, like all positive-stranded 
RNA viruses, remodels cellular membranes to form sites of rep-
lication. It was initially hypothesized that DENV may replicate 
on the membranes of amphisomes, which are autophagosomes 
that have fused with endosomes.271 However, electron micros-
copy tomography of DENV replication complexes revealed that 
the virally-induced membrane structures are ER invaginations.275 
Subsequently, it was demonstrated that DENV-induced auto-
phagy stimulates lipid metabolism.5,269 The form of autophagy 
induced by DENV has the hallmarks of lipophagy.5 DENV 
infection not only increases the number of autophagosomes per 
cell, but also enhances the percentage of autophagosomes asso-
ciated with lipid droplets. This association results in decreased 
lipid droplet size and number. DENV-induced lipophagy 
degrades TGs, producing FFAs that then undergo β-oxidation. 
The generation of FFAs by lipophagy promotes viral replication, 
since the requirement of autophagy for DENV replication could 
be supplanted by the addition of FFAs. This complementation 
of inhibited autophagy by FFAs requires β-oxidation, suggest-
ing that autophagy functions to increase energy production for 
DENV replication.269 It is possible that autophagy performs 
other functions as well, and DENV-induced autophagy has also 
been proposed to play an indirect role in DENV replication by 
inhibiting apoptosis.276

The mechanism by which DENV induces lipophagy is 
unclear, as is its function. Typically cells respond to energy needs 
by inhibiting anabolic processes and stimulating catabolic ones to 
conserve energy and promote cell survival. In the case of DENV 
infection, both lipid anabolism and catabolism are stimulated 
together. DENV increases lipid catabolism by lipophagy while 
also enhancing lipid anabolism through viral stimulation of fatty 
acid synthesis.270 This raises the possibility that DENV infection 
deregulates lipid metabolism, thereby depleting cellular energy 
stores, which may contribute to the cytopathic effect of DENV 
on its host cell. The findings also suggest unique aspects of lipid 
metabolic regulation in DENV infection. The overexpression of 
at least one viral protein, NS4A, induces autophagy and protects 
cells from apoptosis.276 It has not been examined whether NS4A-
induced autophagy stimulates lipid metabolism.

Hepatic fibrosis. Hepatic fibrosis represents the accumula-
tion of extracellular matrix (ECM) that accompanies chronic 
tissue injury in a range of organs including liver, lung, kidney, 
skin, pancreas, bone marrow and heart. Although this scarring 
response is thought to have evolved for the beneficial effect of 

encapsulating and thereby limiting tissue injury, the detrimental 
consequences of fibrosis can be profound and ultimately lead to 
organ failure. It has been estimated that up to 45% of all deaths 
in the industrialized world are attributable to chronic fibrotic dis-
eases including those in the liver.277

Efforts to prevent fibrotic diseases hinge on an understand-
ing of the cell types and regulatory mechanisms that generate 
excessive ECM. Recent progress has been made in identifying 
the cellular sources of ECM in experimental models of tissue 
injury. All fibrotic tissues contain a specialized mesenchymal cell 
type, termed a myofibroblast, that is derived from resident cell 
types, primarily pericytes,278 and to a lesser extent from circulat-
ing bone marrow-derived cells. While the relative contribution 
from these sources varies among tissues, the generalized features 
of these cells—a contractile phenotype, well-developed rough 
endoplasmic reticulum and ECM secretion—indicate that many 
core features of fibrosis are conserved across all tissues.279 The 
mesenchymal cell source of myofibroblasts in liver injury is the 
hepatic stellate cell. These resident perisinusoidal cells are the 
best studied among tissue myofibroblast precursors because well-
established methods exist to isolate them to purity from rodent 
and human liver.280-282 The most characteristic feature of these 
cells in normal liver is the presence of perinuclear membrane-
bound droplets filled with retinyl esters, primarily retinyl acetate 
and retinyl palmitate.283

The isolation of hepatic stellate cells has led to a clearer under-
standing of their response to injury through a process termed 
“activation.” Hepatic stellate cell activation occurs during liver 
injury in vivo, as well as following their primary culture on plas-
tic or other stiff substrata. The most unique and reproducible 
feature of stellate cell activation is the progressive loss of their 
intracellular retinoid-containing droplets and adoption of a more 
contractile and fibroblast-like appearance. Other features of stel-
late cell activation include increased proliferation, contractility, 
fibrogenesis and proinflammatory signaling.284

How retinyl esters are lost during stellate cell activation has 
been poorly understood, and it has been especially difficult to 
clarify whether this event is required for cellular activation. The 
loss of retinoids during cellular activation in culture is depen-
dent on serum and platelet-derived growth factor,285 and leads to 
extracellular accumulation of free retinol, indicating that hydro-
lysis of retinyl esters probably occurs prior to cellular export. 
Interestingly, animals lacking the enzyme LRAT (lecithin retinol 
acyltransferase [phosphatidylcholine–retinol O-acyltransferase)], 
whose stellate cells lack lipid droplets due to their inability to 
esterify all-trans-retinol into retinyl esters, still mount a normal 
fibrogenic response to liver injury.286 These findings have sug-
gested that hepatic stellate cell lipid storage is irrelevant to the 
process of cellular activation.

The recent discovery of lipophagy as a cellular mechanism of 
lipid breakdown,5 suggested that the loss of lipid droplets dur-
ing stellate cell activation might result from increased autophagic 
activity, and this possibility has now been experimentally sup-
ported.59 Hepatic stellate cell activation in vitro and in rodent 
models of liver injury is associated with features of autophagy 
induction including a marked increase in autophagic vacuoles, 
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LC3-II levels and autophagic flux. Similar findings of increased 
autophagy are also present in activated human stellate cells. 
Blocking autophagy in cultured cells either with 3-methylade-
nine,59,287 or specific siRNAs to Atg5 or Atg7, all lead to attenuated 
stellate cell activation and fibrogenesis. Importantly, mice with a 
genetic deletion of Atg7 specifically in stellate cells have attenu-
ated fibrosis following sustained liver injury due to either car-
bon tetrachloride or thioacetamide. The link between lipophagy 
and stellate cell activation raised the possibility that activation of 
autophagy results in increased energy production by liberating 
FFAs from retinyl esters to serve as an energy source. Blockage 
of fatty acid oxidation prevents stellate cell activation, whereas 
provision of the exogenous FFA oleate to cultured autophagy-
defective cells overcomes the block in activation conferred by loss 
of autophagic signaling through Atg7 depletion.

These findings were extended to other mesenchymal cell types 
from kidney and lung, demonstrating that autophagy is a gen-
eralized response to tissue injury in other organs besides liver. 
Renal mesangial cells from mice treated with siRNA to Atg7 also 
have reduced fibrogenic gene expression, whereas human lung 
fibroblasts from patients with pulmonary fibrosis have enhanced 
autophagic activity compared with cells derived from normal 
patients.59

Together, these data support a model wherein activation of 
fibrogenic cells in injured tissue leads to an energy requirement 
that is met by liberating FFAs through autophagy. Whereas this 
process is most obvious in hepatic stellate cells because of their 
abundant lipid content, the same concept may apply to other 
mesenchymal cells. The capacity of lecithin-retinol acetyl trans-
ferase-deficient cells to adopt and maintain a fibrogenic pheno-
type indicates that esterification of retinol into retinyl esters is 
not required for activation, yet it is possible that these cells sim-
ply contain more FFAs or other sources of cellular energy to fuel 
activation.

This newly uncovered link between autophagy and mesen-
chymal cell activation opens new opportunities for therapeutic 
antagonism of autophagy as an antifibrotic strategy. However, 
whereas the blockage of autophagy in mesenchymal cells may 
attenuate fibrosis, autophagy is essential to preserve energy 
homeostasis in other cell types, especially hepatocytes. Thus, 
therapeutic efforts to inhibit autophagy would need to be highly 
selective. From a mechanistic perspective, the findings also raise 
interesting questions about what are the upstream drivers of the 
profibrotic autophagic response in mesenchymal cells. One can-
didate is ER stress, which has been linked to the induction of 
autophagy in other situations.288

Hepatocellular cancer. The function of autophagy in car-
cinogenesis has been controversial, with experimental evidence 
suggesting that autophagy both prevents and promotes tumor 
development.289,290 These discrepancies are explained by cur-
rent evidence of two different cellular functions of autophagy 
depending on the stage of carcinogenesis. In normal cells, auto-
phagy functions to prevent neoplastic transformation through 
the removal of damaged organelles and specific proteins such as 
SQSTM1. In contrast, in established tumors autophagy supports 
tumor growth by satisfying the increased metabolic demands of 

the proliferating transformed cells by providing nutrient support 
in the form of amino acids, FFAs and glucose. Thus, autophagy 
functions as a double-edged sword in cancer, initially acting as a 
tumor suppressor, but once the tumor is established promoting its 
survival by meeting its metabolic demands (Fig. 4). Considerable 
findings have begun to define the mechanisms that underlie the 
two functions of autophagy in carcinogenesis in general, and spe-
cifically in the primary liver tumor HCC.

Inhibition of autophagy promotes liver tumor development. 
Autophagy is suppressed by mutation or deletion of oncogenes 
and tumor suppressor genes that regulate the insulin signal-
ing pathway because persistent activation of MTOR complex 
1 (MTORC1) by insulin is an important inhibitory check on 
autophagy. Reduced autophagy from constant MTORC1 activa-
tion may promote neoplastic transformation. A hepatocyte-spe-
cific mouse knockout of PTEN or TSC1 leads to constitutively 
activated MTOR, a resultant decrease in autophagic activity 
and spontaneous HCC.291-293 However, MTOR controls mul-
tiple physiological processes in addition to autophagy, including 
gene transcription and protein synthesis. Therefore, these stud-
ies provide only indirect evidence that increased MTOR signal-
ing promotes tumorigenesis through an autophagy-dependent 
mechanism.

The finding that the autophagy gene Becn1 is a tumor sup-
pressor gene, particularly for HCC, provides more definitive evi-
dence for a tumor suppressive role for autophagy.294 Autophagy 
is dependent on PtdIns3K generation of phosphatidylinositol-
3-phosphate, and the PtdIns3K complex consisting of PIK3R4/
p150, PIK3C3/VPS34, BECN1 and ATG14 (complex I) medi-
ates early autophagosome formation.295-297 Another PtdIns3K 
complex composed of PIK3R4, PIK3C3, BECN1 and UVRAG 
(UV radiation resistance associated) protein (complex II) 
facilitates autophagosome and endosome maturation.298,299 In 
contrast, when KIAA0226/rubicon associates with a subpopu-
lation of UVRAG-containing PtdIns3K complexes, this com-
plex (complex III) negatively regulates a later step of autophagy 
and the endocytic pathway.300,301 Recruitment of BECN1 to the 
PtdIns3K complex is sensitive to nutrient conditions. BECN1 
forms a complex with ER-associated BCL2 under nutrient-rich 
conditions and is released after BCL2 is phosphorylated by 
MAPK8/JNK1 during starvation.302 Becn1+/– mice therefore have 
significantly reduced autophagic activity and increased risk for 
cancer. These mice develop three types of spontaneous tumors, 
one of which is HCC, and more frequently develop preneoplastic 
lesions when crossed with mice containing a hepatic HBV trans-
gene.303,304 The mouse knockout of SH3GLB1/BIF-1, a protein 
that activates PtdIns3K complex II through an interaction with 
UVRAG, causes lymphoma and HCC in mice.305 This series of 
reports suggests that inactivation of PtdIns3K is a strong pro-
moter of HCC. However, it has been unclear whether findings 
in Becn1 and Sh3glb1-knockout mice really reflect a phenotype of 
defective autophagy, because PtdIns3K is involved in other cel-
lular pathways.

The most conclusive findings of a protective role for auto-
phagy in hepatic carcinogenesis are the long-term studies of mice 
with a deletion of ATG5 or ATG7, which develop multiple liver 
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tumors. Both ATG5 and ATG7 are part of two ubiquitin-like 
conjugation systems essential for autophagosome formation.2 
The ATG5 and ATG7 proteins basically have a specialized func-
tion for autophagy, although recent studies have revealed novel 
roles of ATG12-ATG5-ATG16L1 and ATG7 distinct from auto-
phagosome formation in specialized cells such as macrophages 
and neuroendocrine cells.97,306,307 Small tumors form in the liv-
ers of globally mosaic Atg5 null mice and hepatocyte-specific 
Atg7 knockout mice at the ages of 7–9 mo.308,309 Importantly, 
Atg5 mosaic knockouts develop tumors only in the liver,308 sug-
gestive of a specific reliance of hepatocytes on the tumor sup-
pressive function of autophagy. As the mice age, tumor number 
and size increase until the livers are almost covered by tumors at 
16–19 mo of age. Atg5- and Atg7-knockout hepatocytes/tumor 
cells have enlarged mitochondria and a large number of peroxi-
somes, probably due to impaired organelle quality control, and 
increased protein oxidation and oxidative stress.308,309 As a result, 
cells in autophagy-deficient livers are thought to have genomic 
instability. The resulting DNA damage in autophagy-deficient 
cells activates the DNA damage sensor ATM, and CHEK2/
CHK2 then phosphorylates Ser20 of TRP53/p53 which induces 
a series of pro-apoptotic genes and cell death.310 The expression of 

pro-apoptotic genes observed in Atg7-knockout neonate livers is 
completely blocked by the additional knockout of Chek2.310 The 
phosphorylation of TRP53 and enhanced cell death observed in 
atg7−/− murine embryonic fibroblasts are restored by simultaneous 
depletion of Chk2.310 A reason for the greater propensity of hepa-
tocytes to form tumors in the absence of autophagy as compared 
with other tissue cell types may be that the proliferative capacity 
of hepatocytes leads to a marked imbalance between cell prolif-
eration and death. Further studies need to better examine the 
role of the ATM-CHEK2-TRP53 pathway in tumorigenesis in 
autophagy-deficient livers.

Regulation of autophagy in tumors. To develop successful 
autophagy-modulating strategies against cancer, how the func-
tion of autophagy differs based on the tumor stage, cell type and 
genetic factors must be better understood. To this end, the spe-
cific autophagy pathways regulated in tumor development and 
progression and by cancer therapy need to be more clearly estab-
lished. The ability of both oncogenes and tumor suppressor genes 
to regulate autophagy and have an impact on tumor development 
has already been discussed. Whereas oncogene products usually 
inhibit autophagy, tumor suppressor proteins positively regulate 
autophagy, highlighting how autophagy can be involved in both 

Figure 4. Functions of autophagy in tumorigenesis. Autophagy has a bifunctional role in the development of liver cancer. Prior to cellular transfor-
mation, autophagy functions to suppress tumor formation by preventing genomic instability, promoting cell senescence and limiting inflammation. 
After transformation has occurred, autophagy promotes tumorigenesis by satisfying the high metabolic demands of the tumor cells and aiding their 
survival.
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tumor suppression and promotion. Demonstrating the complex-
ity of autophagy regulation in tumors, the tumor suppressor 
TRP53/TP53 can function either as an inhibitor or simulator of 
autophagy, depending on its cellular location.289,290 In addition to 
these factors, microRNAs (miRNAs), endogenous 22-nucleotide 
RNAs that suppress gene expression by mRNA cleavage and/or 
translational repression, have also been linked to tumorigenesis 
by modulating cell proliferation, differentiation and invasion.311 
Several miRNAs modulate autophagy in tumor cells through the 
targeting of autophagy-related genes,312-314 and tumor cells often 
have abnormal miRNA expression. In hepatic carcinogenesis, 
the regulation of autophagy by MIR375 in HCC under hypoxic 
conditions has been described.315 Hypoxia is not only one of the 
most pervasive microenvironmental stresses in solid tumors, but 
also a canonical activator of autophagy. MIR375 is primarily an 
inhibitor of autophagy in HCC cells under hypoxic stress and is 
downregulated in HCC. Decreased MIR375 impairs HCC cell 
viability by attenuating the protective role of autophagy through 
inhibition of ATG7 expression. Since the dual role of autophagy 
in tumor suppression and promotion presents a challenge in 
designing autophagy-based cancer therapy, understanding the 
signaling pathways that regulate autophagy in specific contexts, 
such as hypoxia-induced autophagy for HCC, may be the best 
way to utilize positive and negative regulators of autophagy as 
therapeutic targets in cancer.

Mechanisms of HCC development in the absence of autophagy. 
As discussed, mice haploinsufficient for Becn1, globally mosaic 
for Atg5 deficiency, or lacking Atg7 specifically in the liver, 
develop liver tumors probably secondary to the dysregulation 
of signal transduction pathways as well as to impaired organ-
elle quality control. Critical to this process in hepatic tumors 
is the hepatocyte accumulation of SQSTM1 that occurs in the 
absence of autophagy. Liver adenoma growth in mice with a 
liver-specific knockout of Atg7 is markedly suppressed by a con-
comitant knockout of Sqstm1 because SQSTM1 accumulation 
from the loss of autophagy leads to dysregulation of NFKB sig-
naling and NFE2L2/NRF2 activation.308 Activation of NFKB, 
an important cell survival factor, due to excess SQSTM1 accu-
mulation, may mediate tumor development. In agreement with 
this hypothesis, suppression of NFKB signaling by a SQSTM1 
knockout prevents growth and development of RAS-induced 
lung adenocarcinoma,316 and inducing Sqstm1 expression via con-
stitutive activation of KRAS contributes to the development of 
pancreatic adenocarcinoma.317 The dysregulation of NFKB sig-
naling in autophagy-incompetent cells is due at least in part to 
increased SQSTM1 levels.318

NFE2L2 activation also contributes to tumorigenesis in 
autophagy-deficient mice. NFE2L2 is a transcription factor 
responsible for the expression of a battery of genes encoding anti-
oxidant proteins and detoxification enzymes. Somatic mutations 
in either Nfe2l2, or its inhibitory binding partner Keap1, have 
been identified in patients with lung, head and neck or gallblad-
der cancers.319,320 These mutations make tumor cells resistant to 
oxidative damage and anticancer agents because of sustained 
NFE2L2 activation. NFE2L2 can also be activated in certain 
types of cancer by mechanisms other than genetic mutation,321,322 

and oncogene-driven Nfe2l2 transcription serves as an early event 
in tumorigenesis.323 NFE2L2 also redirects glucose and gluta-
mine into anabolic pathways, especially under the sustained acti-
vation of PI3K-AKT signaling.324 An active PI3K-AKT pathway 
augments the nuclear accumulation of NFE2L2, enabling it to 
promote metabolic activities that support cell proliferation and 
enhance cytoprotection.324 Aggregates positive for SQSTM1 are 
often detected in HCC, and increased expression of NFE2L2 tar-
get genes has been observed in these tumors,309 suggesting that 
persistent activation of NFE2L2 in response to increased levels 
of SQSTM1 may contribute to HCC development. Tumors 
in Atg5- or Atg7-knockout livers are monoclonal with regu-
lar arrangements and patterns, and metastasis is not observed, 
indicating that these tumors are benign adenomas.308,309 These 
results are consistent with the concept of autophagy serving as 
a double-edged sword in hepatic carcinogenesis. In the absence 
of autophagy, tumor initiation is promoted, but full malignant 
transformation is not achieved, perhaps because the metabolic 
functions of autophagy are required for the survival of malignant 
cells. Tumor cells in the knockout livers have decreased mito-
chondrial function compatible with metabolic compromise.309 
The findings are in contrast to BECN1-haplodeficient mice 
which develop frank HCC.303,304 As discussed, loss of BECN1 
may have effects other than to decrease autophagy, such as block-
ing apoptosis. BECN1-haplodeficient fibroblasts are equally sen-
sitive to several cell death stimuli,304 but limited death inducers 
were examined and studies were not performed in hepatocytes. 
Nonetheless, all of the studies of tumor formation in the absence 
of autophagy clearly point to a particular sensitivity of the liver to 
develop tumors in the absence of autophagic capacity.

Although autophagy functions as a tumor suppressor in non-
tumor cells or in the early stages of tumor cell development, auto-
phagy becomes important for cancer cell survival once tumors 
are established. Cancer cells have increased metabolic demands 
(for both energy substrates and building blocks) for prolifera-
tion, and often grow under hypoxic conditions until angiogenesis 
is sufficiently established. Therefore, cancer cells, particularly 
those with RAS mutations such as pancreatic cancer, rely heavily 
on autophagy.325,326 Whether nutritional support is the molecu-
lar mechanism remains unclear, but a blockage of autophagy is 
sufficient to inhibit proliferation in pancreatic and other cancer 
cell types.327,328 Furthermore, loss of autophagy in these cells 
is accompanied by impaired oxidative phosphorylation likely 
secondary to a decreased supply of intermediates for the tricar-
boxylic acid cycle.325,326 Although the failure of Atg5 and Atg7 
knockout mice to progress from adenomas to HCC is suggestive 
of the requirement for autophagy to complete hepatocyte malig-
nant transformation, the dependency of HCC for autophagy to 
meet this tumor’s metabolic needs has not been examined.

Future Directions

The accidental yet fortuitous discovery of lysosomes by Christian 
de Duve’s laboratory nearly 60 years ago set the stage for the 
elucidation of the autophagic pathways.329 It is significant that 
these first investigations were conducted in liver, as have many 
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of the studies that have subsequently delineated the functions 
of autophagy. Autophagy is the major cellular process by which 
distinct portions of liver cytoplasm are enveloped in auto-
phagosomes, and the enclosed cargo is broken down inside lyso-
somes. Autophagy generally promotes cell survival in quiescent 
liver cells, which continually turn over nucleic acids, proteins, 
complex carbohydrates and lipids to generate nucleotides, amino 
acids, simple sugars and fatty acids, respectively. These smaller 
molecules are not only used to generate energy, but also certain 
nucleotides (AMP), amino acids (most prominently leucine) and 
fatty acids (oleate and palmitate) that are produced regulate the 
rate of autophagy by controlling autophagosome formation. Such 
regulation is dependent not only on nutrient intake, but also on 
the liver’s internal circadian rhythms. Autophagy also selectively 
targets substrates in the liver. This specificity is clearly illustrated 
in type 2 mitophagy as with drug (APAP)- and I/R-induced 
mitophagy, and the rather selective degradation of lipid droplets 
in response to long-term nutrient deprivation, a lipid challenge 
or acute alcohol administration. Autophagy’s vital function in 
innate immunity against bacterial pathogens is well documented. 
Curiously, however, in the liver the hepatitis B and C viruses and 
dengue virus have each evolved unique mechanisms to enhance 
autophagic function in order to commandeer this pathway for 
their propagation in the liver.

In the diseased liver, autophagy is clearly a therapeutic target. 
In ATD, the mutant form of SERPINA1 is retained inside hepa-
tocytes where it aggregates, eventually causing cell injury and 
death, fibrosis and liver cancer. The drug carbamazepine, which 
is normally used to treat neurological disorders, shows promise 
as an autophagy enhancer, thereby accelerating the intracellular 
clearance of aggregated SERPINA1-Z. The therapeutic potential 
of CBZ is now being tested in clinical trials while other poten-
tial drugs to augment autophagy are undergoing screening by 
high-throughput autophagy assays. Similarly, the discovery of 
autophagy’s function in hepatic lipid catabolism implies that the 
most prevalent form of human liver disease, NAFLD, and its 
more severe form, NASH, both represent deficits in lipophagy. 
It is therefore reasonable that drugs now undergoing testing for 
their ability to stimulate autophagy may have therapeutic value 
for patients with NAFLD and/or NASH. Similarly, some of 
these compounds might be effective in ablating steatosis and 
accelerating the clearance of Mallory-Denk bodies in patients 
with alcoholic liver disease. In this review, studies of autophagy 
in liver parenchymal cells or hepatocytes have been emphasized. 
However, the perisinusoidal stellate cells that secrete extracel-
lular matrix components and which initiate liver fibrosis also 
have an active autophagic pathway. Recent findings indicate that 
stellate cell activation depends on the oxidation of fatty acids 

derived from lipophagy of retinyl esters. Thus, enhancement of 
autophagy in this instance initiates stellate cell activation, bring-
ing about a fibrotic response. These findings imply that, in con-
trast to the pathologies just mentioned, therapeutic measures 
to limit or block autophagy specifically in stellate cells, would 
attenuate fibrosis after liver injury. It will be important for future 
investigations to better address the functions of autophagy in 
non-parenchymal cells as findings of conflicting roles of auto-
phagy in different cell types has important implications for the 
use of therapies that increase autophagic function. Finally, rather 
strong evidence indicates that autophagy has a tumor suppres-
sor function in liver, based on findings that mice lacking the 
autophagy gene Atg5 develop liver tumors that increase in size 
and frequency as the animals age. These findings imply that the 
deficiency in autophagosome formation promotes genomic insta-
bility that leads to cellular transformation. This finding might 
be somewhat specific to HCC and not apply universally to all 
forms of cancer, since in pancreatic ductal adenocarcinoma cells, 
for example, autophagy is higher than in normal pancreas.326 
Thus, the mechanisms that trigger and sustain neoplasia in a 
specific tissue vary with the tissue’s genomic activity and specific 
physiology.

In summary, tremendous strides in our understanding of the 
importance of autophagy in the liver have been made over the 
past few years in large part due to the availability of genetically 
altered models of autophagy. Although major questions remain, 
the critical importance of autophagy in many hepatic physi-
ological and pathological conditions has been clearly established. 
Future investigations are likely to further elucidate the impor-
tance of the autophagic pathways in the liver, which will hope-
fully provide new therapeutic approaches to the most common 
liver diseases.
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