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Abstract
A promising target for improved therapeutics in Parkinson's disease is the nicotinic acetylcholine
receptor (nAChR). nAChRs are widely distributed throughout the brain, including the nigrostriatal
system, and exert important modulatory effects on numerous behaviors. Accumulating evidence
suggests that drugs such as nicotine that act at these sites may be of benefit for Parkinson's disease
treatment. Recent work indicates that a potential novel therapeutic application is the use of
nicotine to reduce levodopa-induced dyskinesias, a side effect of dopamine replacement therapy
for Parkinson's disease. Several clinical trials also report that nicotine may diminish disease
symptoms. Not only may nAChR drugs provide symptomatic improvement, but they may also
attenuate the neurodegenerative process itself. This latter idea is supported by epidemiological
studies which consistently demonstrate a ~50% reduced incidence of Parkinson's disease in
smokers. Experimental work in parkinsonian animal models suggests that nicotine in tobacco may
contribute to this protection. These combined findings suggest that nicotine and nAChR drugs
offer the possibility of improved therapeutics for Parkinson's disease.
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INTRODUCTION
Parkinson's disease is a neurodegenerative movement disorder characterized by a
generalized neuronal decline in the CNS, with a particularly prominent loss of nigrostriatal
dopaminergic neurons 1. Dopamine replacement provides excellent therapeutic relief in the
early stages of the disease. However, there is a constant search for new pharmacotherapies
for Parkinson's disease management because of limitations associated with current
treatment 1-2. Effectiveness in reducing Parkinson's disease symptoms diminishes with
continued use and side effects develop, including on-off phenomena and dyskinesias.
Another drawback with current treatment is that it primarily provides symptomatic relief,
with an inevitable disease progression.

Emerging studies suggest that nicotine treatment might be a useful adjunct therapy for
Parkinson's disease. Recent work in monkey, mouse and rat parkinsonian animal models
show that nicotine reduces levodopa-induced dyskinesias, a side effect of dopamine
replacement therapy that may be as debilitating as the disease itself 3. Clinical studies also
suggest that nicotine has antiparkinsonian effects 4. Lastly, nicotine protects against
nigrostriatal damage in different experimental models 3a, 5. These latter findings form the
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basis for the suggestion that nicotine in tobacco products may be associated with the
decreased incidence of Parkinson's disease observed with smoking 4, 6.

The goal of this paper is to discuss the interaction between the dopaminergic and nicotinic
cholinergic systems to provide a framework for understanding a role for nicotine in
Parkinson's disease. We also review some promising pre-clinical work which indicates that
nicotine and/or nAChR drugs may be useful for improving levodopa-induced dyskinesias in
Parkinson's disease and for protection against long-term nigrostriatal damage.

RELATIONSHIP BETWEEN THE NICOTINIC CHOLINERGIC AND
DOPAMINERIGIC SYSTEM

Knowledge of the anatomical interrelationship between the striatal cholinergic and
dopaminergic systems has contributed significantly to our understanding of the role of
nicotine in Parkinson's disease therapy. Numerous studies have shown that the terminals
from the ascending nigrostriatal dopaminergic projections from the substantia nigra
extensively overlap with acetylcholine interneurons present in the striatum 7. These
cholinergic neurons represent a small percentage (~2-3%) of the neuronal cell bodies in the
striatum, the greater majority (~95%) of which are GABAergic. However, despite their
limited number, the cholinergic neurons are quite large. Importantly, their dendritic
arborization forms a dense network in striatum whose distribution closely matches that of
the dopaminergic terminals, with a very similar expression pattern of dopaminergic
(dopamine, tyrosine hydroxylase, dopamine transporter) and cholinergic (acetylcholine,
choline acetyltransferase and acetylcholinesterase) markers 8. Cholinergic interneurons
tonically secrete acetylcholine, which modulates neurotransmitter release from striatal
dopaminergic neurons, and also to a lesser extent from cortical glutamatergic terminals.
Acetylcholine exerts these effects on dopamine release via an interaction at nAChRs, of
which there are multiple subtypes 9.

NICOTINIC RECEPTOR SUBTYPES
Structurally the CNS nAChR has as its basic motif, a pentamer of five subunits around a
central pore that lies within the membrane bilayer. Molecular cloning has identified nine α
(α2-α10) and three β (β2-β4) subunits. Select α (α2-α6) and β (β2-β4) subunits assemble
into heteropentamers. Homopentamers composed only of α subunits also exist and may
contain only α7, α8 and α9 subunits or combinations of α7α8 and α9α10 subunits 9. The
binding of acetylcholine to the receptor complex occurs at the recognition site present on the
α subunit. However, the β subunit also contributes towards the pharmacological properties
of the receptor binding site by modulating the interaction of the ligand with the α subunit at
the binding interface that lies between the α (α2, α3, α4, α6) and β (β2 or β4) subunits in
heteromeric receptors. The α5 and β3 subunits do not participate in the acetylcholine
binding site and are termed accessory subunits. The binding interface in the pentameric
complexes composed of only α (α7-α10) nAChR subunits occurs between two α subunits
to result in five identical acetylcholine binding sites 9a, 9c.

Extensive studies using a wide variety of approaches now show that multiple receptor
subtypes are generated by the association of different α and β subunits, with the primary
ones in the CNS being the α4β2* (the asterisk denotes the possible presence of other
nAChR subunits in the receptor complex) and α7 subtypes 9c, 10. These nAChRs are widely
distributed throughout the brain, and are localized presynaptically and also somato-
dendritically on postsynaptic neurons 9. One of their primary functions is to modulate
synaptic transmission and plasticity mediated via other neurotransmitter systems with
resultant changes in attention, cognition, depression and affect 9, 11.
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The α4β2* and α7 nAChRs are also involved in controlling striatal dopamine function 12

with consequent effects on motor and reward-related responses 11, 12b, 13. Receptors
containing solely α4β2 subunits are present on both striatal dopaminergic and glutamatergic
terminals, with a subpopulation of α4α5β2 nAChRs expressed only on dopaminergic
terminals in rats 10a, 10c, 12a. Receptors containing the α4β2 subunits can exist in two
different forms, a high sensitivity subtype with a stoichiometry of (α4)2(β2)3 and a low
sensitivity receptor with a stoichiometry of (α4)3(β2)2.14 Thus, both varying α4β2* subunit
composition and stoichiometry can generate subtypes with a distinct pharmacological and
functional characteristics under different treatment conditions 15. Although the role of
striatal postsynaptic α7 nAChRs is still unclear, those localized presynaptically on cortical
glutamatergic afferents influence striatal dopamine release.

Pentameric complexes of α6β2* nAChR subtypes are uniquely restricted to CNS
catecholaminergic neurons including those in the dopaminergic mesolimbic and nigrostriatal
pathway. They are present on dopaminergic terminals and thought to be involved in reward,
addiction and motor activity 16. The use of various experimental strategies has identified the
presence of two major α6β2* nAChRs, the α6β2β3 and α6α4β2β3 subtypes, as well
possibly as a small population expressing only α6β2 subunits 9a, 10a, b, 12a, 17.

In summary, the primary nAChR populations in the striatum includ the α4β2, α4α5β2,
α6β2β3, α6α4β2β3 and α7 subtypes. These may be expressed pre- and/or post-synaptically
on dopaminergic, glutamatergic, GABAergic and/or other neurons, with a primary role of
the presynaptic receptors to modulate dopamine release. The observed heterogeneity in
subtypes may be important for fine-tuning of striatal dopaminergic function under varying
physiological and pathological conditions.

NACHR MODULATION OF NIGROSTRIATAL DOPAMINE FUNCTION
As mentioned earlier, dopamine neurotransmission is regulated by tonically active
cholinergic interneurons that act as a pulsed source of acetylcholine to modulate dopamine
release via pre- and postsynaptic nAChRs. NAChR activation subsequently changes
membrane excitability and initiates a calcium signaling cascade that ultimately results in
neurotransmitter release 7a, 12b, 18. This can occur via direct stimulation of nAChRs on
striatal dopaminergic terminals or through the stimulation of nAChRs on striatal
glutamatergic terminals 10b, 19.

One approach to measure presynaptic nAChR-mediated dopamine release involves the use
of striatal synaptosomes and slices preloaded with 3H-dopamine 12a. This technique, coupled
with the use of genetically modified mouse models and the α6 selective neurotoxin α-
conotoxinMII, has greatly expanded our understanding of the functional role of nAChR
subtypes on the dopamine system 20. Several nAChR subtypes modulate striatal dopamine
function, including the α4β2, α4α5β2, α4α6β2β3 and α6β2β3 subtypes, with the α4β2*
nAChRs responsible for 50-70% of nAChR-mediated dopamine release and the α6β2*
nAChRs the remainder 10c, 12a, 16a.

Another advance that has provided invaluable information about the role of nAChRs in
regulating dopamine release is fast scan cyclic voltammetry using striatal slices 12b, 21. This
technique allows for the real-time assessment of endogenous dopamine release stimulated
electrically at biologically relevant frequencies that mimic typical neuronal firing rates.
Experimental studies indicate that nicotine has differential effects on dopamine release
depending on the neuronal firing rate with a suppression of release at low stimulation
frequencies but not under phasic firing conditions 12b, 21. Studies with slices from knockout
mice suggest that β2* nAChR primarily modulate striatal dopamine release 21g. The α6β2*
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subtype mediates ~80% of nAChR-regulated dopamine release at low firing rates, with the
α4β2* receptor population regulating the remainder 21a-c, 22.

In vivo studies have also been done to study the role of nAChRs in the control of striatal
dopamine levels. These generally involve microdialysis followed by high pressure liquid
chromatography to measure dopamine levels. Acute systemic nicotine or local perfusion of
nicotine through the microdialysis probe both increase dopamine levels in striatum 23.
Studies with α4, α6 and β2 nAChR knockout mice suggest that the α4β2 nAChR plays a
major role in regulating striatal dopamine release in vivo 10b, 24.

These combined results indicate that α6β2* and α4β2* nAChRs play a pivotal role in the
control of striatal dopaminergic signaling. This knowledge is fundamental for understanding
the nature of the dysfunction in neurological disorders such a Parkinson's disease and
developing optimal treatment regimens.

Nigrostriatal damage reduces nAChR-mediated dopamine release
Studies in parkinsonian mice, rats and monkeys show that striatal nAChR subtypes are
decreased with striatal dopaminergic denervation 9a, 25. Nigrostriatal degeneration results in
differential receptor subtype loss depending on the extent of damage, with a predominant
loss of the α6α4β2β3 nAChR with moderate lesioning, a decrease in the α6β2β3 subtype
with greater nigrostriatal damage, and a decrease in the α4β2 subtype only with very severe
degeneration 17b, 25. Similar results were obtained in brains from Parkinson's disease cases,
with 30 to 75% declines in nAChRs in the caudate, putamen and substantia nigra that appear
to correlate with the extent of nigrostriatal damage 26. A comparison of changes in α4β2*
versus α6β2* nAChRs, showed that greater declines were observed in α6β2* receptors,
with the most prominent loss in the α6α4β2β3 as compared to the α6β2β3 nAChR subtype.
The α4β2* nAChRs were decreased only with severe degeneration 17b, 17d, 27. Consistent
with the animal studies, α7 nAChRs were not changed with nigrostriatal damage. This
disparate receptor subtype loss raises the intriguing possibility that the different nAChR
subtypes are present on different neuronal populations some of which are more susceptible
to neurodegenerative processes than others.

The finding that striatal nAChR subtypes and their function are differentially vulnerable to
nigrostriatal damage supports the notion that the different nAChR subtypes are present on
different neuronal populations some of which are more susceptible to neurodegenerative
processes than others. Such an idea is also supported by the results of cyclic voltammetric
studies, which show that there is a different distribution of nAChRs on dopaminergic fibers
with various electrophysiological characteristics 21b. For instance, evoked dopamine release
from fibers with a low action potential threshold is modulated primarily by α6β2* nAChRs.
By contrast, evoked released is influenced predominantly by α4β2* nAChRs for fibers
exhibiting higher action potential thresholds. The presence of varying nAChR subtypes on
these different classes of striatal fibers may make them differentially vulnerable to
neurotoxic agents. Continued studies are in progress to investigate this hypothesis.

The question now arises whether there might be a differential regulation of striatal dopamine
release with the preferential loss of one or other nAChR subtype. In rodent striatum, nAChR
stimulated dopamine release is decreased with dopaminergic degeneration, as expected. In
this species, there was a very close correspondence between the decline in dopamine release
and the loss of nAChR receptors 28. Results also suggested that dopamine release mediated
by the α4β2* and α6β2* nAChR subpopulations are altered in a corresponding fashion by
nigrostriatal damage 28. These data contrast with those obtained in a similar series of
experiments in nonhuman primates. Although MPTP-treatment induces similar decreases in
nAChRs in monkey and rodent striatum, this decline in receptor density was not associated
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with a concomitant decrease in either α4β2* or α6β2* mediated dopamine release with
moderate nigrostriatal damage 29. These data suggest that there is presynaptic compensation
in the release process of monkeys with nigrostriatal damage that involves both the α4β2*
and α6β2* nAChR population. These findings are also supported by voltammetry studies
that show increased dopamine release in primates after moderate nigrostriatal damage 21d.

Overall, these data show that nAChRs influence dopamine release under control conditions
and in the presence of nigrostriatal damage. The primary subtypes involved are the α4β2*
and α6β2* nAChR which may be present on different populations of dopaminergic neurons.
Their presence on select neuronal populations may play a part in the differential sensitivity
of various dopaminergic neurons to nigrostriatal damage. Notably, there appear to be
differences in the nAChR mediated regulation of dopamine release in rodents and primates
with compensation after moderate damage in nonhuman primates but not rodents. Continued
studies in different parkinsonian animal models are essential for a clear understanding of the
role of nAChRs in controlling dopamine function in Parkinson's disease.

Chronic nicotine treatment alters nAChR-mediated release
As mentioned, accumulating work suggests that nicotine treatment may be of benefit in
Parkinson's disease since it reduces levodopa-induced dyskinesias in parkinsonian animal
models and may also play a neuroprotective role against nigrostriatal damage. An important
question is thus how chronic nicotine treatment may affect striatal dopamine function.
Numerous studies have shown that long term nicotine administration upregulates α4β2*
nAChR expression in rodents, non-human primates and human brain 29a, 30. This receptor
increase is linked to a concomitant increase in nAChR-mediated dopamine release as
measured in brain slices or by microdialysis 31, although a decrease or no change was
observed when measured in striatal synaptosomes 30a, 32. This apparent discrepancy now
appears to be due to the fact that the enhanced α4β2* receptor expression is accompanied by
a downregulation of α6β2* nAChRs such that there is no net change in nAChR mediated
dopamine release 30a, 32a, 32d, e.

Some of these results in striatal synaptosomes are supported by our recent cyclic
voltammetry studies in striatal slices from rats and primates. In rats, chronic nicotine
treatment enhanced nonburst and burst stimulated endogenous dopamine release similar to
the overall increase in nAChR-mediated dopamine release in synaptosomes 22. Interestingly,
long term nicotine treatment also attenuated the α6β2* nAChR-mediated regulation of
striatal dopaminergic function with burst firing, an observation consistent with the nicotine-
induced decline in α6β2* nAChR expression and function 22. In contrast, in monkeys,
chronic nicotine administration did not enhance either nonburst or burst release and
attenuated both α4β2* and α6β2* nAChR-mediated responsiveness in some although not
all striatal regions 21c.

These voltammetric data demonstrate that chronic nicotine exposure modulates nAChR-
mediated dopamine release in striatum, although the precise functional implications of these
cellular changes remain to be elucidated. Greater knowledge of the alterations in nAChR
expression and function is important for a clear understanding of the effect of drug treatment
under varying pathological conditions such as Parkinson's disease 25.

POTENTIAL ROLE OF NICOTINIC RECEPTOR ACTIVATION IN
NIGROSTRIATAL FUNCTION

The morphological overlap coupled with the functional interaction between the
dopaminergic and nicotinic cholinergic system provides the biological basis for nicotine's
potential to influence behaviors linked to Parkinson's disease. These include the ability of
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nicotine (1) to reduce levodopa-induced dyskinesias, a debilitating side effect of levodopa
therapy, (2) to improve motor symptoms in Parkinson's disease and (3) to protect against
nigrostriatal damage. Evidence for such roles for nicotine and the potential importance to
Parkinson's disease therapeutics is discussed below.

Nicotine treatment reduces levodopa-induced dyskinesias
Experimental evidence from several animal models now suggests that nicotine may be
useful for improving levodopa-induced dyskinesias in Parkinson's disease. These are
abnormal involuntary movements that arise with levodopa treatment, the gold-standard for
Parkinson's disease therapy. They may be quite mild or so problematic that they compromise
the antiparkinsonian effectiveness of levodopa 1, 33. They may develop very rapidly
(months) and or more slowly such that the majority of patients develop dyskinesias within
5-10 years 34. Dyskinesias are extremely difficult to prevent. One strategy to postpone their
onset involves the initial use of low dose levodopa, but since Parkinson's disease generally
progresses with time, increasing doses of levodopa are inevitably required to manage
symptoms 1, 33. Dopamine agonists are also less prone to inducing dyskinesias; however
they are also less effective at controlling motor symptoms, less well-tolerated overall, and
associated with psychiatric and other adverse effects. Drug treatments for reducing
levodopa-induced dyskinesias are very limited, with amantadine currently the only accepted
pharmacologic approach for reducing their occurrence, although its effects are modest 35. A
host of drugs influencing the dopaminergic, serotonergic, glutamatergic, adrenergic,
cholinergic, opioid, adenosine and various peptidergic systems are being/have also been
tested but in general the drugs tested appear to have limited efficacy 2b, 4, 35b, 36. Additional
therapies to reduce levodopa-induced dyskinesias are therefore critical.

Our recent studies show that drugs interacting with the nicotinic cholinergic system are
effective in attenuating levodopa-induced dyskinesias. Nicotine, a drug that interacts with
multiple nAChR subtypes, reduces levodopa-induced abnormal involuntary movements
(AIMs) in three different parkinsonian animal models. Nicotine significantly attenuated
dyskinesias in levodopa-treated MPTP-lesioned monkeys, when given either before the
onset of dyskinesias or when they were established 3a. We obtained similar results in
parkinsonian rodent models of levodopa-induced dyskinesias, attesting to the robustness of
the effect of nicotine across species. Nicotine given via several modes of administration
(drinking water, minipump or injection) significantly improved levodopa-induced AIMs in
rat and mouse parkinsonian models (Bordia et al., 2008). These modes of administration
readily lend themselves to use in Parkinson's disease patients, for instance, as an oral
formulation or a slow release mode (nicotine patch). Notably, nicotine did not modify the
anti-parkinsonian effect of levodopa in any species. This basic work has led to the initiation
of a clinical trial to test nicotine against levodopa-induced dyskinesias in Parkinson's disease
patients.

The mechanisms whereby nicotine reduces levodopa-induced dyskinetic-like movements are
not yet know. However, studies with the nAChR blocker mecamylamine show it involves an
interaction at nAChRs 37. The select nAChR populations remain to be elucidated, although
the α4β2* and α6β2* subtypes are probably important since these are the primary ones
involved in striatal function 9c, 12, 38. Studies with agonists that interact with both α4β2*
and α6β2* nAChRs show that such drugs reduce levodopa-induced AIMs almost as
effectively as the nonselective nAChR agonist nicotine 39. Studies are currently in progress
to identify the role of the α4β2* versus α6β2* nAChR subtypes and the mechanisms
whereby an interaction at nAChRs reduces levodopa-induced dyskinesias.
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Nicotine and Parkinson's disease motor symptoms
Another question that arises is whether nicotine may improve motor symptoms in
Parkinson's disease patients since it is well known to stimulate striatal dopamine
release 7a, 12b, 18. Work to address this issue shows that nicotine improves parkinsonian
symptoms in ~50% of reports/trials, with improvement in five, no effect in four and a
worsening in one 4. The reason for these differences among studies may relate to variations
in the mode of administration of nicotine (patch, gum, intravenous), inadequate dosing,
timing or duration (days to weeks) of treatment, differences in the degree of parkinsonism
and type of trial (open-label versus double-blinded) 40. Work in parkinsonian rats and
monkeys show that chronic nicotine treatment in the drinking water or via minipump did not
lead to a reduction in parkinsonism either on or off Levodopa 3a, b. These findings in animal
models support the results of the trials demonstrating no beneficial effect of nicotine on
Parkinson's disease symptoms.

Continued work is necessary to ascertain whether or not nicotine improves Parkinson's
disease motor symptoms. Overall, however, these data indicate that nicotine and nicotinic
agonists do not worsen, and possibly improve, motor symptoms if such drugs were used for
the treatment of levodopa-induced dyskinesias in Parkinson's disease.

Nicotine and neuroprotection
In addition to its effects on Parkinson's disease motor symptoms and dyskinesias, nicotine
may also have a long term beneficial action by protecting against nigrostriatal damage.
Evidence for such a possibility initially stemmed from the results of epidemiological studies.
These showed that a reduced incidence of Parkinson's disease is associated with smoking, in
contrast to the enhanced risk associated with other factors such as age, gender, and pesticide
exposure 4, 6, 41. An average 50% lower incidence of Parkinson's disease was observed for
those who smoked ~20 years prior to disease diagnosis. Moreover, there appeared to be a
dose-response relationship, with decreasing Parkinson's disease risk correlated with
increasing pack-years smoked.

The putative neuroprotective effect of smoking has been attributed to the ability of nicotine
in tobacco to attenuate nigrostriatal data. This possibility is based on results of both in vitro
and in vivo experimental studies 5b, 31b, 42. For instance, nicotine protects primary cultured
neurons against MPTP or LPS-induced toxicity 42c, d. Moreover, chronic nicotine
pretreatment improves neurotoxin-induced nigrostriatal damage in rodents and nonhuman
primates, with protection dependent on the extent of neuronal damage and nicotine dosing
regimen 31b, 42a, b, 42e, f. As mentioned earlier, the etiology of Parkinson's disease is
currently uncertain, with a potential role for both genetic and environmental factors.
Experiments done to date investigating nicotine-mediated protection have all involved
neurotoxic-induced animal models of nigrostriatal damage that may represent an
environmental model of Parkinson's disease. A question that arises is whether nicotine also
protects against slowly progressive genetic animal models of Parkinson's disease, such as
those involving α-synuclein or other mutations 43. This is an important issue that awaits
further study.

In the above in vivo studies nicotine was given prior to and during the development of
nigrostriatal damage, a protocol which provides for an assessment of the neuroprotective
potential of nicotine. However, epidemiological studies show that once the disease is
diagnosed, smoking does not appear to improve Parkinson's disease 44. These latter findings
raise the question whether nicotine is only neuroprotective or whether it can also restore
function of damaged neurons. Our recent experimental studies in parkinsonian rats and
monkeys show that nicotine had no beneficial effect when administrated after nigrostriatal
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damage is complete. Thus, nicotine's primary role appears to be neuroprotective and not
neurorestorative 42b.

The mechanisms underlying nAChR-mediated neuroprotection are currently being
investigated. Accumulating evidence suggests that nicotine acts via β2* and α7 nAChRs.
The β2* nAChRs, which include the α4β2* and α6β2* subtypes, are expressed on striatal
dopamine terminals and appear to be the primary populations involved in
protection 42a, b, 45. Further work has identified two α6β2* receptor subpopulations, the
α6β2β3 and α6α4β2β3 subtypes, with the latter the most susceptible to
neurodegeneration 17b, 42b. Interestingly, the α6α4β2β3 subtype is not decreased in
parkinsonian compared to sham-lesioned rats with nicotine treatment. This finding suggests
that the presence of the α6α4β2β3 subtype may confer a protective action against
nigrostriatal damage 42b. Studies using cultured nigral dopaminergic neurons also suggest
that α7 nAChRs present may be important in neuroprotection by modifying immune
responsiveness 42d, 46. Taking together, the heteromeric α4β2* nAChR and/or homomeric
α7 nAChR appear to contribute to nAChR-mediated neuroprotective effects against
nigrostriatal damage.

NAChR activation may mediate neuroprotection by triggering diverse signaling pathways,
with the first step most likely involving alterations in cytoplasmic calcium dynamics 47.
Elevated intracellular calcium may subsequently activate kinases involved in modulating
apoptosis, immune modulator and neurotrophic factor expression 42g, 48. Nicotine decreases
the level or activity of pro-apoptotic factors such as caspases and JNK kinases and increase
the activity of anti-apoptotic factors 46a, 49. In addition, nicotine treatment enhances FGF-2
and NGF in cell culture, as well as in various brain regions in rats. Altered apoptotic
mechanisms coupled with enhanced neurotrophic factor expression may promote survival
and protect damaged dopaminergic neurons 21g, 50. Accumulating evidence suggests that
inflammatory processes participate in the cascades leading to neuronal degeneration in
Parkinson's disease 51. Nicotine has been shown to attenuate immune responses within
various brain regions via receptors expressed on microglia and astrocytes 52. Lastly,
dopamine released in response to nAChR activation may compete with endogenous or
exogenous toxic agents for entry into the dopamine terminal, and thus attenuate
neurodegenerative effects.

A point of note is that this reduced disease incidence with smoking appears specific for
Parkinson's disease. Similar epidemiological approaches find inconsistent declines in
Alzheimer's disease with smoking 53. These discrepancies may be related to the minimum
age at study entry with a relative rate for smokers versus nonsmokers ranged from 0.27 to
2.72 for Alzheimer's disease with age (55 to 75 years) 53a. The cellular/molecular basis for
protection against nigrostriatal damage as occurs in Parkinson's disease is not known;
however, the selective protection against Parkinson's disease may suggest that it involves an
interaction between the nicotinic and dopaminergic systems as discussed above.

To conclude, nicotine is neuroprotective although not neurorestorative against nigrostriatal
damage, most likely via an interaction at nAChRs. The receptors implicated in this
neuroprotection appear to involve the α6β2* and α4β2* subtypes, as well as the α7
receptors. Stimulation of these different subtypes by nicotine may then result in
neuroprotection by modulating a host of downstream signaling pathways.

CONCLUSION
Converging evidence suggests that nicotine and/or nicotinic agonists may prove beneficial in
the management of Parkinson's disease. This includes their use in the treatment of levodopa-
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induced dyskinesias, a debilitating side effect that arises in the majority of treated patients.
Nicotine may also reduce Parkinson's disease symptoms, although definitive proof awaits
further study. Lastly, nicotine treatment may slow down Parkinson's disease progression.
This neuroprotection is of particular importance as this implies that nicotine administration
may reduce the need for symptomatic treatments.
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ABBREVIATIONS

AIMs abnormal involuntary movements

nAChR nicotinic acetylcholine receptor

* indicates the possible presence of other subunits in the receptor complex
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