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Summary
The host response to viruses includes multiple cell types that have regulatory function. Most
information focuses on CD4+ regulatory T cells that express the transcription factor Foxp3+

(Tregs), which are the topic of this review. We explain how viruses through specific and non-
specific means can trigger the response of thymus-derived natural Tregs as well as induce Tregs.
The latter derive under appropriate stimulation conditions either from uncommitted precursors or
from differentiated cells that convert to become Tregs. We describe instances where Tregs appear
to limit the efficacy of antiviral protective immunity and other perhaps more common immune-
mediated inflammatory conditions, where the Tregs function to limit the extent of tissue damage
that occurs during a virus infection. We discuss the controversial roles that Tregs may play in the
pathogenesis of human immunodeficiency and hepatitis C virus infections. The issue of plasticity
is discussed, since this may result in Tregs losing their protective function when present in
inflammatory environments. Finally, we mention approaches used to manipulate Treg numbers
and function and assess their current value and likely future success to manage the outcome of
virus infection, especially those that are responsible for chronic tissue damage.
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Background
In the mid-1990s, an old rejected concept reemerged that captured the imagination of most
cellular immunologists and converted some notable skeptics to become believers and even
enthusiasts (1). These were the regulatory T cells (Treg) rediscovered by Simon Sakaguchi
and colleagues (2). Their predecessors, suppressor cells, championed by Richard Gershon 30
years ago, were laid to rest soon after Richard himself met an early death. His suppressor
cells could not withstand the scientific scrutiny of molecular biologists and the concept
emerged prior to the development of sophisticated genetic systems in mice that could have
proven their worth. This time around the cells, now referred to as regulatory cells, have
found acceptance for several reasons. These include their possession of a distinguishing
phenotype, the fact that regulatory T cells express a canonical transcription factor [forkhead
box protein 3 (Foxp3)], as well as the discovery that some natural diseases in mice and
humans were the consequence of lacking regulatory T cells (3, 4). After the Sakaguchi
paper, an explosion of others soon followed linking regulatory cells eventually to many
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events, but in particular to autoimmunity (5), some cancers (6), allergic disease (7), and the
outcome of infectious disease (8). Tregs and other types of regulatory cells are here to stay,
and it seems likely that manipulating their numbers and function will one day be a useful
medical procedure.

The seminal findings of groups led by Sakaguchi, Powrie, and Shevach (9-11) firmly
established a role for Tregs in autoimmunity. However, it was a fascinating report by
Belkaid in the David Sachs group (12) at NIH that showed that the pathogenesis of an
infectious disease was critically influenced by the nature of the Treg response. Reports that
Tregs also control responses to virus infections soon followed (13-15), and it is conceivable
that regulatory cells of one kind or another impact on one or more steps in the pathogenesis
of virus infections. In this review, we discuss the influence of regulatory cells on the
outcome of virus infections focusing on the most studied type CD4+Foxp3+ regulatory T
cells (Tregs). There are basically two types of Foxp3+ Tregs that influence the pathogenesis
of virus infections. One group is natural Tregs (nTregs) that are generated in the thymus and
which are in large part self-reactive and help prevent autoimmunity. If any of this population
reacts specifically with viral antigens, their part of the repertoire is expected to be small and
may also be cross reactive with autoantigens. The second population are called adaptive,
induced, or converted Tregs (iTregs). This population is derived from naive, or occasionally
committed, CD4+ T cells exposed in an appropriate environment of cytokines, cognate
antigen, and costimulation to become Tregs (16). This viral antigen-specific population
could be larger than that in the nTreg population and act mainly but not exclusively in an
antigen-specific way to modulate antiviral responses. The iTregs differ in stability from
nTregs and can be distinguished from them phenotypically. The most reliable marker
distinguishing the two populations may be neuropilin 1, expressed only by nTregs (17, 18).
As mentioned subsequently, other features may also differ between the two populations, the
most relevant of which may be their accessibility for therapeutic manipulation. Many
additional types of cells may act as regulators, although not all have been linked to the
outcome of virus infections. These include invariant natural killer T (iNKT) cells that
respond to lipid antigens, double negative CD3+ T cells, γδ-T cells, B-cell regulators,
myeloid suppressor cells, highly polarized T-helper 1 (Th1) and CD8+ T cells perhaps
involved in Hepatis C virus response regulation (19). See Table 1 for some virus infections
where regulatory cells of various types influence the response pattern. We make minimal
mention of these other types, but they were recently discussed in other reviews (20).

The impact of Tregs on antiviral immunity
Demonstrating a role for Tregs in disease pathogenesis was made possible when procedures
were developed to selectively remove them prior to infection or during the disease process,
or by showing with adoptive transfer approaches that the immune function of effector cells
could be modulated when Tregs were co-administered (13). In addition, some have
measured the consequences of expanding Tregs on the outcome of infection (21). The initial
reports relating Treg responses to virus infections both showed that the protective function
of CD8+ T cells was compromised by the presence of Tregs (14, 15). For instance, Suvas et
al. (14) demonstrated that acute infection of mice with herpes simplex virus (HSV) was
controlled more effectively in animals that were depleted of Tregs prior to infection. The
depleted animals cleared virus more rapidly after footpad infection, and following genital
infection, mice were more susceptible to HSV-2 induced fatal encephalitis (22). Adoptive
transfers of effector cells into RAG recipients protected animals against encephalitis, but this
effect was abrogated when Tregs were co-transferred (14). Similarly in a retrovirus-induced
cancer system, the protective effects of adoptive transfers of CD8+ T cells were diminished
if Tregs were present (15). Explanations for the immune blunting activity of Tregs were
multiple. These included a reduction in the magnitude of the protective T-cell response, an
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inhibitory effect on antiviral cytokine production by effector cells, as well as an inhibitory
effect on cell trafficking of protective T cells to infected sites (13-15, 22). For example,
Lund et al. (22) showed with HSV vaginal infection that recruitment of protective CD8+ T
cells to the infected genital mucosal was delayed in the presence of Tregs, since they
interfered with the establishment of a chemokine gradient. The consequence was facilitated
infection of the central nervous system (CNS) and mouse mortality. Effects of Tregs on cell
trafficking were also noted by other groups (23). In an animal model of respiratory syncytial
virus (RSV) infection, the CD8+ T-cell response was enhanced in the absence of Tregs, but
there was a critical delay in trafficking of these protective CD8+ T cells to the lungs and
illness was increased (23). Curiously, the effects of Tregs on the magnitude of CD8+ T-cell
responses to RSV was not uniform in that inhibitory effects of Tregs were greater on the
dominant as compared to the sub-dominant CD8+ T-cell responses to RSV. Reasons for this
observation are yet to be found.

Few studies have focused on the role of Tregs in acute infections, where lesions are
principally the consequence of direct effects of infection. Moreover, in some instances, the
effect of Treg removal has had little or no effect, such as appears to be true with perhaps the
most studied of all acute mouse infections – lymphocytic choriomeningitis virus (LCMV)
and influenza (24, 25). It seems likely that Tregs play only a minor role during many acute
infections. For example, if the infection results in a highly inflamed infection site, many of
the cytokines that would be present are inhibitory to the activation of existing Tregs and
particularly to the formation of expanded populations of induced Tregs derived from naive
T-cell precursors. However, in circumstances where the infecting virus can interact directly
with Tregs, this could cause their expansion and activation and in so doing exert a regulatory
response in the acute infection. This may explain how the Treg response influences acute
infection with HSV in mice. In this instance, the gD envelope glycoprotein of HSV can bind
to the HVEM (herpes virus entry mediator) receptor expressed by Tregs (26). A second
example could be hepatitis A virus, which can interact with the TIM-1 receptor, which may
also be expressed by Tregs (27). This interaction inhibits Treg function, and virus is cleared
more efficiently perhaps explaining why chronicity is uncommon in hepatitis A infection.
However with hepatitis infection in humans, it is not clear if Tregs affect the magnitude of
the primary T-effector cell response.

It seems likely that Tregs could play a more consequential role in responses to chronic and
persistent infections, where ample time is available for Treg induction and activation to
occur. Indeed, many have attempted to link the variable outcomes typical of chronic
infections to the pattern of Treg responsiveness (8, 28, 29). Moreover, as we shall discuss in
a later section, there is far more convincing evidence that Tregs play a pivotal role to
modulate immunoinflammatory responses to viruses, and many chronic infections cause
tissue damage by interacting with one or more host response systems.

Two human viruses, human immunodeficiency virus (HIV) and hepatitis C virus (HCV),
have received the most attention, since they are major causes of illness and death and both
lack effective prophylactic or, what is even more needed, therapeutic vaccines. There are
hints that vaccines could be developed once we sort out how the many components of host
responses interplay with the viruses and if the Treg response forms part of the scenario. In
fact, Tregs of multiple types have been implicated as participants in the pathogenesis of
disease, but the topic remains confusing, controversial, and plagued by skeptics. Both
infections are difficult to investigate and mostly rely on ex vivo studies on blood, yet the
critical events that involve Tregs in HIV infections may be occurring mainly in lymphoid
and mucosal tissues and in the liver with HCV. At least HIV does have useful animal
models that permit experimentation, but reliable models are lacking for HCV, especially
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now that chimpanzees cannot be used. We provide a brief overview of our take on the role
of Tregs in both infections. Brief reviews were recently published for both viruses (28, 29).

HIV
Regulatory T cells have been assigned several roles during HIV infection, and all could be
occurring at different times during the infection process and the response to therapy. Roles
suggested include inhibitory effects on initial infection of CD4+ T cells (30), targets for HIV
replication (31), detrimental effects on the protective components of host defense (32), and a
beneficial function by minimizing the extent of T-cell activation (33), a critical step that
results in acquired immunodeficiency syndrome (AIDS). Two unresolved issues that involve
Tregs are of particular interest, since their resolution might impact on future therapeutic
measures. Firstly, we need to know if Treg activity is in part responsible for those patients
that respond favorably to drug treatment and maintain control even when treatment is
discontinued. Secondly, we should establish if Treg activity helps explain how elite
controller patients fail to develop clinical disease yet they have never received anti-retroviral
treatment.

In vitro studies have shown that HIV can infect and replicate in Tregs (31), but it is doubtful
if such cells are the usual targets for HIV in vivo. In fact, strong evidence favors the
possibility that Tregs might serve to inhibit replication in target CD4+ T cells early during
infection (34), and this might assist in preventing the initial spread of virus from the mucosal
infection site to lymph nodes. This time-span is when the virus is most vulnerable and where
a ‘smart’ vaccine might prevent the establishment of permanent infection. If indeed Tregs
are involved in preventing infection of the lymphoid tissue, then expanding their activity and
number might represent a useful maneuver.

Many groups have advocated that the Treg response could act, particularly in the early
stages of infection, in a detrimental way by impeding the function of the protective aspects
of immunity, such as CD8+ T-cell activity (32, 33, 35). Usually, there is a relative and
sometimes overall increase in Tregs following infection (36), although this is not observed
by all investigators (28, 37). The increased Treg representation can be the consequence of
enhanced generation (38), reduced HIV-mediated destruction (39), or conversion of
uncommitted cells to become Tregs following contact with dendritic cells (DCs) (40). In
addition, most but not all studies indicate that successful treatment results in normalized
Treg frequencies, and a similar pattern as is found in controls (41). Unsuccessfully treated
patients, in contrast, often retain high Treg frequencies (42). Furthermore, long-term non-
progressors and elite controllers may have low levels of Tregs, and these cell numbers may
be lower than those found in healthy individuals (43). All of the above observations are
consistent with Tregs playing a detrimental role, but more studies are needed to clinch the
concept using tissues such as lymph nodes and mucosal sites where relevant events are
occurring. Conceivably, the issue could also be resolved by manipulating Treg numbers and
function in appropriate monkey models using simian immunodeficiency virus (SIV), but so
far this approach has not been satisfactorily accomplished.

There is more enthusiasm for the idea that Tregs may function in a positive way in later
phases of the disease to limit exaggerated immune activation, which is a prelude to the onset
of AIDS (44). Evidence comes largely from observing changes in Treg frequency following
successful treatment of chronically infected patients. Additional support comes from in vitro
studies (28). Overall, it seems that Tregs may be able to control low levels of T-cell
activation, but the effect may not be adequate to control high levels of immune activation as
is often present, especially when levels of viral replication are high (28). The case for the
beneficial effects of Tregs still needs to be proven, since human studies are at best only
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correlative and lack causality. One anticipates that appropriate studies in primates should be
able to resolve the issue, since both T-cell blocking and depletion studies can be performed.

HCV
The role of Tregs during the pathogenesis of HCV is even less clear-cut and more difficult
to investigate than HIV. Accordingly, to understand HCV pathogenesis, it would be best to
perform ex vivo analysis with liver tissue where the relevant immunological events are
occurring. In untreated HCV persons, the majority eventually succumbs to chronic hepatitis
and perhaps liver failure. However, around 20% resolve their infection, likely because they
develop a vigorous CD8+ and CD4+ T-cell response to multiple structural and nonstructural
viral antigens (45). The challenge is to explain the variable outcome and to design
immunological procedures that could push more persons into the resolution category. Alas,
any maneuver would need to be started in the face of disease, since most patients are
unaware that they are infected until they develop hepatitis. Some have advocated that the
variable Treg response in the initial phases of infection may help establish the pattern of
subsequent events (46). Support for this idea came from an unfortunate event where many
persons were accidentally infected with HCV (47). Studies of blood samples from these
patients showed that clones of interleukin-10 (IL-10)-producing Tr1 cells could readily be
developed from patients with chronic infection but not from those who controlled their
infection (48). Unfortunately, these patients were not followed longitudinally. Others have
advocated a role for CD8+ Tregs as instrumental in controlling the outcome of HCV (49).

An idea gaining favor is that liver damage in HCV infection occurs because of a heightened
Foxp3+ Treg response that diminishes protective immunity (reviewed in 29). The reasons
why some individuals produce high numbers of Tregs is not fully defined. A favored
hypothesis suggests it results from changes in the function and trafficking pattern of DCs,
which develop increased ability to induce Treg responses (50). Further studies are needed
focusing on liver samples studied at multiple time points after known infection, which might
only be achievable with drug addict volunteers. Conceivably, suppressing Tregs along with
inhibition of viral replication might be a more effective approach to control chronic
hepatitis. However, if as others advocate (49) Tregs are playing a useful role in the chronic
phase to limit exaggerated T-cell responses that contribute to liver damage and viral
persistence, there would be a case for stimulating Tregs along with viral control.
Unfortunately, it may not be possible to perform experiments that could clarify if Tregs in
chronic HCV are good or evil.

Role of Tregs in controlling immunopathology
From an evolutionary prospective, developing a system that acts to limit the effectiveness of
immunity against a pathogen makes little sense. However, with many pathogens, tissue
damage is not the direct consequence of viral replication but results from an exuberant
inflammatory response to the infection. Indeed, some viruses lack cytopathogenicity, and
any tissue damage that occurs is the consequence of a T-cell-mediated response to the
infection. The poster child for this situation is LCMV in mice, where lesions do not occur in
the absence of an immune response (51). With most virus infections, the host control
process may be responsible for some tissue damage, and this feature becomes prominent
with chronic infections. Controlling the extent of such tissue damage appears to be a major
responsibility of Foxp3+ Tregs. The first clue that suppressive CD4+ T cells were valuable
to the host came from the Hasenkrug laboratory (52) studying a chronic retrovirus infection
in mice. Subsequently, a series of studies on ocular immunoinflammatory lesions [stromal
keratitis (SK)] caused by HSV firmly established a protective role for Tregs (13, 53). Mice
lacking Tregs developed more severe SK lesions, and these could be induced at lower
infection levels in Treg-suppressed mice than in normal animals. Using adoptive transfer
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experiments in Rag−/− recipients, the pathogenic activity of pro-inflammatory Th1 T cells
could be suppressed if Tregs were co-administered (13). Additional approaches also
supported a protective role for Tregs, including adoptively transferring populations of
activated Tregs to normal mice as well as using procedures that expand the Treg population
in normal animals in the early phases of infection (21, 54, 55). Other approaches that proved
anti-inflammatory were to expose animals to procedures that changed the balance between
Treg and T effectors serving to favor the Treg response (55). Some of these maneuvers acted
by causing the conversion of naive T cells to become Foxp3+ Tregs, an issue that is
discussed in a subsequent section. Finally arguing for a protective role for Treg in the SK
system, when Tregs were removed from animals with ongoing lesions, these lesions became
significantly more severe (53). At least in the ocular immunoinflammatory disease caused
by HSV, the case for Tregs as protectors from immune tissue damage is compelling.
Whether Tregs play the same role in the natural lesions in humans, which is an important
cause of blindness, remains to be substantiated.

Further support for the concept that Tregs limit the extent of virus-induced
immunopathology was shown with several other virus infections (Table 2). In the previous
section, we mentioned how Tregs may act in a useful way during HIV and HCV, and the
same may be true for hepatitis B (56). There is also a strong suspicion that the severe
respiratory consequences of RSV infection in children represents an imbalance between an
otherwise protective T-cell reaction to virus not being constrained by an adequate Treg
response (57). Proving this contention in humans may not be feasible, but animal studies
provide strong support for the possibility. For example, the Varga group (58) could show
that when mice were depleted of Tregs, inflammatory T cells increased in number, and
disease severity was enhanced. Increased tissue damage in experimental RSV infection was
also observed by another group using the DEREG depletion strategy to remove Treg (59).
When Treg numbers were boosted using IL-2 immune complexes, inflammatory reactions
were diminished (60). In the case of RSV, there is some evidence that the infection may
damage the function of Tregs that act usefully to control the severity of other syndromes
such as allergic asthma (61). This may explain the strong association known to occur
between RSV infections requiring hospitalization and the development of asthma in
subsequent years.

In instances where viruses cause lesions in the central nervous system (CNS), oftentimes the
tissue damage involves immunopathology, and not surprisingly, there is evidence that lesion
severity is constrained by a Treg response. Direct evidence for the notion has come from
experimental mouse systems, but in humans the severity of encephalitis caused by west Nile
virus (WNV) and the subacute sclerosing panencephalitis (SSPE) syndrome that may follow
measles infection could both be influenced by the Treg response (62, 63). The direct
evidence that Tregs act as modulators of CNS lesion severity comes from the Miller group
(64) working with Theiler’s virus in susceptible and resistant mouse strains. It seems that
susceptible strains develop the autoimmune type CNS lesions because they fail to generate
adequate Treg responses. Moreover, when Tregs were depleted in resistant strains, they
became susceptible to CNS lesions caused by more intense inflammatory T-cell reactivity. A
protective role for a Treg response was also shown in a mouse model for west Nile fever
(62), supporting the concept that the same may be occurring in the natural human disease,
but this is yet to be formally demonstrated.

Several experimental systems have demonstrated that Tregs play a valuable role during viral
pathogenesis acting to minimize tissue damage in the later phases of infection and perhaps
serving a critical role to dampen lesion severity with persistent infections. One anticipates a
similar beneficial effect in human persistent viral infections, especially with hepatitis
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viruses, but so far the case for this opinion has not been substantiated and is difficult to
study.

How do viruses trigger and expand nTreg responses?
How viruses trigger and expand nTreg responses is still very much an unsettled issue and
almost certainly has multiple answers with these varying with different viruses. Basically,
the Treg response could represent the expansion of the existing nTreg population that
happens to be cross-reactive between self and viral antigens. Alternatively, the nTreg
response could represent non-specific stimulation by innate ligand activity of the virus,
damaged tissue components released by the infection, or reaction products produced by the
host. Another idea is that Tregs involved in the antiviral response represent mainly induced
Tregs derived from viral antigen-specific naive CD4+ T cells (discussed in the next section).
A combination of these possibilities could also be occurring with the major origin of the
functional Tregs changing during the course of the infection process and its resolution. We
briefly discuss some of these issues but advocate that the topic merits much more
investigation.

It is evident that Tregs can be especially abundant at initial sites of virus infections, such as
the mucosa and skin. Indeed, estimates are that 80% of the total nTreg population is present
in the skin (65). However, most Tregs are self-reactive, and the population that is cross
reactive with any particular virus remains unknown and is likely to be small. However,
when viruses appear to directly trigger rapid expansion of the nTreg population, this is likely
to result from innate immune activity of the virus rather than TCR stimulation of antigen-
specific nTregs. The logical alternatives to TCR stimulation include PAMP activity of
viruses that engages receptors either on the nTreg themselves or on intermediary cells of the
immune system, which will then activate Tregs. In line with this notion, several viruses do
have one or more known PAMPs, and nTregs express several innate receptors, such as
multiple TLRs (66). There is also evidence that exposure of nTregs to some TLR ligands
can cause their proliferation and activation, although this topic is controversial and was
discussed by Conroy et al. (66). In addition, certain products released from damaged tissues
have TLR-stimulating activity. These include some heat shock proteins, β-defensins, self-
DNA, and some compounds derived from the matrix protein hyaluronidase (25, 67, 68).
Some other molecules derived from the host during an inflammatory reaction might also
expand and activate nTregs or be involved in Treg conversion (69). Examples include the
galectins 1 and 9, some cytokines, and other molecules as we discuss subsequently. The
innate receptors TLR2 and TLR4 have been the focus for most studies that show effects on n
Tregs. TLR2 is generally found to expand nTregs, and this could explain the acute Treg
expansion in mice infected with HSV (70). TLR4 engagement can also expand nTregs (66,
67), and viruses such as RSV have TLR4 ligand activity (66, 71). Not all TLRs provide
positive signals to Tregs. For example, TLR8 and TLR9 can be suppressive, with TLR9 also
having inhibitory effects on the conversion of conventional T cells into induced Tregs (72).
The many discrepancies on the Treg TLR/Treg scenario require resolution. The explanation
may be quantitative or be the combined consequence of multiple TLRs and perhaps other
innate receptor involvement.

Other non-TCR-mediated mechanisms may also explain how viruses trigger regulation by
nTregs. In some instances, this could include possession of a protein that binds to a non-
TCR receptor on nTregs and could cause their activation. An example could be the HIV
protein gp120, which was shown to activate human nTregs via its ability to bind to the CD4
molecule (73). Another example could be the gD protein of HSV, which binds to the cell
entry receptor HVEM, which is expressed on Tregs. Some have shown ligand engagement
of HVEM on Tregs can cause their expansion (74), and preliminary results indicate that
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HSV interaction with nTregs has a similar outcome (Sharma S. and Rouse B.T., unpublished
observations). A third example could derive from the observation that resting nTregs express
the molecule TNF receptor 25 and can be expanded when this receptor is engaged by its
ligand TL1A (75). Since this ligand is increased in availability during inflammatory
reactions, this could be a mechanism to expand Tregs, as was recently shown in a model
system involving HSV (76).

Cytokines generated in the microenvironment of infection could also boost nTreg activity.
These include IL-2 (which is essential for nTreg survival and expansion), TNF-α, and TGF-
β. TGF-β is of particular interest, since as can readily be shown in vitro, this molecule is
needed for T cells to differentiate to become Tregs (77). Some infections result in TGF-β
production by infected or reacting cells (25, 78), but this has not been shown with virus
infections. However, since apoptotic body engulfment by DCs or macrophages can result in
TGF-β production (79), this process might result in those virus infections that cause
apoptosis of infected cells.

During viral infections, many additional host-derived molecules might act to expand and
activate Tregs. Of particular interest is the family of galectin molecules that are upregulated
or secreted during inflammatory responses. Galectins either form lattices on the surface of
cells by binding to cell surface glycoproteins and glycolipids or to specific receptors. The
outcome is variable but includes apoptosis, proliferation, and changes of function (80).
Galectin-1 and galectin-9 are of particular interest, since both molecules may be produced
during inflammatory reactions either by infected cells or by cells that respond to them, such
as NK cells. Galectin-9 was shown to modulate the function of T cells that are involved in
inflammatory reactions such as those caused by HSV infection of the eye (81). Galectin-9
mainly acts by binding to its receptor TIM-3, which is upregulated on activated cells but is
also expressed by a high proportion of nTregs (82). Whereas galectin-9 binding to activated
effector cells causes them to undergo apoptosis, its binding to TIM-3 on Tregs may lead to
the expansion and activation of these cells, as we have shown with HSV-induced ocular
lesions (81). Galectin-1 functions in a similar way to galectin-9 (83), although different
recognition systems are involved, and it is not clear if galectin-1 similarly acts to expand and
activate nTregs. However, galectin-1 has been reported to expand IL-10-producing Tregs
(80).

We can conclude that microbial infections could trigger the expansion and activation of
nTregs in several ways, none of which may involve engagement of the nTreg-specific TCR,
although this latter event might facilitate responses. These various stimulatory processes are
summarized in Fig. 1.

Inducible and converted Tregs in virus infections
It seems likely that when any virus infection causes the induction of antigen-specific
functional Tregs, their main origin is either uncommitted T cells TCR-stimulated in an
appropriate environment, or they represent the conversion of differentiated T cells that were
previously non-regulatory. This latter origin is perhaps less common than de novo induction,
and when it does occur, it may happen more often in the later phases of chronic infections,
being in part responsible for their resolution. T-cell functional conversion involves the
phenomenon of plasticity that is discussed subsequently. In fact, recent studies on plasticity
seem to favor the concept that conversion of Tregs to other functions is accomplished more
readily than conversion to become Tregs (84). Should this be true with virus infections, then
iTregs originating from differentiated T effectors may be an uncommon event. However, the
gut environment might represent an exception since this site is rich in the many components,
which includes dietary substances such as curcumin that can drive conversion (85). The
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issue of Treg conversion in the context of virus infections has been poorly explored but is
particularly relevant with regard to therapy. Thus, procedures that can foster conversion to
Tregs in situations of viral immunopathology could be most beneficial.

The production of induced Tregs requires antigen exposure presented usually by DCs in the
presence of one or more of the host-derived molecules discussed in the previous section.
Some subsets of DCs appear more adept at inducing Tregs than others. Properties that favor
Treg induction include TGF-β and IL-10 production as well as the ability to convert vitamin
A into retinoic acid (86). These types of DCs are prominent in the gut mucosa, and it is
likely that the majority of systemic iTregs [which can be distinguished from nTregs by their
expression of neuropilin-1 (17, 18)] are specific for gut commensal organisms (87). There is
also some reason to expect that certain gut pathogens, such as caliciviruses, could infect
DCs, pushing their function towards become Treg inducing. Evidence that DCs infected
with a virus can become more Treg inducing was demonstrated in a feline virus infection
(88). Although virus infection might facilitate the Treg-inducing capacity of DCs, already it
is known that the gut environment can be highly tolerogenic, with Tregs being one
mechanistic component of the tolerance (89, 90).

With regard to virus infections, information about iTregs has focused on IL-10-induced
Foxp3−CD4+ T cells that are referred to Tr1 cells (91). These cells, which act by producing
IL-10, were one of the first types of regulators linked to the outcome of a virus infection.
There is evidence they play a key role in the disease pattern HCV infection (48), although
enthusiasm for this notion seems to have evaporated with recent studies on HCV focusing
on Foxp3+ T cells, as we discussed previously. The interest in Tr1 cells is maintained by the
fact that such cells with regulatory activity can be generated in vitro against many antigens,
and these cells can be used in experimental therapeutic situations (92). However, iTregs can
also be generated in vitro, and these may function too in part by producing IL-10. The
evidence that antigen-specific iTregs exist has notable therapeutic implication, since apart
from expanding them in vitro for therapy, we should be able to learn how to cause their
expansion and activation in vivo. Thus, studies from laboratories working on autoimmunity
have documented convincingly that antigen-specific Tregs have greater efficacy than
activated Tregs of random specificity (93).

Implications of Treg plasticity
Although there are many reasons to believe that Tregs play a beneficial role to dampen
tissue damage caused by immunoinflammatory reactions to viruses, many investigators
remain unconvinced, especially in the case of HIV and HCV. One reason for the skepticism
could relate to the mounting evidence that Tregs are highly prone to functional plasticity
(84). Accordingly, under appropriate conditions, the function and phenotype of a Foxp3+

Tregs can change. Tregs can begin to express other canonical transcription factors such as
Tbet expressed by Th1 cells or ROR-γt characteristic of Th17 T cells and become
bifunctional. Alternatively, the Tregs can lose their expression of Foxp3 but express other
transcription factors, such as ROR-γt, and function as proinflammatory T cells (reviewed in
94). Studies in vitro have identified the types of environments which can drive plasticity,
and these changes can be explained on the basis of differences in epigenetic status (95). For
example, when Tregs of known specificity are triggered by antigen in the presence of IL-6,
they convert to become Th17 cells and lose the expression of Foxp3 (84, 96). Similarly,
exposure in vitro to IL-12 or IL-6 and IL-21 causes them to become Th1 or T-follicular
helper cells, respectively (84). However, the reprogramming to become Th17 T cells is the
most usual event, and this is thought to occur commonly in the gut mucosa, accounting for
the origin of many of the Th17 populations at that site (97). In vitro polarization studies have
also revealed that iTregs, the population most likely to participate in regulating responses
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during virus infections, show more plasticity than nTregs, with this related to the epigenetic
stability of the Foxp3 locus (98, 99). Accordingly, the state of methylation at the so-called
Treg cell-specific demethylation region (TSDR) is relevant (98). When the TSDR is
demethylated, as occurs with nTregs, the expression of Foxp3 is stable, but with iTregs, the
TSDR is partially methylated, which results in less stability of Foxp3 expression and more
plasticity (98). Conceivably, the greater stability of nTregs is associated with their main
function of constraining autoimmunity.

Some relevant issues with regard to plasticity are whether or not it occurs in vivo, the
conditions in vivo needed for plasticity to occur, and whether such events negate the types
of regulatory functions attributed to Tregs and could act to blunt any therapeutic maneuver
used to boost the protective effects of Tregs. The answer to the first question is clearly in the
affirmative and has been demonstrated in mice by some elegant studies using green
fluorescence protein (GFP)-tagged Foxp3+ Tregs (84). The environment that could cause
such plasticity, namely one rich in proinflammatory cytokines and Treg-attracting
chemokines, is common in many virus-induced inflammatory lesions. Moreover, molecules,
such as TGF-β and retinoic acid, that can act to preserve Treg function (89), are unlikely to
be present in the lesions in most instances. Thus, it is entirely possible that Tregs can enter
inflammatory locations, but after an initial anti-inflammatory effort they could change sides
and contribute to causing tissue damage. This change in alliance would be more likely to
occur in highly inflamed environments. Such a scenario might help explain the observation
that Tregs might be effective at controlling lower levels of inflammatory T-cell activation
during HIV infection but seem to be ineffective to turn off the hyperactivation that is a
prelude to AIDS (100).

Treg plasticity is currently a hot topic, with many issues yet to be solved. Of particular
interest is the observation that plasticity appears to be heterogeneous, with different horses
for different courses. Tregs may express Foxp3 along with some expression of the
transcription factor characteristic of the effector cells involved in an inflammatory process
(94, 97). For instance, in Th1-orchestrated inflammatory sites, Tregs may additionally
express Tbet, which could relate to CXCR3 expression needed for their migration to the site
as was observed in a Toxoplasma system (101). Some Tregs may also co-express IFN-
regulatory factor 4 (IRF4), a transcription factor associated with Th2 cells involved in
immunopathology (102). Finally, there is an association of transcription factor co-expression
by Tregs when they are involved in regulation of Th17-orchestrated inflammatory lesions
(103). We must conclude the Treg plasticity is a complex process and its management must
be fully understood, since it impacts on the success of any attempts to boost Treg responses
in clinical situations, as discussed in a later section.

How do Tregs act?
Much of our mechanistic understanding about the regulatory functions of Tregs come from
in vitro investigations, and it is far from clear as to how Tregs act in vivo, particularly in
inflammatory environments. The in vitro studies have revealed basically two types of
mechanisms: those that necessitate direct contact between Tregs and cells they regulate and
those that are independent of cell contact and act by producing inhibitory mediators that in
turn are responsible for the inhibitory effects. In situations where direct contact is the
mechanism, the effect is often antigen specific with little or no bystander suppression, as
would be expected if soluble inhibitory mediators were involved. The requirement for
antigen specificity implies that a third cell type that presents antigen must also be involved
in the mechanism. In fact, Tregs that are activated can directly mediate regulation in the
absence of antigen-presenting cells (APCs) (104). Direct contact effects can either be
directed at effector cell function and survival or on DCs, which become impaired APCs for a
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number of reasons. These include downregulation of essential costimulator molecules such
as CD80 and CD86 (105), perhaps mediated by Treg cytotoxic T-lymphocyte antigen-4
(CTLA-4) expression (106), and the production of suppressive molecules such as
indoleamine 2,3-dioxygenase (107) as well as the catalytic inactivation of ATP released
from damaged cells (108). The ATP is hydrolyzed by an ectoenzyme expressed by Tregs,
which results in the failure of DCs to become inducers of effector cells (104). Exactly why
cell contact is needed for Treg activity, which is more evident for nTregs than iTregs, is not
clear. Ideas include the need for cell bridging to permit the passage of soluble inhibitors into
or to engage receptors on responding cells. This may explain the role of granzyme B, which
results in effector cell cytolysis and galectin 1 which causes effector cell apoptosis (109,
110). Direct contact may also permit membrane-tethered TGF-β to cause inhibitory effects
by Tregs (111). These issues, which involve many controversies, were lucidly discussed in
some recent reviews (104, 112, 113).

The second major mechanism by which Tregs exert their function is to release mediators
such as the cytokines IL-10, TGF-β, and IL-35 as well as products such as galectin 1 and
some other molecules. These mediators can act at a distance (but usually very close),
binding to receptors on cells that are inhibited. This mechanism is more characteristic of
iTregs than nTregs, and bystander inhibition is a possibility. Whether Tregs can act by
producing TGF-β is quite controversial (104), and TGF-β may not be a major player.
Similarly, evidence that IL-35 plays a significant regulatory effect in vivo has not been
forthcoming (104, 113). The main focus has been on IL-10, a cytokine that can exert a range
of inhibitor activities on several cell types that express IL-10 receptors. These effects
include inhibition of the proliferation and cytokine producing capacity of effector T cells,
along with inhibitory effects on APC function, as well as and inhibition of the
proinflammatory activity of macrophages and neutrophils (91).

In vitro studies have certainly revealed how Tregs could exert regulatory functions, but
many of the potential mechanisms described might not be occurring in vivo. Moreover, there
appears to be redundancy as regards regulatory mechanisms because blunting of a single
function invariably provokes only partial consequences in vivo (104, 113). Other important
concepts impact on the potential in vivo activity of Treg. These include the location where
regulatory effects occur, lymphoid tissues or inflammatory sites, whether or not antigen
specificity is needed and the question of Treg functional stability, particularly in
inflammatory environments. We have already discussed this latter aspect and have
concluded that Tregs have a tendency to lose their inhibitory effects in inflammatory
environments and even become proinflammatory participants.

The issue of specificity has received minimal evaluation with viral infections but has been
analyzed in some detail in other events that involve Tregs (reviewed in 114). Such studies
indicate that antigen-specific Tregs do function more effectively, but once they become
activated, they can act nonspecifically (115). Our own studies on the modulatory effects of
adoptive transfers of Tregs in the HSV-induced SK system support nonspecific activity (54).
We showed that Tregs specific to antigens unrelated to HSV were clinically effective as
long as they expressed the activation phenotype (54).

A topic of major relevance to the function of Tregs in vivo is where they act and whether
heterogenicity exits with regard to the sites and situations where they mediate regulatory
effects. Evidence supports regulatory effects occurring in lymphoid tissues, and these may
be mainly responsible for the reduced magnitude and changed balance of primary and
memory responses to virus infections. However, Tregs may be exerting their main tissue
protective modulatory effects by acting within inflammatory sites and not all Treg can
access, or act, at such sites. To gain access, Tregs need to express appropriate chemokines
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receptors (112). For instance, to get into Th1-orchestrated sites requires the expression of
CXCR3 (116). Once in such sites, the transcription factor expression also appears relevant.
Thus, Tregs that co-express Tbet along with Foxp3 appear to be more functional that those
without Tbet. Other rules apply to get into and function in inflammatory sites that involve
different types of orchestrators (103, 117).

We must conclude there are no simple answers to the question of how Tregs act in vivo.
Almost certainly multiple mechanisms are involved, and these are likely to differ in
relevance during the course of a virus infection particularly those that are chronic.

Could Treg manipulation be useful for therapy?
Optimistically, the answer to this question is yes, but so far success has been confined to
experimental models of viral disease. Two strategies can be considered. Firstly, Tregs could
be expanded in vitro, preferably the viral antigen-specific population, and these cells could
be administered to animals with immunoinflammatory lesions. This approach is most
unlikely to become practical, but its efficacy has been demonstrated in some model systems
(54, 118). Our group showed that in vitro expanded Tregs could reduce HSV-induced SK
lesions, although success was greater the earlier therapy was commenced (54). In the SK
model, the Tregs were not specific to viral antigens, but they likely functioned because they
expressed an activation phenotype. Conceivably, viral antigen-specific Tregs could be even
more effective and might function also at later stages of the disease, but this has yet to be
formally demonstrated. One challenge with adoptive transfer approaches is to maximize
Treg access to inflammatory sites where they need to act. This challenge might be met by
using the type of approach recently described by the Iwasaki group (119). They showed that
chemokines administered to local sites could attract T cells from the circulation with them
remaining at the site and functioning for prolonged periods. Such a strategy has yet to be
reported for Treg site mobilization and is being explored by our group. Ideally, Tregs used
for such an approach need to have a fixed epigenetic program, otherwise they may acquire
an effector function at the inflammatory site.

A second major strategy for Treg therapy would be to expand the host’s own Treg
population, preferably in an antigen-specific manner. This approach promises to be more
practical. The approach was pioneered by the Von Boehmer group (120), who showed that
low concentrations of antigens administered using osmotic pumps could induce Tregs. A
modification was to target antigens to a specialized group of DCs that expressed DEC205
(121). The Von Boehmer approach proved valuable in a model for autoimmune diabetes and
might merit a trial in humans.

Other approaches have also shown promise, but these only expand Tregs polyclonally which
could limit their usefulness, especially for long term efficacy. One example was reported by
Sprent and colleagues (122), who showed that the administration of IL-2 complexed with
monoclonal antibody (mAb) to IL-2 was effective at expanding the Treg population. The
effect had some efficacy in an autoimmune model of multiple sclerosis, but the strategy has
not been successful in our SK system. Success has been achieved, however, with a second
approach that expands Treg nonspecifically. This is the approach reported by the Podack
group (75), which showed that nTregs, which unlike other naive T cells express the
TNFR25, can be dramatically expanded when given an agonistic mAb to TNFR25. We
showed that mAb administration early after HSV infection resulted in reduced SK lesions.
In contrast, when treatment was given in the face of disease, when effector T cells also
express TNFR25, lesions became even more severe (76). This latter unwanted consequence
could be managed, however, by additionally administering galectins-9 (76). This
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combination therapy was shown to function because the galectin-9 acted selectively to cause
apoptosis of the proinflammatory T cells.

There are other approaches that cause the induction, or perhaps conversion, of Tregs, which
can minimize viral induced inflammatory disease. One such molecule is galectins-9, since
this molecule along with galectins-1 will expand at least modestly the Treg population (83,
123). Additional approaches include the use of TGF-β (124), compounds such as FTY720
(21), and agonists of the aryl hydrocarbon receptor (55), all of which succeed in expanding
Tregs and achieving some measure of therapeutic success. Additional molecules have also
been reported to act with a similar outcome, and these are discussed in other reviews (115,
124).

Using therapeutic approaches to expand Tregs, preferably in an antigen-specific way, holds
promise to control viral inflammatory disease, but we are still far from clinical application.
There will be many problems to solve, the most important of which may be the durability
and stability of any therapeutic approach, especially when the inflammatory milieu contains
components that may seduce Tregs to switch their function.
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Fig. 1. Possible pathways that viruses may use to induce/activate/expand Tregs as a mechanism
to survive within the host
(A) Viruses can manipulate APCs by three different mechanisms: inducing anti-
inflammatory cytokine production, modulating antigen presentation, or by interfering with
co-stimulatory molecule expression. (B) Some viruses may have antigens that cross-react
with self-antigens and will be recognized by the TCR on nTregs, or have antigens that are
recognized by the TCR on naive Th0 cells that will become iTregs. iTregs can also
recognize non-self antigens through their TCRs, which will induce them to proliferate
Moreover, self-antigens released as a result of tissue damage could stimulate nTregs through
their TCR. (C) Stimulation of TLRs expressed on Tregs by PAMPs from the virus, or
DAMPs such as heat shock proteins, β-defensins, nucleic acid can directly induce regulatory
T-cell activation. Stimulation independent of TCR can also happen by host-derived products
such as cytokines released after infection (TGF-β, IL-2, IFN-γ, TNF-α), galectins
(galectin-1 and galectin-9), cellular metabolites (like retinoic acid), and other molecules.
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Table 1
Types of regulatory cells involved in influencing the outcome of some virus infections

VIRUS Type of regulatory cells involved Reference

HSV CD4+CD25+Foxp3+ 13

HIV CD4+CD25+Foxp3+ 30, 32

NKT cells 125

CD8+CD25− 126

Tr1 cells 127

CD8+Foxp3+ 128

HCV CD4+CD25+Foxp3+ 46

Tr1 48

CD8+ regulatory cells 49

Influenza virus CD4+CD25+Foxp3+ 129

RSV GrB+CD4+CD25+Foxp3+ 59

CD4+CD25+Foxp3+ 60

Friend virus CD4+CD25+Foxp3+ 130

SIV CD4+CD8+ Tregs 131

Varicella zoster virus CD4+Foxp3+ 132

Human T-lymphotropic virus CD4+CD25+Foxp3+ 133

Measles vims CD4+CD25+Foxp3+ 63

Feline immunodeficiency virus CD4+CD25+Foxp3+ 88

Porcine Reproductive
and Respiratory Syncytial virus

CD4+CD25+Foxp3+

CD8+CD25+Foxp3+
134

HBV CD4+CD25+Foxp3+ 135

Murine AIDS CD4+CD25+ 136

Cytomegalovirus CD4+CD25+ 35

Epstein–Barr virus Trl 137

CD4+CD25+Foxp3+ 138

Immunol Rev. Author manuscript; available in PMC 2014 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Veiga-Parga et al. Page 22

Table 2
Some examples of Treg effects on immunopathology

VIRUS Effect of Tregs on immunopathology Reference

HSV-1 control of eye immunopathology by limiting effector function and migration 13, 53

HIV control of T cell hyperactivation and inhibits HIV replication T cells 28, 30, 33

HCV suppress CTLs reducing liver damage 49

HBV
reduce liver damage by suppressing HBV-specific adaptive immune responses and regulating
influx of macrophages and DCs 56

RSV limit pulmonary immunopathology by modulating the CD8 T cell response 59, 60

WNV protect from CNS immunopathology by controlling CD8 T cell responses 62
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