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ABSTRACT: Distinction between closely related and mor-
phologically similar cells is difficult by conventional methods
especially without labeling. Using nuclear-targeted gold
nanoparticles (AuNPs) as intracellular probes we demonstrate
the ability to distinguish between progenitor and differentiated
cell types in a human neuroblastoma cell line using surface-
enhanced Raman spectroscopy (SERS). SERS spectra from the
whole cell area as well as only the nucleus were analyzed using
principal component analysis that allowed unambiguous
distinction of the different cell types. SERS spectra from the
nuclear region showed the developments during cellular differentiation by identifying an increase in DNA/RNA ratio and
proteins transcribed. Our approach using nuclear-targeted AuNPs and SERS imaging provides label-free and noninvasive
characterization that can play a vital role in identifying cell types in biomedical stem cell research.
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Gold nanoparticles (AuNPs) have been shown to be of
great use and advantage for delivering drugs into cells and

tissues, cellular imaging such as transmission electron
microscopy (TEM), as well as for diagnostic and therapeutic
applications in biomedicine.1−3 In particular for biomedical
applications involving the intracellular localization of AuNPs,
their size,4 shape,4,5 concentration,6 charge,7 surface modifica-
tion,8,9 and exposure time6 play an important role in their
ability to enter and leave cells. Different mechanisms are known
to be involved in the cellular uptake of AuNPs such as
phagocytocis, pinocytosis, and macropinocytosis as well as
clathrin- and caveolin-mediated endocytosis. Studies on various
cell lines have shown that energy-dependent receptor-mediated
endocytosis (RME) is the predominant mechanism.5,6,10−12

Generally, this involves taking the nanomaterial into
phospholipid membrane-bound vesicles, called endosomes.
These vesicles fuse and release their contents, which eventually
end up in lysosomes rather than free in the cytosol.10−16 After
being processed, removal of AuNPs is facilitated by exocytosis
whereby this process shows a strong dependency on the
extracellular NP concentration.17−19 In order to make AuNPs
suitable for biomedical approaches, many studies have focused
on their intracellular toxicity. It has been shown that the
cytotoxicity correlates with the size of single particles and
clusters. Cellular integrity largely remains unaffected for AuNPs
bigger than 15 nm and cytotoxicity increases with decreasing

particle size and increasing concentration with high toxicity
observed for particles as small as 1.4 nm.1,12,16,19

Since the normal intracellular localization of AuNPs is
determined by endocytosis, engineering the nanomaterial is
necessary to avoid this. To achieve this objective, AuNPs have
been conjugated with cell-penetrating peptides,11 protein
transduction domains,20 and adenoviral RME peptides.21 This
manipulation allows for the targeting of NPs to specific cell
organelles such as the cell nucleus. Nuclear localization signal
peptides (NLS) such as the SV40 large T antigen, HIV-1 Tat
protein NLS and adenoviral NLS are well-known for their role
as a “Trojan horse”, delivering cargo to the nucleus.7,11,13,21,22

To achieve nuclear translocation, engineered AuNPs must first
get into and remain free in the cytoplasm. Tkachenko et al.
showed that NLS bound to 20 nm AuNPs incubated in cell
culture medium allowed the NPs to enter HeLa cells within an
hour. Even though the NLS-AuNPs were mostly found in
intracellular vesicles that appeared to be endosomes, they
observed a few particles inside the nucleus after a total
incubation time of two to three hours indicating that some of
them had managed to escape the endosomal pathway.7 Other
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studies have also demonstrated the successful entry of NLS-
AuNPs into the nucleus after their microinjection directly into
the cytoplasm.7,22,23

AuNPs have been utilized extensively as transducers for
surface-enhanced Raman spectroscopy (SERS), which is a
molecular fingerprinting method. It utilizes vibrational
signatures of bonds in a molecule for their highly sensitive,
label-free, nondestructive and noninvasive detection.24,25 SERS
is being used increasingly in biomedical systems for biosensing
and detection of target molecules such as recreational drugs,26

therapeutic substances27 and metabolites like cancer markers.28

AuNPs have also been employed as intracellular probes
facilitating cancer detection in saliva,29 blood cells,30 and
tissues.31,32 It has also been demonstrated that SERS using
AuNPs can be applied to living cells in order to monitor cellular
functions33 and dynamics,15 cell response to stress,34 and cell

death.35 However, only a few studies have focused on using
SERS to interrogate the functional state of specific intracellular
organelles such as the cell nucleus.36 The cell nucleus is one of
the most important organelles that directs, as well as reflects,
the complex intracellular processes underlying cellular differ-
entiation.37,38

The discrimination of closely related cell phenotypes in a
noninvasive and label-free manner is still a challenge using
conventional methods of optical microscopy. In this study, we
show the successful segregation of closely related cell
phenotypes using the noninvasive method of SERS. We
employed intracellular SERS active nanoprobes for targeting
the cytoplasm as well as the cell nucleus of undifferentiated and
fully differentiated SH-SY5Y cells, a human neuroblastoma cell
line. Furthermore, nuclear-targeted AuNPs allowed us to

Figure 1. Preparation and intracellular interaction of the nuclear-targeted SERS probe. (a) Schematic showing AuNPs linked via cysteine to a SV-40
large T nuclear localization signal peptide having a fluorescein (flu) tag at the C-terminus. NLS-AuNPs were added to the culture medium without
compromising cellular viability. The viability of differentiated cells incubated with NPs for up to 3 days (red bars) was tested and compared with cells
left untreated (blue bars). (b) Bright-field image of differentiated SH-SY5Y cells without AuNPs. (c) After 72 h of incubation, cells show intracellular
AuNPs. The fluorescein tag is colocalized with AuNPs in bright field confirming the successful binding of NLS to NPs.

Figure 2. SERS imaging. (a) SERS spectra obtained from different positions (a−j) within the culture such as cytoplasm (blue), cell nucleus (red) and
the surrounding environment (green) show significant differences in terms of their intensity and peak positions. (b−d) Bright-field image (b) and
SERS map from the same differentiated SH-SY5Y cell highlighting the intracellular distribution of the sugar phosphate backbone (895 and 1050−
1100 cm−1, yellow) as well as nucleic acids of DNA (typical bands such as 670, 830, 1375, and 1580 cm−1, red) and RNA (815 cm−1, green) (c) as
well as proteins (yellow: symmetric ring CC stretch; blue: NH3

+ deformation; magenta: CH2 deformation; cyan: Amide II) (d). The cell nucleus is
indicated by a white ellipse (200 nm × 600 nm pixel size).
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investigate changes in nuclear content induced by cellular
differentiation.
Our method employed the SV-40 large T NLS bound to 40

nm AuNPs (see Supporting Information for details on their
characterization) as intracellular SERS probes. We use a
customized NLS peptide sequence (CGTG-PKKKRKV-GGK-
(Flu)) comprising a fluorescein tag at the C-terminus and a
cysteine for binding the AuNP to the NLS. Co-localization of
fluorescence from the attached fluorescein probe with intra-
cellular AuNPs was used to confirm the successful binding of
the peptide to the NPs (Figure 1a−d). The successful
attachment of NLS is further supported by a small (∼1 nm)
shift in the SPR peak of AuNPs (Supporting Information
Figure S3). Neither the NLS attachment nor the incubation in
cell culture medium itself results in any significant aggregation
(see Supporting Information Figure S3). To allow for cellular
uptake, NLS-AuNPs were added to the standard culture
medium at a concentration of 6.75 × 1010 NLS-AuNPs/mL.
Following an incubation time of up to 72 h, cells were fixed
with 4% formaldehyde and kept in phosphate buffered saline.
Fixation with formaldehyde is widely used for biological sample
preparation and has been shown to have no discernible effects
on acquired spectra.39,40

Undifferentiated, dividing cells (n = 20) formed the first cell
group (UDCs) while fully differentiated cells (n = 20) formed
the second cell group (DCs) of study (see Figure 1b). Both cell
groups adopt a neuronal phenotype and show closely related
morphologies.41 For the two respective cell groups NLS-AuNPs
were incubated with them either before or after differentiation
was complete. SERS spectra from cells could be acquired at
shorter incubation times as well (see Supporting Information
Figure S9 for data after 24 and 48 h incubation), however they
were strongest and most numerous at 72 h especially from the
nucleus; hence, this incubation time was used. This was because
after an incubation time of 72 h cells showed many aggregates
of cytoplasmic NLS-AuNPs as well as some within the nucleus
due to higher uptake over time (Figure 1c,d, see also Figure S1
for dark-field images in Supporting Information). Furthermore
there was no evidence of compromised cell viability as assessed
using Trypan blue (inset Figure 1a).
Spectral images (Figure 2) of cells were acquired using a 633

nm laser in streamline mode with a Renishaw inVia Raman
microscope, where an area of 200 nm × 600 nm corresponds to
a single pixel on the image. Intense SERS signals were obtained
from areas where aggregates of NLS-AuNPs were localized;
exemplar spectra from such areas are shown in Figure 2a.
Spectra from different cellular regions show different peak
positions and intensities; cytoplasmic spectra (blue) reveal
peaks assigned to proteins and fatty acids, whereas spectra from
the nuclear region (red) mostly reveal peaks characteristic for
nucleic acids and proteins. For example, this can be seen in the
spectral range of 500−900 cm−1, where significant peaks can be
observed within the nuclear region of the cell (red lines, Figure
2a) compared to less peaks in the cytoplasmic spectra (blue
lines, Figure 2a). We found, as expected, that spectra
corresponding to nucleic acids were acquired from the nuclear
region of the cell (white ellipse) indicating the successful
translocation of our NLS-modified SERS nanoprobes to the
nucleus. To further verify the nuclear localization of NLS-
AuNP probes, we tested our experimental approach using
Hoechst 33342, a common cell stain known to bind to DNA, as
a marker for selective staining of the nucleus. Characteristic
SERS peaks for Hoechst dye, bound to DNA,42 were

exclusively found in the spectra from the nuclear region
which also contained peaks corresponding to nucleic acids
while spectra from the cytoplasmic area of the cells did not
show these (see Figure S5 in Supporting Information). The
appearance of characteristic SERS peaks of bound-Hoechst and
those corresponding to nucleic acids confirmed that some NLS-
AuNPs were translocated into the nucleus. Subsequent
experiments were carried out without Hoechst staining. The
intracellular location of nucleic acids and proteins are
highlighted in Figure 2c,d, respectively, and DNA, RNA as
well as the DNA/RNA backbone vibrational modes are shown
in red, green and yellow, in Figure 2c.
Following spectral map acquisition, data analysis was carried

out with a multivariate, unsupervised data reduction technique
of principal component analysis (PCA) using MATLAB
R2010b employing a graphical user interface toolkit (see
Supporting Information). SERS mapping generates large,
complex data sets creating the need for adequate data reduction
and analysis. It has been shown that PCA is a suitable tool for
this as well as it facilitates sample group discrimination in SERS
imaging.35,43,44 PCA generates loadings and score plots from
the derived principal components (PCs) of the initial or
preprocessed data. Gained PC loadings are correlation
coefficients between the original data and PC scores. PC
loadings identify the importance of each variable (i.e., peak in a
SERS spectrum). The correlation of a variable to a PC reflects
its contribution to the variation in the data set. Therefore, PC
loadings plots reveal vibrational modes (wavenumbers)
corresponding to the variation which allows for distinction
between groups. Thus, we chose PCA on our hyperspectral
data in order to fulfill two aims: data reduction to less
dimensions and accomplishment of an objective distinction
between the two cell groups (UDCs and DCs). PCA was
applied on the data acquired from the whole cell (see
Supporting Information). Figure 3a compares PC loadings for
both cells groups. There is a clear segregation of both cell
groups using PC1 and PC2 loadings spectra in which UDCs
(red) and DCs (blue) show distinct differences in peak
positions and variance. UDCs always show less variance and
narrower peaks in their loadings compared to DCs that may be
due to their more homogeneous, undifferentiated state. In DCs,
protein synthesis and cellular protein content are increased as a
result of their differentiation.45 Peak positions in PC loadings
are directly related to the SERS peaks of single spectra. Peaks of
both cell groups are assigned exclusively to proteins, showing
different positions between the cell groups. PC loadings of
UDCs show peaks at 604 (tyrosine (tyr)), 840 (tyr), 1015
(phenylalanine (phe)), 1177 (tyr), 1240 (Amide III), and 1606
cm−1 (phe, tyr), whereas DCs show peaks at 1004 (phe), 1162
(methionine), and 1550 cm−1 (Amide II).35,46−51 Differences in
variance and peak positions allow for the clear segregation of
the two cell groups. The NLS peptide itself does not spectrally
interfere in the analysis (see Supporting Information Figure
S4).
SERS data sets (150 data points each) for each cell group

were analyzed individually using PCA and the results are shown
as 2D scatter plots for PC scores of UDCs (red) and DCs
(blue) (see Figure 3b). The 1D intensity plots are smoothed
histograms of the PC data and allow for easy characterization of
the data distribution. They were generated using Kernel
smoothing computed probability distributions (see Supporting
Information) and are shown alongside. PC score intensities are
normally (Gaussian) distributed (see Supporting Information)
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and characterized by their mean μ and standard deviation σ.
For PC1 scores, the mean value μPC1 is always negative for DCs
and positive for UDCs. Additionally, the standard deviation
σPC1 is smaller for UDCs (<700) than for DCs (>700)
revealing a broader distribution of data points within the DC
group. The standard deviation of PC2 also gives values similar
to σPC1. In contrast, the mean μPC2 is in the range of ±60,
independent of cell group affiliation and hence is not useful in
separating the two groups of cells. Higher PC scores feature 1D

intensity distributions analogous to that of PC2 (Figure 3b)
and thus were not considered further for analysis. Since both
cell groups are closely related, an overlap in distribution would
be expected. Even though cellular differentiation does change
the intracellular composition, most subcellular structures
remain the same or similar. A greater variety of intracellular
proteins are reflected in a wider distribution of PC intensity
plots characterized by a higher standard deviation in DCs.
Nevertheless, the above results show that using data sets from
the whole cell, PC1 loadings and scores distribution including
1D intensities allow for unambiguous and successful
segregation of the cell types into two classes. Furthermore,
PC2 (and higher PCs) loadings as well as 1D intensity of the
scores were successfully tested and allowed segregation of the
two cell groups. Summarizing, PCA (PC loadings as well as PC
score intensities) on an unknown sample would allow for cell
group classification.
As stated earlier, only a smaller fraction of AuNPs aggregates

were found in the cell nucleus as identified by the SERS peaks
assigned to nucleic acids. Since analysis of the whole cell data
masks the developments in the nucleus, we analyzed nuclear
SERS spectra separately. Figure 4a shows nuclear 2D scatter
plots of PC1 and PC2 scores and their 1D intensity line plots.
PC1 scores show an explained variance of 61.5 and 93.4% for
UDCs and DCs, respectively. Nuclear PC1 scores show clear
similarities to those of the whole cell data. Likewise, the nuclear
mean value μPC1_nuc is always positive for UDCs and negative
for DCs. The standard deviation σPC1_nuc is larger than for
whole cell data but is still smaller for UDCs (<2400) compared
to DCs (>2400). The 1D intensity plots of PC1 (with clearly
different μPC1_nuc and σPC1_nuc) allow for accurate cellular
distinction, while those for higher PCs do not. Cellular
differentiation in the cytoplasm is characterized by a composi-
tional change in proteins transcribed. In contrast, the cell
nucleus undergoes a change in the ratio of the molecular
content as well as morphological and structural development.52

In particular, the reorganization of chromatin plays an
important role during the transition from a proliferating cell
to a nondividing cell. While in dividing cells (UDCs) the
nucleus is subject to continuous changes in chromatin
formation during cell division, nondividing cells (DCs) do
have a steady nuclear formation. This homogeneity within the
population of DCs is also consistent with the higher explained
variance observed for this cell group.
In order to characterize nuclear spectra two methods of

analysis were implemented: nuclear peak occurrence (blue
bars) and differential PC1 loadings (red line) with results
shown in Figure 4b. The nuclear peak occurrence (NPO)
method is based on a manual frequency count (with 5 cm−1 bin
size) of all peak positions found within nuclear spectra of single
cells (n = 15) for each cell group. Nuclear peak occurrence
reflects only peak positions irrespective of their intensities. In
contrast, PC1 loadings (obtained as described above using
PCA) involve both peak intensities as well as position. Hence,
the cell groups were analyzed separately and the loadings were
normalized. This was followed by subtraction of the average
loadings of each cell group from each other to create a
differential loading spectrum (see Figure S8 in Supporting
Information). As SERS spectra in general show higher
intensities for peaks of proteins than for DNA/RNA, and
since PC loadings also consider peak intensities the resulting
difference spectrum shifts toward DCs in protein rich regions
such as 1130−1200 or 1450−1550 cm−1. Apart from slight

Figure 3. Principal component analysis of whole cell data. (a) Spectral
plot of loadings of differentiated (DCs) (blue, n = 20) and
undifferentiated cells (UDCs) (red, n = 20) for PC1 (upper) and
PC2 (lower) showing clear distinctions between the cell groups
especially in terms of intensity and peak positions. Peaks are
exclusively assigned to proteins but reflect the change of intracellular
protein composition due to differentiation. Peaks were found at the
following (in cm−1): Δ, 604; +, 840; ⧫, 1004; ◊, 1015; •, 1162; ‡,
1177; *,: 1240; heart, 1550; and ∼, 1606. (Shapes above the curve
refer to UDCs (red), below to DCs (blue).) (b) Scatter plot of PC1 vs
PC2 scores with attached 1D intensity line. PCA of SERS scans of the
whole cell, UDC (red) and DC (blue) groups were each formed from
five different single cell data sets. The explained variance of the PC1
scores accounts for 76.4 and 93.9% of the variation for UDCs and
DCs, respectively (see Supporting Information for explained variance
of higher PCs). The PC1 intensity plot demonstrates that cell groups
can be segregated using the mean and standard deviation of the PC1
scores. Higher PC scores show intensity distributions similar to PC2
while only the standard deviation permits for cellular distinction.
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differences in these regions, analysis from both methods shown
in Figure 4b are in good agreement. The differences highlighted
by these analyses allow for the description of molecular changes
in the nucleus since PC loadings as well as the more
straightforward method of NPO are directly linked to
vibrational modes. Peaks (1−24) pointing up or down
therefore characterize DCs and UDCs respectively. All peaks
are either assigned to nucleic acids, the DNA/RNA backbone
(bkb) or proteins as presented in Figure 4c.34,37,45−51,53−56

Significantly, the number of protein peaks increases during
cellular differentiation from only a few (peaks as in Figure 4b,c,
1, 16, 20) in UDCs to many peaks (peaks as in Figure 4b,c, 3, 7,
9−11, 14, 15) in DCs suggesting higher protein content and
variety. Peak positions corresponding to nucleic acids and their
backbone also change. UDCs show distinct peaks at 780 cm−1

(uracil, cytosine) and 805−819 cm−1 (symmetric O−P−O
phosphodiester stretch in RNA), while for DCs, the SERS
peaks assigned to DNA are observed at 793 and 835 cm−1

(symmetric and asymmetric O−P−O phosphodiester stretch).
Furthermore, both cell groups show SERS bands at 1060−1092
cm−1 corresponding to the PO2

− stretch of the DNA backbone.
In addition, peak positions and assignments of peak (7) and
(9−11) are in agreement with those of histones,57 which are
proteins found in the nucleus associated with DNA. These

characteristic peaks suggest a higher nuclear packaging in DCs
than in UDCs. Furthermore, SERS peaks of nucleic acids in
DCs mostly correspond to DNA and proteins (histones)
indicating DNA packaged with chromosomal proteins in
heterochromatin while, UDCs feature SERS peaks of DNA/
RNA reflecting a looser packaging similar to euchromatin.
In order to prove our hypothesis, we used Hoechst 33342 to

visualize nuclear chromatin density in UDCs and DCs as shown
in Figure 5a-b, respectively, where chromatin density correlates
to fluorescence intensity in the image. Dividing cells such as
UDCs pass through different phases of the cell cycle featuring
changes in chromatin density such as decondensed chromatin
during interphase or chromosomal condensation during mitosis
and cytokinesis. Nucleus 1 in Figure 5a of a representative
interphase cell shows an evenly distributed chromatin content
with a large, oval, or rounded nucleus while nuclei 2 and 3 show
very dense, frayed chromatin (condensed chromosomes) as
expected during the late state of mitosis (late telophase) or the
beginning of cytokinesis. Figure 5b shows denser chromatin in
nondividing DCs with the bright fluorescence on Hoechst
staining confirming tighter packaging. Furthermore, stauro-
sporine was used as a differentiating agent in our experiments
(Materials and Methods in Supporting Information) and in fact
is a commonly used potent maturation agent for the

Figure 4. Analysis of nuclear SERS spectra. (a) PCA analysis of nuclear spectra shown as a scatter plot and 1D intensity plots for PC1 against PC2
scores. The explained variance of the PC1 scores account for 61.5 and 93.5% for UDCs and DCs, respectively. PC1 scores allow for the correct
cellular segregation of UDCs (red) and DCs (blue) as the results show distinct differences in mean and standard deviation. (b) Combined bar and
line plots showing the normalized difference in the spectrum of nuclear peak occurrences (bars) and the PC1 loadings. DCs and UDCs are
characterized by bars/peaks pointing to the upper and lower side of the plot, respectively. Marked peak positions (1−24) are assigned in (c).
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differentiation of the SH-SY5Y cell line at low concentrations
such as 10nM (≈5 ng/mL).58 At this concentration, which was
used in our experiments, cells are arrested at the G2 phase (late
interphase) of the cell cycle which is accompanied by changes
in nuclear morphology such as partly condensed chromosomes
and increased DNA ploidy (up to octaploid DNA) depending
on the cell line.58,59 Thus our results are consistent with the
known effects of staurosporine confirming the utility of our
approach to measure nuclear status and cellular differentiation
in this cell line.
In summary, employing NLS-AuNPs as intracellular probes

for cellular SERS imaging, we have been able to segregate
undifferentiated from differentiated cells in a human neuronal
cell line using PCA analysis for whole cell scans as well as
nuclear spectra. Furthermore, our results using a novel method
of NPO and the more commonly used PC1 loadings has also
allowed us to characterize nuclear development during this
process of cellular differentiation. This work therefore suggests
that this approach using NLS-AuNPs and SERS imaging could
be of great importance in the future characterization of different
cells types in biomedical stem cell research.
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