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1-Introduction
Aging is the primary risk factor for dementia. With increasing life expectancy and the aging
populations around the world, dementia is becoming a significant public health problem of
the century. The most common pathology underlying dementia in older adults is
Alzheimer’s disease (AD). Cerebrovascular disease and Lewy body disease pathologies are
other common causes of dementia in the elderly and in many instances AD is also present in
patients with dementia with Lewy bodies (DLB) and vascular dementia (VaD). A relatively
less common type of dementia is frontotemporal lobar degeneration (FTLD), which tends to
affect younger individuals compared to other dementia pathologies. The focus of this
chapter is potential role of proton magnetic resonance spectroscopy (1H MRS) in these
common dementias.

2- MRS in Alzheimer’s Disease
Initial magnetic resonance spectroscopy (MRS) studies in Alzheimer’s disease were limited
to phosphorous magnetic resonance spectroscopy (31P MRS) revealing alterations in
membrane phospholopid metabolism 1–4. In 1992, Klunk et al. demonstrated the decrease in
the neuronal metabolite N-acetylaspartate (NAA) on proton MRS using perchloric acid
extracts from AD brains 4. Soon after, an in vivo MRS study revealed elevated glial
metabolite myoinositol to creatine (mI/Cr) levels in patients with AD along with decreased
NAA/Cr 5. Further investigations in patients with AD confirmed this finding 6–17 (Figure 1).
Many of these early studies also revealed that the increase in mI/Cr and decrease in NAA/Cr
in AD was not associated with a change in Cr using absolute quantification
methods 10, 11, 14, 18–21. For this reason Cr is commonly used as an internal reference in
MRS studies of AD to account for individual and acquisition related variability. There have
been conflicting reports on choline (Cho) levels in AD. Some studies found elevated Cho or
Cho/Cr levels 8, 9, 12, while others found no changes in Cho or Cho/Cr levels in
AD10, 13, 19, 20 . Decreased glutamate plus glutamine levels have been found in a number of
studies in AD 22, 23.

Regional alterations of 1H MRS metabolites in patients with AD appear to be wide-
spread 8, 24 involving the parietal25, 26, medial and lateral temporal7, 20, 27 and the frontal
lobes17, 25. Furthermore, decreases in NAA or NAA/Cr correlate with dementia
severity 6, 28,cognitive function 29, 30, behavioral and psychiatric symptoms31, 32 indicating
that NAA is a marker for AD severity on various clinical features.
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Most of the 1H MRS studies in AD have utilized single voxel 1H MRS. Choice of the single
voxel 1H MRS region for detecting and monitoring metabolite levels in AD depends both on
the pathophysiology of AD and the technical considerations. The neurofibrillary pathology
of AD and associated neuronal loss involves medial temporal lobes earlier and more
severely than other regions of the brain. While 1H MRS from the medial temporal lobe or
hippocampus yields spectra of reasonable quality using long echo times (TE =130–272 ms),
it may be more difficult to achieve MR spectra of consistent quality from the hippocampus
using short echo times required for quantification of the mI peak (TE <35 ms) 33, 34. At 4
Tesla using adiabatic selective refocusing for localization and TE of 46 ms it was possible to
measure decreased glutamate levels from the hippocampus in AD 35. Another region that is
commonly investigated in single voxel MRS studies of AD is the posterior cingulate gyrus
voxel. Posterior cingulate gyrus is severely involved with the β-amyloid (Aβ) pathology of
AD 36 and 18F fluorodeoxyglucose (FDG) positron emission tomography (PET) studies
suggest that the synaptic activity is reduced in this region very early in the disease process
such as in cognitively normal carriers of the APOE ε4 allele who are at a higher risk for AD
than non-carriers 37, 38. Recently, it was demonstrated that posterior cingulate gyrus is the
hub for the resting state connectivity networks on task-free functional MRI, which are
affected by AD early in the disease course 39. It is possible to consistently get acceptable
quality short-echo time MR spectra from the posterior cingulate gyrus voxel for
quantification of mI levels which is critical for longitudinal evaluations and multi-site
studies 34.

Human tissue studies in transgenic mouse models of AD have provided some insight into
the pathologic underpinnings of decreased NAA, glutamate and increased mI levels, which
closely resemble the metabolic abnormalities observed in patients with AD 40–44. For
example lower NAA and glutamate levels were associated with Aβ plaque load in mice with
PS2APP mutation 44. Magic angle spinning 1H MRS in superior temporal cortex tissue from
patients with AD showed a correlation between NAA concentration and neuronal density 41.
Recently, an in vivo 13carbon (13C)-MRS and 1H MRS study suggested a link between
increased glial or microglial activation and mI elevation in AD 45.

Our investigation of pathologic correlates of MRS metabolite changes in 54 cases with
varying degree of AD pathology demonstrated that both NAA/Cr and mI/Cr levels measured
antemortem are associated with the pathologic classification of AD severity 46. Whereas mI/
Cr ratio was elevated at earlier stages of pathologic involvement (i.e. intermediate likelihood
AD), NAA/Cr levels were decreased only at the late stage of pathologic involvement (i.e.
high likelihood AD). A combined ratio of the two metabolites as the NAA/mI , however
revealed the strongest association with pathologic severity suggesting that both NAA and mI
provide complementary information on AD pathology (Figure 2).

Longitudinal MRS studies in patients with AD demonstrate gradually decreasing NAA,
NAA/Cr and NAA/mI levels compared to controls 47, 48, 49. The change in NAA and NAA/
Cr also correlate with the cognitive decline 48, 50. Although the data is limited, no study has
yet reported a longitudinal increase in mI or mI/Cr levels in patients with AD. The reasons
may be twofold: 1) Lower reliability of mI quantification compared to NAA 48, 51, 52; 2)
Stage of the AD pathologic process. If the elevation of mI is an early event in the pathologic
progression of AD, it is possible that a plateau is reached in the mI elevation towards the
later stages of the pathologic process, which remains to be investigated.

The applications of MRS as a biomarker for treatment response in clinical trials have been
limited to single-site studies. The change in NAA/Cr correlated with the change in
Alzheimer’s Disease Assessment Scale, cognitive part (ADAS-cog) scores during a
cholinesterase inhibitor treatment trial 53. Short-term or temporary increases in NAA/Cr and
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Glu/C in cholinesterase inhibitor treated patients versus placebo 54–56, and one trial found no
effect on NAA/Cr ratio but found a decrease in Cho/Cr and mI/Cr ratio in the hippocampus
albeit in the absence of cognitive response 57. Overall, MRS appears to be a feasible
biomarker in single-site clinical trials in AD. Efforts to extend these applications to multi-
site clinical trials are underway 33, 51. Larger sample sizes may be needed for MRS
compared to structural MRI measurements (e.g. hippocampal volumes) to detect a similar
effect size 49. However, effect sizes of a single treatment may differ among imaging markers
of different pathophysiological processes. For example a treatment that improves neuronal
function may dramatically improve NAA levels but not significantly alter atrophy rates.
Therefore effects of the intervention should be considered when comparing imaging markers
of different biological sensitivity on sample size and power.

3- MRS in Dementia with Lewy Bodies (DLB)
Presence of Lewy bodies in substantia nigra is the pathological feature of Parkinson’s
disease. Although cortical Lewy bodies can occasionally be detected in Parkinson’s disease,
cortical Lewy bodies presenting with dementia is recognized as DLB; a distinct
neurodegenerative disease with established clinical and pathologic criteria 58. DLB is
frequently accompanied by AD in patients with dementia 59. Lewy body pathology by itself
is less common than the mixed (AD and DLB) type60. In our 1H MRS series, patients
clinically diagnosed as probable DLB have normal NAA /Cr levels, whereas patients with
AD, vascular dementia and frontotemporal dementia have lower NAA /Cr levels than
normal, in the posterior cingulate gyri 61. Normal NAA /Cr levels in the posterior cingulate
gyri in patients with DLB suggest integrity of neurons in this region which is in keeping
with the preserved neuronal numbers found in the in the neocortex of DLB patients at
autopsy 60. Normal neocortical NAA or NAA /Cr levels may be useful in distinguishing
patients with dementia with Lewy bodies from other dementia syndromes. Reduced NAA/Cr
have been detected in the hippocampi of patients with DLB 62, however it is important to
note that many patients with DLB may have hippocampal atrophy due to the presence of
concomitant neurofibrillary tangle pathology of AD 63 making it hard to determine whether
the low NAA/Cr levels in DLB is associated with the co-existent AD pathology. One study
found reduced white matter NAA/Cr in patients with DLB compared to the control group
suggesting white matter involvement in DLB64. The white matter involvement in DLB was
later confirmed by diffusion tensor imaging studies 65, 66.

We found elevated Cho /Cr in the posterior cingulate gyri of patients with DLB (Figure 1).
Elevation of Cho in DLB and AD may be the consequence of increased membrane turnover
due to dying back of the neuropil. Another explanation however is down regulation of
choline acetyltransferase activity which may be responsible for this change in both AD and
DLB. Activity of choline acetyltransferase, the enzyme responsible for acetylcholine
synthesis from free choline, is reduced earlier and more severely in the disease course of
DLB than AD 67. Furthermore, patients with DLB who were treated with cholinesterase
inhibitors have shown substantial cognitive improvement 68, revealing the functional
significance of acetylcholine deficiency in DLB. The finding that Cho /Cr levels decrease
with cholinergic agonist treatment in AD 69 raises the possibility that Cho /Cr levels may be
a bio-marker of therapeutic efficacy both in AD and dementia with Lewy bodies drug trials.

4- MRS in Vascular Dementia
Cerebrovascular disease is another common pathology observed in patients with dementia in
autopsy series. In most cases however, vascular pathology co-exist with the pathology of
AD, and pure vascular pathology is relatively uncommon 70. Vascular lesions are more
common in patients with dementia than normal elderly 71. In a patient with the clinical
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diagnosis of AD and cerebrovascular disease, the challenge is to identify how much if any of
the two pathologies are contributing to dementia, so that appropriate therapies can be
planned. MRS studies indicate that NAA and NAA /Cr levels are reduced in patients with
vascular dementia. White matter NAA /Cr is lower in patients with vascular dementia than
in patients with AD, reflecting the white matter ischemic damage in vascular dementia with
respect to the cortical degenerative pathology in AD 72, 73. NAA levels are further decreased
in patients with stroke who have cognitive impairment compared to those who are
cognitively normal even in regions remote from the infarction, suggesting NAA /Cr is a
marker for neuronal dysfunction which may extend beyond the region of infarction 74.
Cortical mI /Cr levels on the other hand are normal in patients with vascular
dementia61, 75, 76 (Figure 1). Because mI /Cr is elevated in patients with AD, mI /Cr may
help identify the presence of AD in a demented patient with cerebrovascular disease. Studies
that include histopathological confirmation are necessary in order to clarify the role of mI /
Cr in differential diagnosis of vascular dementia, mixed dementia (vascular dementia and
AD), and AD.

5- MRS in Frontotemporal Lobar Degeneration
MRS metabolite changes in frontotemporal dementia are similar to the changes encountered
in AD: lower NAA /Cr and higher mI /Cr than normal 21, 77, 78 (Figure 1). NAA /Cr is lower
and mI /Cr is higher levels in the frontal cortex of patients with frontotemporal dementia
than patients with early AD, suggesting that regional 1H MRS measurements may help
differentiate neurodegenerative disorders that display regionally specific involvement18, 79.
It should be noted however that while regional differences may be prominent during early
stages of the pathological process in neurodegenerative diseases, these differences may be
lost as neurodegenerative pathology involves majority of the cerebral cortex in later
stages 61, 77.

Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is an
autosomal dominant tauopathy that is linked to mutations in the gene encoding for the
microtubule-associated protein tau (MAPT) on chromosome 17 80–83. Mutations in MAPT
result in filamentous accumulation of hyperphosphorylated tau in neurons and glia leading
to neurodegeneration and atrophy 84–86. Progressive accumulation of filamentous tau and
subsequent neuronal death is central to the pathogenesis of many neurodegenerative diseases
including Alzheimer’s disease (AD), and may begin years before the onset of clinical
symptoms. We recently demonstrated 1H MRS metabolite abnormalities in presymptomatic
carriers of mutations in the gene encoding for MAPT on chromosome 17. The severity of 1H
MRS and MRI abnormalities was associated with the proximity to the estimated age of
symptom onset. NAA/mI ratio was fully outside of the control range in presymptomatic
MAPT mutation carriers who had five years to reach or who were past the estimated age of
symptom onset, indicating presence of 1H MRS metabolite abnormalities related to
neurodegeneration, years before the onset of symptoms and atrophy in MAPT mutation
carriers (Figure 3).

6- MRS in Mild Cognitive Impairment and other Alzheimer’s Disease Risk
Groups

There are no proven treatments for AD pathology, however current efforts to arrest or slow
disease progression generate the prospect for preventive interventions 87. There is
considerable interest in early diagnosis by identifying individuals with cognitive difficulties
who eventually progress to dementia, from those who are aging with normal cognitive
function 88. Mild cognitive impairment (MCI) was established on clinical grounds in order
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to identify symptomatic individuals who do not meet the criteria for dementia 89. A majority
of people with MCI develops dementia in the future.

The progression of AD pathophysiological processes start decades before the clinical
diagnosis of AD and the earliest cognitive impairments occur in the memory domain 90. The
syndrome of amnestic MCI represents this prodromal phase in the progression of AD 89.
More recently, the construct of MCI has been broadened to include individuals with
impairments in non-amnestic cognitive domains such as attention/executive, language or
visual-spatial processing domains 91. The clinical presentation of this broadened definition
of MCI is heterogeneous. Both the amnestic and non-amnestic subtypes of MCI may present
with involvement of a single cognitive domain or multiple cognitive domains. It is clear
from several independent studies that most people with the amnestic form of MCI who
progress to dementia in the future, develop AD92–98. People with non-amnestic MCI on
average have more vascular comorbidity and infarctions as well as a higher prevalence of
extra pyramidal features, mood disorders, and behavioral symptoms than people with
amnestic MCI 99, 100. The etiology of MCI is also heterogeneous. A variety of early stage
dementia-associated pathophysiological processes such as AD, cerebrovascular disease and
Lewy body pathology have been identified in patients with MCI at autopsy 101, 102, 103, 104.
Many of these pathologies co-exist in MCI 103 and require different therapeutic strategies.
Furthermore, all patients with MCI do not develop dementia at a similar rate 105, 106. The
heterogeneity of MCI warrants development of non-invasive biomarkers that can predict the
rate of future progression to different dementias, for early diagnosis and treatment with
potential disease-specific preventive interventions.

Early 1H MRS studies in MCI included individuals who had impairments in memory
function (i.e. amnestic MCI) 8, 29, 107, 108. A majority of patients with amnestic MCI develop
AD in the future, and many of these individuals have early AD pathology 95. In keeping
with this, the 1H MRS findings in amnestic MCI are similar to but milder than the findings
in AD 8, 29, 108. However there are distinct group wise differences in MRI and 1H MRS
findings between amnestic MCI and non-amnestic MCI subtypes. Patients with amnestic
MCI tend to have smaller hippocampal volumes and elevated mI/Cr ratios compared to
patients with non-amnestic MCI and cognitively normal controls. On the other hand, non-
amnestic MCI patients have normal hippocampal volumes and normal mI/Cr ratios, but a
greater proportion of these patients have cortical infarctions compared to the amnestic MCI
patients 99. Both hippocampal atrophy and elevated mI/Cr are sensitive markers of early AD
pathology, and the severity of these abnormalities correlate with the pathologic severity of
AD 46, 109–114. For this reason, hippocampal atrophy and elevated mI/Cr most likely
represent a higher frequency of early AD pathology in patients with amnestic MCI
compared to non-amnestic MCI. On the contrary, normal hippocampal volumes and mI/Cr
ratios in the non-amnestic MCI subtype suggest that other pathologies in addition to AD
underlie non-amnestic MCI. Higher prevalence of cortical infarctions on MRI, history of
TIA and stroke in non-amnestic MCI patients suggest that cerebrovascular disease is one of
the pathological contributors to nonamnestic MCI.

The pathologic and clinical heterogeneity of MCI require multimodality imaging markers
that are sensitive to the various dementia related pathophysiological processes for early
diagnosis in patients with MCI. The most common dementia-related pathologies observed in
MCI include AD, cerebrovascular disease and DLB 102–104. Lesions that are associated with
cerebrovascular disease on MRI include infarctions and white matter hyperintensities on T2
weighted images. These cerebrovascular lesions are more common in patients with MCI
compared to cognitively normal older adults 99. An MR marker that is highly sensitive to the
pathophysiological processes of AD specifically the neurofibrillary tangle pathology-
associated neurodegeneration early in the disease course is hippocampal atrophy 112, 114.
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Both the presence of cortical infarctions 115 and hippocampal atrophy 116 are predictors of
dementia risk in MCI.

There is evidence that 1H MRS is sensitive to the pathophysiological processes associated
with the risk of dementia in patients with MCI 117, 118. Decreased NAA/Cr ratio in the
posterior cingulate gyrus voxel is associated with an increased risk of dementia in patients
with MCI 115. Furthermore, posterior cingulate gyrus voxel NAA/Cr levels decline over
time in patients with MCI who progress to AD diagnosis 48. 1H MRS is complementary in
predicting future progression to dementia in MCI when considered with other strong
predictors of dementia risk in MCI such as hippocampal volumes and cortical infarctions.
Decreased posterior cingulate gyrus NAA/Cr increases the risk of progression to dementia in
MCI patients with hippocampal atrophy and the risk of dementia increases even further if
cortical infarctions are present in a patient with MCI 115 (Figure 4). The complementary role
of multimodality imaging markers in predicting the risk of dementia in MCI is consistent
with cross-sectional studies showing the added value of 1H MRS and hippocampal volumes
for discriminating cognitively impaired but non-demented individuals from cognitively
normal subjects 108 and distinguishing AD patients from cognitively normal119.
Furthermore, hippocampal volumes and NAA/Cr levels are independent and complementary
predictors of verbal memory on neuropsychometric testing in nondemented older adults,
demonstrating that verbal memory depends on both structural and metabolic integrity of the
hippocampus 120.

Recently, the diagnostic criteria for AD and MCI were revised by two separate workgroups
charged by the National Institute on Aging and Alzheimer’s Association 121–123. A third
work group was charged to define the preclinical stage of AD in light of the evidence that
the pathophysiological process of AD begin decades before the diagnosis of clinical
dementia 90. The change in most well validated imaging biomarkers have been
hypothetically modeled for the three clinical stages of AD (i.e. preclinical AD, MCI and
AD). According to this hypothetical model, the accumulation of β-amyloid (Aβ) pathology
imaged with PET amyloid ligands or measured with cerebrospinal fluid (CSF) Aβ-42 levels
precede the change in imaging markers of neurodegeneration associated with the
neurofibrillary tangle pathology of AD such as hippocampal atrophy on MRI 124. The model
that emerged from evidence on well validated imaging biomarkers will be critical for
tracking disease progression and for assessment of primary and secondary preventive
interventions in individuals at the preclinical and MCI stage of AD.

Several well validated imaging biomarkers exist for various pathologic features of the early
AD pathology such as increased Aβ load on PET, atrophy on structural MRI or glucose
metabolic reductions on PET. However there are other features of AD pathology for which a
well-validated biomarker does not exist. For example there is no widely accepted biomarker
for glial or microglial activation. The glial metabolite mI quantified with 1H MRS may
potentially be useful as a biomarker for glial activation in neurodegenerative diseases
including AD.

Cross-sectional studies indicate that mI/Cr is elevated in MCI and mild AD even in the
absence of a decrease in NAA/Cr 6, 8, 107. Our data in a pathology-confirmed sample of
older adults with a range of AD pathology further showed that the mI/Cr elevation is
associated with intermediate likelihood (i.e. an earlier stage) AD pathology whereas the
decrease in NAA/Cr is associated with higher likelihood (i.e. a later stage) AD pathology 46

(Figure 2). Furthermore, mI/ Cr levels increase in the pre-dementia phase of Down’s
syndrome15, 125 and in pre-symptomatic individuals with familial dementia 126, 127 even in
the absence of structural MRI and NAA/Cr changes127. The mI peak consists of glial
metabolites that are responsible for osmoregulation 128, 129. MI levels correlate with glial
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proliferation in inflammatory CNS demyelination 130. Because the dense cored amyloid
deposits in AD are surrounded by clusters of microglia and astrocytes 131, it is thought that
the elevation of the mI peak is related to glial proliferation and microglial activation in
AD 45, 132. A significant correlation between mI/Cr levels and amyloid load measured with
Pittsburgh Compound-B PET imaging was found in a population-based sample of 311
cognitively normal older adults 133 (Figure 5). It is possible that the mI/Cr levels are
associated with the microglial and glial activation that surround the senile amyloid plaques.
However, a 1H MRS - histology correlation study in a mouse model of spinocerebellar
ataxia type 1 found elevated mI/Cr levels even in the absence of gliosis 134. Based on
limited evidence, it is not be possible to attribute elevation in mI solely to glial activation in
neurodegenerative diseases. Although there is evidence that mI/Cr elevation is an early
marker in sporadic AD, familial AD and FTLD even before cognitive impairment, loss of
neuronal integrity and atrophy, histological confirmation is needed to better understand the
pathologic basis of mI/Cr elevation in MCI.

MCI is a clinically and pathologically heterogeneous disorder. MRS may potentially provide
information on the underlying pathologies in patients with MCI that is not available from
other imaging biomarkers. Data from cognitively normal older adults and cognitively
normal adults at risk for familial dementia suggest that MRS may be useful as a biomarker
for preclinical pathological processes and potentially assessing the response to preventive
interventions.

7- Future Perspectives
Although significant progress has been made on improving the acquisition and analysis
techniques in 1H MRS, translation of these technical developments to clinical practice have
not been effective. The main reasons for ineffective translation of technology to clinical
practice or patient-oriented research are two fold: 1) Lack of standardization for multi-site
applications and normative data 2) Insufficient understanding the pathologic basis of 1H
MRS metabolite changes. Advances on these grounds would further increase the impact
of 1H MRS as biomarker for the early pathological involvement in neurodegenerative
diseases and in turn increase the use 1H MRS in clinical practice.
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Key points

• Neurodegenerative dementias are characterized by elevated myoinositol and
decreased N-acetylaspartate levels

• The increase in myoinositol appear to precede decreasing N-acetylaspartate
levels in neurodegenerative diseases

• N-acetyl aspartate to myoinositol ratio in the posterior cingulate gyri decrease
with increasing burden of Alzheimer’s disease pathology

• 1H MRS is sensitive to the pathophysiological processes associated with the risk
of dementia in patients with mild cognitive impairment

• Although significant progress has been made on improving the acquisition and
analysis techniques in 1H MRS, translation of these technical developments to
clinical practice have not been effective due to lack of standardization for
multisite applications and normative data as well as insufficient understanding
the pathologic basis of 1H MRS metabolite changes.

Kantarci Page 15

Neuroimaging Clin N Am. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Posterior cingulate gyrus voxel 1H MRS findings in common dementia syndromes
Alzheimer’s disease (AD), frontotemporal dementia (FTD), dementia with Lewy bodies
(DLB), vascular dementia (VaD). Cho = choline; Cr = creatine NAA = N-acetylaspartate,
Ml=
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Figure 2. Posterior cingulate gyrus voxel 1H MRS findings by pathological diagnosis of AD
The pathological diagnosis of AD is classified as low, intermediate and high likelihood of
AD. For each pathological diagnosis, the plot shows individual values, a box plot of the
distribution, and the estimated mean and 95% CI for the mean. The strongest association
was observed with the NAA/mI ratio (RN 2=0.40) 46. Cho = choline; Cr = creatine NAA =
N-acetylaspartate, Ml=
With permission from Radiology.
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Figure 3. Box plots show the hippocampal volumes (corrected for the total intracranial volume)
and 1H MRS metabolite ratios
Controls (n=24), presymptomatic (n=14) and symptomatic (n=10) MAPT mutation
carriers127. Cr = creatine NAA = N-acetylaspartate, Ml=
With permission from Neurology.
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Figure 4. Multiple MR markers of underlying dementia pathologies improve the ability to
identify patients with prodromal dementia over a single MR marker
Estimates of the probability of remaining free of dementia for four patient groups with
increasingly negative prognoses. Group A has adjusted hippocampal volume and NAA/Cr 1
SD above MCI average and no cortical infarctions. Group B has adjusted hippocampal
volume 1 SD below MCI average with NAA/Cr 1 SD above MCI average and no cortical
infarctions. Group C has adjusted hippocampal volume and NAA/Cr both 1 SD below MCI
average and no cortical infarctions. Group D has adjusted hippocampal volume and NAA/Cr
both 1 SD below MCI average and cortical infarctions 115. Cr = creatine NAA = N-
acetylaspartate
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With permission from Neurology.
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Figure 5. Association between posterior cingulate mI/Cr and PiB retention
Scatter plots demonstrate the association between log transformed global cortical PIB
retention ratio and mI/Cr (upper panel); between log transformed posterior cingulated
cortical PIB retention ratio and mI/Cr (lower panel)133. Cho = choline; Cr = creatine NAA =
N-acetylaspartate, MI=, PIB =
With permission from Neurology.
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