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Background: Age-related fatty degeneration of the bone marrow contributes to delayed fracture-healing and osteoporosis-
related fractures in the elderly. The mechanisms underlying this fatty change are unknown, but they may relate to the level of
Wnt signaling within the aged marrow cavity.

Methods: Transgenic mice were used in conjunction with a syngeneic bone-graft model to follow the fates of cells involved in the
engraftment. Immunohistochemistry along with quantitative assays were used to evaluate Wnt signaling and adipogenic and
osteogenic gene expression in bone grafts from young and aged mice. Liposomal Wnt3a protein (L-Wnt3a) was tested for its ability
to restore osteogenic potential to aged bone grafts in critical-size defect models created in mice and in rabbits. Radiography,
microquantitative computed tomography (micro-CT) reconstruction, histology, and histomorphometric measurements were used
to quantify bone-healing resulting from L-Wnt3a or a control substance (liposomal phosphate-buffered saline solution [L-PBS]).

Results: Expression profiling of cells in a bone graft demonstrated a shift away from an osteogenic gene profile and toward
an adipogenic one with age. This age-related adipogenic shift was accompanied by a significant reduction (p < 0.05) in Wnt
signaling and a loss in osteogenic potential. In both large and small animal models, osteogenic competence was restored to
aged bone grafts by a brief incubation with the stem-cell factor Wnt3a. In addition, liposomal Wnt3a significantly reduced cell
death in the bone graft, resulting in significantly more osseous regenerate in comparison with controls.

Conclusions: Liposomal Wnt3a enhances cell survival and reestablishes the osteogenic capacity of bone grafts from
aged animals.

Clinical Relevance: We developed an effective, clinically applicable, regenerative medicine-based strategy for revital-
izing bone grafts from aged patients.

I
n youth, long bones are filled with heme-rich marrow; with
age, this is replaced by fatty marrow1. Age-related fatty
degeneration of the bone marrow2-4 is strongly associated

with delayed skeletal healing and osteoporosis-related fractures
in the elderly5-8, which together constitute a growing biomed-
ical burden9,10. Consequently, considerable research has been
done in an attempt to understand the mechanism behind the
conversion of bone marrow into predominantly fatty tissue.

This fatty degeneration of the bone marrow occurs in
parallel with a loss in osteogenic potential11-14, which is revealed

when marrow is used clinically for bone-grafting purposes. A
patient’s own bone and marrow is considered the ‘‘gold stan-
dard,’’15 but these autografts are oftentimes inadequate when
the patient is elderly16.

There are multiple, distinct stem-cell and/or progenitor
cell populations, including mesenchymal stem cells, that reside
in the bone marrow17-21. Although mesenchymal stem cells can
give rise to cartilage, bone, fat, and muscle cells when cultured
in vitro, mesenchymal stem cells residing in the marrow cavity
itself only differentiate into an osteogenic or an adipogenic
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lineage22, and growing evidence indicates that this adipogenic-
osteogenic fate decision is regulated by beta-catenin-dependent
Wnt signaling23. For example, enhancing Wnt signaling by ac-
tivating mutations in the Wnt low-density lipoprotein receptor-
related protein-5 (LRP5) receptor24 causes a high bone-mass
phenotype in humans25,26. In vitro, this same activating mutation
represses adipocyte differentiation of human mesenchymal stem
cells27. On the other hand, reduced Wnt signaling (for example,
as occurs with the osteolytic disease multiple myeloma28) is as-
sociated with aggressive bone loss29 and a concomitant increase
in marrow adiopogenesis at the expense of hematopoiesis30.
Together, these observations support a hypothesis that Wnt
signaling has a positive role in stimulating osteogenesis31 and
inhibiting adipogenesis32.

We employed an in vivo, syngeneic transplantation as-
say33 to gain mechanistic insights into the age-related fatty
degeneration of the marrow and its concomitant loss of oste-
ogenic potential. We employed two animal models that are
based on a standard bone-grafting procedure, a technique that
is performed more than 500,000 times annually in the U.S.
alone34. We identified a correlation between diminished Wnt
signaling and fatty degeneration of the marrow, and we then
used those findings to formulate a treatment approach to re-
establish Wnt responsiveness and bone-forming capacity to
bone grafts from aged animals.

Materials and Methods
Animals

All procedures were approved by the Stanford Committee on Animal Research.
Axin2LacZ/1 mice have been described

35
. Beta-actin-enhanced green fluores-

cent protein (ACTB-eGFP) transgenic mice (The Jackson Laboratory, Sacramento,
California) were chosen because of robust expression levels of GFP in bone,
marrow, and other relevant cell populations

36
. ACTB-eGFP transgenic mice were

crossed with Axin2LacZ/1 mice to obtain Axin2LacZ/1, Axin2LacZ/1/ACTB-eGFP,
ACTB-eGFP and wild-type (WT) mice; twelve to sixteen weeks old mice were
considered young; mice greater than forty weeks of age were considered aged. Aged
(eight months) New Zealand white rabbits were used. One rabbit served as the
bone graft donor, and nine rabbits served as experimental animals.

Bone-Grafting in Mice
Host mice (male only) were anesthetized by intraperitoneal injection of ketamine
(80 mg/kg) and xylazine (16 mg/kg). A 3-mm incision was made to expose the
parietal bone; a circumferential, full-thickness defect with a 2-mm diameter was
created with use of a micro dissecting trephine; the dura mater was not disturbed.

Bone graft was harvested from the femora and tibiae, pooled, and di-
vided into aliquots. Each 20-mL aliquot was incubated in 10 mL of Dulbecco
modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) con-
taining liposomal phosphate-buffered saline solution (L-PBS) or liposomal
Wnt3a protein (L-Wnt3a) (effective concentration = 0.15 mg/mL) at 37�C
while the calvarial defect was prepared. Bone grafts were transplanted to the
calvarial defect, and the skin was closed.

Bone-Grafting in Rabbits
Host rabbits were anesthetized with a subcutaneous injection of glycopyrrolate
(0.02 mg/kg) and buprenorphine (0.05 mg/kg), an intramuscular injection of
ketamine (35 mg/kg) and xylazine (5 mg/kg), and an intravenous injection of
cefazolin (20 mg/kg), and maintained under 1% to 3% isoflurane. A 2.5-cm in-
cision was made, the ulnar border was visualized, and a 1.5-cm segmental defect
was created with an oscillating saw (Stryker System 5, Kalamazoo, Michigan). The
segment was removed along with its periosteal tissues. Bone graft was harvested

from the pelvis and femur, pooled, and divided into aliquots. Each approximately
400-mg aliquot was combined with L-PBS (500 mL) or L-Wnt3a (effective con-
centration = 0.5 mg/mL) and kept on ice on the back table while the ulnar defect
was created in host rabbits. Bone grafts were transplanted to the ulnar defect, and
the muscle and skin were closed. The procedure was performed bilaterally (i.e., both
sides either received L-PBS or L-Wnt3a). This approach eliminated the possibility,
however remote, that the bone graft would have an unanticipated systemic effect.

In Vitro Wnt Stimulation of Rabbit Bone Marrow
Bone marrow from aged rabbits was incubated with L-PBS or L-Wnt3a (ef-
fective concentration = 0.15 mg/mL) at 37�C for twelve hours. Total DNA was
assayed with use of PicoGreen dsDNA kit (Life Technologies, Carlsbad, Cal-
ifornia) to ensure that grafts had equivalent cell volumes. Caspase activity was
assayed with use of a standard kit (Roche Diagnostics, Indianapolis, Indiana).

Tissue Preparation
Immediately after euthanasia (time points specified in each experiment), the
entire skeletal element, including muscle, connective tissue, and/or dura was
harvested, removed of its epidermis, and fixed in 4% paraformaldehyde at 4�C for
twelve hours. Samples were decalcified in 19% EDTA (ethylenediaminetetraacetic
acid) before embedding in paraffin, or in optimal cutting temperature (OCT)
compound. Sections were 10-mm thick.

Histology, Immunohistochemistry, and Histomorphometric
Analyses
Immunohistochemistry was performed as previously described

31
. Antibodies used

included rabbit polyclonal anti-green fluorescent protein (anti-GFP) (Cell Signaling
Technology, Danvers, Massachusetts), rabbit polyclonal anti-DLK1 (EMD Millipore,
Billerica, Massachusetts), anti-peroxisome proliferator activated receptor-g (anti-
PPAR-g) (Millipore), and anti-Ki67 (ThermoFisher Scientific, Waltham, Massa-
chusetts). The bromodeoxyuridine (BrdU) (Invitrogen, Camarillo, California) and
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) (Roche
Diagnostics) assays were performed following the manufacturers’ instructions.

Movat pentachrome, aniline blue, Xgal, and alkaline phosphatase (ALP)
stainings were performed as previously described

31
. Tissue sections were photo-

graphed with use of a Leica DM5000B digital imaging system (Leica Micro-
systems, Wetzlar, Germany). A minimum of five tissue sections per sample was
used for histomorphometric analyses

37
.

Microquantitative Computed Tomography (Micro-CT)
Analyses
Mice were anesthetized with 2% isoflurane and scanned with use of a multi-
modal positron emission tomography-computed tomography data-acquisition
system (Inveon PET-CT; Siemens, Erlangen, Germany) at 40-mm resolution.
Data were analyzed with MicroView software (GE Healthcare, Chicago, Illi-
nois). The three-dimensional region-of-interest tool was used to assign the
structure and bone volume for each sample.

Assessment of the regenerate bone volume fraction (the percentage cal-
culated by dividing the total bone volume by the regenerate bone volume [BV/TV,
%]) was performed with use of high-resolution micro-CT (vivaCT 40; Scanco
Medical, Brüttisellen, Switzerland) and with 70 kVp, 55 mA, 200-ms integration
time, and a 10.5-mm isotropic voxel size. The region of interest was 2 cm in length
and began 250 mm proximal to the edge of the defect and extended 250 mm
distally beyond the opposing edge of the defect (1.5 cm total diameter). Bone was
segmented from soft tissue with use of a threshold of 275 mg/cm

3
hydroxyapatite.

Scanning and analyses adhered to published guidelines
38

.

Quantitative Reverse Transcription-Polymerase Chain
Reaction (qRT-PCR)
Tissue samples were homogenized in TRIzol solution (Life Technologies). RNAwas
isolated (RNeasy; Qiagen, Germantown, Maryland) and reverse transcription was
performed (SuperScript III Platinum Two-Step qRT-PCR Kit, Life Technologies) as
described previously

31
. Primer sequences are listed in Figure E-1 in Appendix.
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Statistical Analyses
Results are presented as the mean plus the standard deviation, with ‘‘n’’ signi-
fying the number of samples analyzed. Significant differences between data sets
were determined with use of two-tailed Student t tests and nonparametric
Wilcoxon tests. Significance was attained at p < 0.05, and all statistical analyses
were performed with GraphPad Prism software (GraphPad Software, San
Diego, California).

Source of Funding
Work was funded by the California Institute for Regenerative Medicine (CIRM)
TR1-0219. P. Leucht received funding from the Orthopaedic Research and
Education Foundation (OREF) in the form of a Career Development Award in
Total Joint and Trauma Surgery (OREF grant #10-006). J. Jiang was funded by a
National Institutes of Health Ruth L. Kirschstein National Research Service
Award (NRSA) 5F32AR57648-2. D. Cheng and W. Cole are California Institute
for Regenerative Medicine (CIRM) Bridges to Stem Cell Research Certificate
Program Scholars (TB1-01190 and TB1-01175). Neither the authors’ em-
ployment at Stanford University nor any grants or patents pending played any
role in the reporting of the study.

Results
Bone-Marrow Grafts Have Osteogenic Potential

To follow the fate of the bone-graft material, we harvested
whole bone marrow from ACTB-eGFP transgenic mice36,39,

subdivided it into equivalent-size aliquots (Fig. 1-A), then trans-
planted it into a nonhealing, critical-size skeletal defect40 that was
created in the calvarium of syngeneic host mice (Fig. 1-B). The
viable grafted cells and their progeny were identifiable within the
injury site by their GFP label (Fig. 1-C). When the donor and host
were not genetically identical, most of the grafted cells died (not
shown); for that reason, only syngeneic, immunologically com-
patible donor-host combinations were used.

On post-graft day 1, GFP-positive cells, along with
stromal tissue from the GFP-positive donor, occupied the in-
jury site (Fig. 1-C). On day 5, BrdU staining confirmed the
robust proliferation of cells in the defect site (Fig. 1-D). On day
7, GFP immunostaining confirmed that grafted cells, or their

Fig. 1

Bone grafts have osteogenic potential. Fig. 1-A Quantification of total DNA in representative aliquots of whole bone marrow harvested from transgenic beta-

actin-enhanced green fluorescent protein (b-actin-eGFP) male mice; each aliquot constitutes a bone graft. Fig. 1-B Bone grafts are transplanted into 2-mm-

diameter critical-size calvarial defects (demarcated with a circle), which are created in the sagittal suture that separates the parietal bones (outlined with

vertical white dashed lines). The dashed black line indicates the plane of tissue section. Fig. 1-C Representative tissue section from the injury site on post-

transplant day 1; GFP immunostaining identifies grafted cells from the eGFP donor (n = 5); the inferior space represents the sagittal sinus. Fig. 1-D

Representative tissue section on post-transplant day 5; immunostaining for bromodeoxyuridine (BrdU) identifies cells in S phase. Fig. 1-E On post-

transplant day 7, GFP immunostaining identifies the bone graft (dotted yellow line); a higher magnification image of the boxed area in Fig. 1-E (Fig. 1-F)

illustrates that the majority of the cells in the injury site are derived from GFP-positive graft. Fig. 1-G On post-transplant day 14, micro-CT reconstruction

confirms that a 2-mm calvarial injury constitutes a critical-size nonhealing defect (n = 6)40. Fig. 1-H The same size calvarial injury, treated with a bone graft,

heals (n = 6). Figs. 1-I and 1-J On post-transplant day 7, aniline blue staining was used to identify new osteoid matrix; no osteoid matrix formed in the

untreated injury site (yellow dotted line). Fig. 1-J shows visible osteoid matrix on post-transplant day 7 in a representative sample that had been treated with

a bone graft. Abbreviations: IHC = immunohistochemistry. Arrows mark the edges of intact bone. Scale bars: 2 mm (Fig. 1-B); 200 mm (Figs. 1-C and 1-D);

100 mm (Fig. 1-E); 40 mm (Fig. 1-F); 2 mm (Fig. 1-G); and 200 mm (Fig. 1-I).
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progeny, remained at the defect site (Figs. 1-E and 1-F). The
grafted cells and/or their progeny eventually differentiate into
osteoblasts and heal the defect (Figs. 1-H and 1-J); in the absence
of a bone graft, the defect will not heal (Figs. 1-G and 1-I)40,41.

Aged Bone Grafts Exhibit Fatty Degeneration
With aging, human bone marrow undergoes fatty degeneration
and a loss in osteogenic potential42. A comparable age-related
change is observed in mice, in which the gross appearance of
murine bone marrow changes from a heme-rich, fat-free tissue
in young animals to a fatty marrow in aged animals (Figs. E-2A,
E-2B, and E-2C in Appendix). Quantitative RT-PCR analyses
of the heterogeneous cell population that constitutes a bone
graft showed that relative to samples from young animals,
samples from aged animals showed significantly higher ex-
pression of the adipogenic genes fatty acid-binding protein 4
(Fabp4) (p < 0.01) and peroxisome proliferator-activated re-
ceptor gamma (PPAR-g) (p < 0.01; Fig. E-2D in Appendix).
Simultaneous with this adipogenic shift, bone grafts from aged
mice also showed significantly reduced expression levels of the

osteogenic genes ALP (p < 0.05), osteocalcin (p < 0.01), and
osterix (p < 0.05; Fig. E-2E in Appendix). Thus, fatty degen-
eration of the bone marrow observed in humans is recapitu-
lated in mice at both a gross morphologic level and at a
quantifiable, molecular level.

Fatty Degeneration Is Associated with Reduced Osteogenic
Potential in a Bone Graft
Compared with the osteogenic capacity of grafts from young
animals, grafts from aged animals generated significantly less
new bone (Figs. 2-A and 2-B; quantified in 2-C; p < 0.05). This
age-related reduction in osteogenic potential was not directly
attributable to differences in engraftment efficiency. Using GFP
immunostaining to identify the grafted cells, the distribution
and number of GFP-positive cells was nearly equivalent be-
tween bone grafts from young and aged mice (Figs. 2-D and
2-E; quantified in 2-F). Nor was the age-related alteration in
osteogenic potential attributable to differences in the expan-
sion of the graft: Using both BrdU incorporation (Figs. 2-G and
2-H) and qRT-PCR for proliferating cell nuclear antigen

Fig. 2

Osteogenic potential is reduced in bone grafts from aged animals. On post-transplant day 7 (d7), aniline blue staining indicates osteoid matrix generated by

bone grafts from young (Fig. 2-A) versus aged donors (Fig. 2-B). Fig. 2-C Histomorphometric analyses of the amount of new bone formed from young and

aged bone grafts. Fig. 2-D On post-transplant day 7 (d7), green fluorescent protein (GFP) immunostaining identifies cells derived from the bone graft when

the donor is young as compared with aged (Fig. 2-E). Fig. 2-F The number of GFP-positive (GFP1ve) cells in the injury site when the graft is harvested from

young (blue bars, n = 13) compared with aged (white bars, n = 13) donors. On post-transplant day 5 (d5), bromodeoxyuridine (BrdU) staining identifies

proliferating cells in bone grafts from young (Fig. 2-G) and aged (Fig. 2-H) donors. Fig. 2-I Quantitative reverse transcription-polymerase chain reaction (qRT-

PCR) for proliferating cell nuclear antigen (PCNA) in bone grafts from young and aged animals are equivalent. Single asterisk denotes p < 0.05. Arrow marks

the edge of intact bone. Scale bars: 200 mm (Figs. 2-A, [scale bar in Fig. 2-A also applies to Fig. 2-B], 2-D [scale bar in Fig. 2-D also applies to Fig. 2-E], and 2-G

[scale bar in Fig. 2-G also applies to Fig. 2-H]).
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(PCNA) (Fig. 2-I) we found nearly equivalent levels of cell
proliferation in bone grafts from young and aged animals.

We gained insights into the basis for fatty degeneration
and loss in osteogenic potential of aged bone grafts when we
assessed the expression level of nineteen mammalian Wnt genes
in marrow cells. A subset of Wnt genes were weakly expressed in
bone marrow from aged animals compared with young animals
(p < 0.05; Fig. 3-A). This reduction in Wnt gene expression was
paralleled by a reduction in Wnt responsiveness, as measured by
significantly decreased expression of the Wnt direct target genes
Tcf4, Lef1, and Axin2 (p < 0.05; Fig. 3-B). These results dem-
onstrate that Wnt signaling is reduced in aged bone marrow.

L-Wnt3a Restores Osteogenic Capacity to Bone Grafts from
Aged Mice
The first Wnt protein to be purified was Wnt3a43. Wnt3a acts
via the ‘‘canonical’’ or beta-catenin dependent pathway44 and is
a well-known osteogenic stimulus45. Given the reduced Wnt
signaling in aged bone marrow, we wondered if the addition of
exogenous Wnt protein would be sufficient to reestablish the
osteogenic potential of bone grafts derived from aged animals.

All vertebrate Wnt proteins are hydrophobic46; without a
carrier, the hydrophobic Wnt3a rapidly denatures and becomes
inactive31,47,48. We solved this in vivo delivery problem by
packaging the hydrophobic Wnt3a in lipid particles. This for-
mulation of the human Wnt3a protein, liposomal Wnt3a
(L-Wnt3a), is stable in vivo49 and promotes robust bone re-
generation in a modified fracture model31. Although exoge-
nously applied Wnt3a has great potential as a therapeutic
protein, safety remains a primary concern. The delivery of high
concentrations of potent growth factors to a skeletal injury site
carries with it potential oncological risk to the patient50. To

circumvent issues associated with prolonged or uncontrolled
exposure to a growth factor, we delivered L-Wnt3a ex vivo. This
was accomplished by incubating the aged bone graft with
L-Wnt3a (n = 30) immediately after harvest, while the recipient
site was prepared. Control bone grafts were exposed to L-PBS
(n = 30) for the same duration.

Compared with aged grafts treated with L-PBS (Fig. 4-A),
aged grafts treated with L-Wnt3a showed a dramatic enhance-
ment in new bone formation (Fig. 4-B). Within seven days, de-
fect sites that received L-Wnt3a-treated grafts had twofold more
new bone than sites that received L-PBS treated grafts (Fig. 4-C).
By day 12, L-Wnt3a-treated grafts had 1.5-fold more new bone
compared with L-PBS treated grafts (Fig. 4-D and 4-E; quantified
in 4-C).

Bone-Marrow-Derived Stem Cells Are Wnt Responsive
To gain insights into which cell population(s) in the bone graft
responded to the Wnt stimulus, we assayed different fractions
of the marrow for Wnt responsiveness. In whole bone marrow,
Wnt responsiveness was below detectable levels. We separated
whole bone marrow51 into a nonadherent population52; once
again Wnt responsiveness was below the limit of detection (Fig.
4-F). In the adherent population, however, which contains
connective tissue progenitor cells53,54, Wnt responsiveness was
detected (Fig. 4-F). We then used established protocols51 to
further enrich for bone-marrow stem and/or stromal cells from
the attached population. Using immunostaining for CD45(–),
CD73(1), CD105(1), and Stro1(1), we confirmed that this
population was enriched for marrow-derived stem cells55,56 (Fig.
4-G). Relative to PBS-treated CD45(–), CD73(1), CD105(1),
and Stro1(1) cells, the Wnt3a-treated population showed a
tenfold increase in Wnt responsiveness (Fig. 4-H).

Fig. 3

Wnt signaling is reduced in aged bone grafts. Fig. 3-A Quantitative RT-PCR to evaluate relative expression levels of Wnt ligands and Wnt target (Fig. 3-B)

genes in bone marrow (BM) harvested from young (blue bars; n = 3) and aged (white bars; n = 3) donors. Gene expression levels normalized to

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Asterisk denotes p < 0.05.
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We also monitored Wnt responsiveness in bone grafts
using Xgal staining of marrow from Axin2LacZ/1 mice31,35,57.
Very few Xgal1ve cells were found in aged bone grafts (Fig. 4-I)
but Xgal1ve cells were plentiful in young bone grafts (Fig. 4-K).
Aged bone grafts were capable of responding to an L-Wnt3a

stimulus, as shown by the increase in Xgal1ve cells following
exposure (Fig. 4-J). Because the prevalence of stem cells in the
murine marrow cavity is quite low58, it is likely that the Wnt
responsive population included more cells than the CD45(–),
CD73(1), CD105(1), and Stro1(1) population.

Fig. 4

Liposomal Wnt3a restores osteogenic capacity to aged bone grafts. Fig. 4-A Aniline blue staining of L-PBS treated aged bone grafts (n = 5). Fig. 4-B New

aniline-blue positive osteoid matrix in L-Wnt3a treated bone grafts (n = 8). Fig. 4-C Histomorphometric quantification of new bone matrix on post-transplant

days seven and twelve. Fig. 4-D Aniline blue staining on post-transplant day twelve (d12) in L-PBS and L-Wnt3a (Fig. 4-E) treated bone grafts. Fig. 4-F Beta

galactosidase (b-gal) activity normalized to total DNA as measured in cell populations (unattached, floating cells and attached cells) from a bone marrow

harvest. White bars (n = 4) represent Wnt responsiveness following L-PBS treatment; blue bars (n = 4) represent Wnt responsiveness following L-Wnt3a

treatment (effective concentration 0.15 mg/mL Wnt3a). Fig. 4-G Immunostaining for the stem cell markers CD45, CD73, CD105, and Stro1 in attached

cells derived from the bone marrow. Fig. 4-H Beta galactosidase activity normalized to total DNA in the attached cell population following L-PBS treatment

(white bars, n = 4) or following L-Wnt3a treatment (n = 4; effective concentration 0.15 mg/mL Wnt3a). Fig. 4-I Xgal staining on a representative tissue

section identifies Wnt responsive cells in a bone graft from an aged Axin2LacZ/1 mouse treated with L-PBS, compared with treatment with L-Wnt3a (Fig. 4-J).

Fig. 4-K Xgal staining on a representative tissue section identifies Wnt responsive cells in an L-PBS-treated bone graft from a young Axin2LacZ/1 mouse.

Single asterisk denotes p < 0.05; quadruple asterisk denotes p £ 0.0001. Abbreviations: L-PBS = liposomal PBS; L-Wnt3a = liposomal Wnt3a; BM = bone

marrow; and DAPI = 4’,6-diamidino-2-phenylindole, dihydrochloride. Arrows mark the edges of intact bone. Scale bars: 100 mm (Figs. 4-A [scale bar in Fig.

4-A also applies to Fig. 4-B]); 200 mm (Figs. 4-D [scale bar in Fig. 4-D also applies to Fig. 4-E]); 100 mm (Fig. 4-G); and 40 mm (Figs. 4-I, [scale bar in Fig. 4-I also

applies to Figs. 4-J and 4-K]).
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L-Wnt3a Prevents Apoptosis in Bone Grafts
The robust bone-inducing capacity of L-Wnt3a prompted us to
extend our studies into a large animal, long-bone model59. As in
humans, aged rabbits experience fatty degeneration of their
marrow60,61. We utilized a critical-size ulnar defect model62 and
transplanted aged bone grafts that had been incubated with
L-PBS or L-Wnt3a into the defect. We first noted that when
bone graft is harvested there is extensive programmed cell death
throughout the aggregate (Fig. 5-A; see Fig. E-2 in Appendix).
The addition of L-Wnt3a significantly reduced this graft apo-
ptosis (p < 0.05) (Fig. 5-B; see Fig. E-2 in Appendix). We verified
this pro-survival effect of L-Wnt3a, using caspase activity as a

measure of cell apoptosis63,64. L-Wnt3a significantly reduced
caspase activity in cells of the bone graft (p < 0.05; Fig. 5-C).

L-Wnt3a Potentiates the Osteogenic Capacity of Aged
Bone Grafts
L-Wnt3a and L-PBS-treated rabbit bone grafts were intro-
duced into the critical size defect and regeneration was as-
sessed at multiple time points. Radiographic assessment at
four weeks revealed the presence of a bridging callus in sites
that had received L-Wnt3a-treated graft (Fig. 5-E); in com-
parison, sites that received L-PBS-treated bone graft showed
minimal callus formation (Figs. 5-D).

Fig. 5

L-Wnt3a treatment restores osteogenic potential to bone grafts from aged animals. Bone marrow from aged donor rabbits, assayed for DNA fragmentation

associated with cell apoptosis. Fig. 5-A Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining (n = 4) demonstrates the extent of

apoptosis in aged bone marrow treated with L-PBS (10 mL), compared with L-Wnt3a (Fig. 5-B) treatment (effective concentration = 0.15 mg/mL Wnt3a). Fig.

5-C A measurement of caspase activity in aged bone graft samples treated with L-PBS (white bars) or L-Wnt3a (blue bars). Figs. 5-D through 5-G Bone

marrow washarvested from aged rabbits, incubatedwith L-PBS or L-Wnt3a for up to 1h, then transplanted into acritical-size defect created in theulna.Fig. 5-D

Radiographic assessment at four weeks following bone-grafting. Compare L-PBS treatment with L-Wnt3a (Fig. 5-E) treatment. Fig. 5-F Micro-CT iso-surface

reconstruction at eight weeks following bone-grafting. Compare L-PBS treatment with L-Wnt3a (Fig. 5-G) treatment. Fig. 5-H Bone volume (BV) and bone

volume/total volume (BV/TV) are calculated using the bone analysis tool in GE MicroView software. A single asterisk denotes p < 0.05. Abbreviations:

L-PBS = liposomal PBS and L-Wnt3a = liposomal Wnt3a. Arrows mark the edge of intact bone. Scale bars: 40 mm (Figs. 5-A and 5-B); and 5 mm (Figs. 5-F

and 5-G).
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At eight weeks, micro-CT analyses demonstrated a per-
sistent gap in sites that were treated with L-PBS bone grafts
(Fig. 5-F) whereas sites treated with L-Wnt3a bone graft ex-
hibited robust bone formation (Fig. 5-G). Histomorphometric
analyses confirmed a significant difference between the two
groups, both in bone volume and in bone volume divided by
total volume (Fig. 5-H).

We assessed the quality of the bone regenerate. Com-
pared with controls (Fig. 6-A), L-Wnt3a-treated injury sites
were filled with new bone (Fig. 6-B). The bone marrow of the
host rabbits had undergone fatty degeneration (Fig. 6-C),
and a similar appearance was noted in the L-PBS-treated
regenerate (Fig. 6-D). In the L-Wnt3a treated samples (Fig.
6-E), the host bone marrow showed a similar level of fatty
degeneration as seen in the control animals, but the regen-
erate from L-Wnt3a bone graft was woven bone (Fig. 6-F)

and was distinguishable from the preexisting lamellar bone
by both its location in the segmental defect site and its woven
appearance (see Fig. E-3 in Appendix). Under polarized light,
picrosirius red staining distinguished the mature, osteoid tissue
found in the L-Wnt3a-treated bone grafts (Fig. 6-H) from the
fibrous tissue of the L-PBS treated bone grafts (Fig. 6-G).

Discussion
Stem-Cell and/or Progenitor Cell Populations in Bone Grafts

The mammalian bone-marrow cavity is a functional niche
that supports multiple stem-cell and/or progenitor cell

populations19,65. Marrow-derived bone grafts, which are het-
erogeneous by nature, contain multiple populations, including
some stem cells and/or progenitor cells. The contribution of
these stem cells and/or progenitor cells to an osseous regen-
erate, however, remains unknown. Multiple marrow-derived

Fig. 6

Histological appearance of regenerated bone derived from L-Wnt3a treated aged bone grafts. Aniline blue staining of injury site (boxed area) treated with

aged bone marrow incubated in L-PBS (Fig. 6-A) or L-Wnt3a (Fig. 6-B). Fig. 6-C Gömöri trichrome staining of aged host’s fatty bone marrow cavity, and the

adjacent injury (Fig. 6-D) area that received an L-PBS treated aged bone graft; fibrous tissue is stained turquoise blue. Fig. 6-E Gömöri trichrome staining of

aged host’s fatty bone-marrow cavity, and the adjacent injury (Fig. 6-F) area that received an L-Wnt3a treated aged bone graft; mature osteoid matrix stains

dark turquoise and osteocyte nuclei stain red. Fig. 6-G Under polarized light, picrosirius red staining identifiesfibrous tissue that has formed from aged bone

graft treated with L-PBS. Compare with the osteoid matrix (Fig. 6-H) that has formed from aged bone graft treated with L-Wnt3a. Abbreviations: L-PBS =

liposomal PBS, and L-Wnt3a = liposomal Wnt3a. Arrows mark the edge of intact bone. Scale bars: 500 mm (Figs. 6-A and 6-B); 100 mm (Figs. 6-C through

6-F); and 200 mm (Figs. 6-G and 6-H).
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stem-cell populations are Wnt-responsive66-70 and, using estab-
lished protocols51,56, we confirmed that at least the CD45(–),
CD73(1), CD105(1), and Stro1(1) stem-cell and/or stromal-cell
population in the bone marrow is Wnt-responsive (Fig. 4).
Theoretically, this stem cell population could have contributed
to the osseous regenerate but this remains to be demonstrated.

Wnt Signaling and Age-Related Fatty Degeneration
of the Marrow
In vitro, the abrogation of Wnt signaling causes mesenchymal
stem cells to differentiate into adipocytes71-73 whereas potentiation
of Wnt signaling causes mesenchymal stem cells to differentiate
into osteoblasts74,75. This may have direct clinical relevance: With
age, human bone marrow undergoes fatty degeneration and loses
its osteogenic potential (see Fig. E-2 in Appendix)76. Our data
suggest that this loss in osteogenic potential of aged bone grafts
rests, in part, on a reduced level of Wnt signaling: Compared with
bone grafts from young mice, aged bone grafts show a dramatic
reduction in Wnt gene expression and Wnt responsiveness (Fig.
3). Adding L-Wnt3a to aged bone marrow reestablishes its bone-
forming capacity (Figs. 4, 5, and 6).

Conditions associated with decreased mobility, such as
extended bed rest77 and osteoporosis60, are also associated with
fatty degeneration of the marrow. Some data suggest that fatty
degeneration is reversible, at least experimentally78. Clearly, un-
derstanding the basis for this degeneration—and the extent to
which age-related changes in the skeleton can be reduced—will
be of considerable importance in devising new treatment for
bone injuries in elderly patients.

Growth-Factor-Augmented Bone Regeneration: Safety First
Safety concerns have recently arisen surrounding the use of
growth factors to augment skeletal healing79-83. Growth factor
stimuli are largely thought to induce the proliferation of cells
residing in the injury site; because uncontrolled proliferation is
a characteristic of oncogenic transformation84,85, this prolifer-
ative burst must be controlled both spatially and temporally.

For this reason, we designed an approach that would
limit whole-body exposure to L-Wnt3a. The targeted cells are
those in the bone graft itself, which is incubated with L-Wnt3a
ex vivo. The activated cells—rather than the growth factor
itself—are then reintroduced into a defect site. This ex vivo
approach restricts the L-Wnt3a stimulus spatially (to the graft
itself, and not to host tissues) and temporally (exposure to
the Wnt stimulus only occurs during the incubation period).
This ex vivo approach is tailored to clinical use and does not

require a second procedure. Thus, packaging Wnt protein into
lipoparticles constitutes a viable strategy for the treatment of
skeletal injuries, especially those in individuals with diminished
healing potential.

Appendix
Figures showing evidence of the effect of L-Wnt3a on
graft apoptosis are available with the online version of this

article as a data supplement at jbjs.org. n
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