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Abstract
Analytical expressions for the plasmon resonance frequencies of prolate and oblate spheroids and
their dependence on ellipticity have been derived, and approximate bounds on these frequencies
established. These formulas may be useful in tuning the plasmon resonance within certain limits.
With increasing aspect ratio, the prolate spheroid resonance is red shifted relative to a sphere with
no lower limit under the assumptions of a Drude dispersion model. On the other hand, the oblate
resonances are blue shifted as the spheroid becomes increasingly flat, but up to a limit.
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1 INTRODUCTION
There has been a growing interest in using plasmonics-related properties of metallic
nanostructures for a wide variety of applications. Our laboratory has extensively
investigated surface-enhanced Raman scattering (SERS) in the development of plasmonics-
active SERS substrates for chemical sensing and biosensing [1–3]. Plasmonics refers to the
study of enhanced electromagnetic properties of metallic nanostructures. When a metallic
nanostructured surface is irradiated by an incident electromagnetic field (e.g., laser light),
conduction electrons are displaced into frequency oscillation equal to the incident light.
These oscillating electrons, called “surface plasmons,” produce a secondary electric field,
which adds to the incident field. When these oscillating electrons become spatially confined,
as is the case for isolated metallic nanospheres or otherwise roughened metallic surfaces
(nanostructures), there is a characteristic frequency (the plasmon resonance) at which there
is a resonant response of the collective oscillations to the incident field. This condition
yields intense localized fields which can interact with molecules in contact with or near the
metal surface. Plasmon resonance frequencies of metallic spheroids and spheroidal
nanoshells have been previously investigated [4–5].

It is well known that the plasmon resonance frequency of a spheroid can be shifted by
varying its shape. For example, by increasing the aspect ratio of a prolate spheroid, the
plasmon resonance is red shifted. On the other hand, the resonance frequency of an oblate
spheroid is blue shifted relative to that of a sphere, but up to a limit. Although this
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fundamental behavior has been demonstrated by other authors, we have not seen the bounds
on the plasmon resonance frequencies given explicitly for the prolate and oblate cases as a
function of ellipticity. In this work we derive analytical expressions for the plasmon
resonance frequencies of prolate and oblate spheroids and their dependence on ellipticity
and establish approximate bounds on these frequencies. Our analysis is carried out using the
simplifying assumptions of the quasi-static approximation and a Drude dispersion model for
the dielectric constant. As a result, our results will only be qualitatively correct, but should
nevertheless provide reasonable estimates of the dependence of the resonances on the
spheroid shape. We also assume that the dipolar resonance dominates, which is generally
accurate for particles much smaller than an optical wavelength [6]. In calculating the
resonances for various aspect ratios for both prolate and oblate spheroids, we use the optical
constants for the Drude model derived by fitting the Drude parameters to the data of Johnson
and Christy [7].

2 ANALYSIS USING A DRUDE DISPERSION MODEL
When light is incident on a metallic nanoparticle, the plasmon resonances occur at the poles
of the induced dipole moment. Suppose we assume an ellipsoidal particle with
polarizabilities, αx, αy and αz, along its principal axes. Letting (E0x, E0y, E0z) denote the
components of an incident electric field E0 along these axes, the dipole moment induced in
the particle is

(1)

where x̂, ŷ and ẑ are unit vectors oriented along its principal axes. We first consider a
prolate spheroid with the z-axis directed along its symmetry axis. Denoting by a and b the
spheroid’s semi-major and semi-minor axes (with a > b) and εr its relative permittivity, the
polarizabililties αx, αy and αz are given by [8]:

(2)

where V = 4πb2a/3 is the spheroid volume and Lx, Ly and Lz are the three spheroidal
depolarization factors, given by

(3)

(4)

and  is the ellipticity of the prolate spheroid. When e → 0, the spheroid
becomes a sphere, Lx = Ly = Lz → 1/3 and αx = αy = αz.

For an oblate spheroid (a < b), the depolarization factors are [8]

(5)

Norton and Vo-Dinh Page 2

J Nanophotonics. Author manuscript; available in PMC 2013 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6)

where . Note that f = be/a, where  is the ellipticity of the
oblate spheroid. Again when e → 0, the spheroid becomes a sphere and Lx = Ly = Lz → 1/3

The frequency of the plasmon resonance occurs when the real part of the denominator of Eq.
(2) vanishes:

(7)

To determine the frequencies of these resonances, we use the Drude free-electron model for
the frequency-dependence of the dielectric constant, given by

(8)

where ωp is the plasma frequency of the bulk material, γ is the width of the resonance and
ε∞ is the high-frequency limit of the dielectric constant.

We can compute the frequencies of the plasmon resonances for either prolate or oblate
spheroids by substituting Eq. (8) into Eq. (7) and solving for ω. This gives the following
expression for the plasmon resonance frequency of the spheroid:

(9)

Typically, γ ≫ ωp, and a reasonable approximation is obtained by neglecting the γ2 term:

(10)

Note that for the case of a sphere, Lj = 1/3 and .

Now assume a longitudinally incident electric field (parallel to the symmetry axis of the
spheroid), in which case we set Lj = Lzin the above formulas. For the prolate spheroid the
bounds on e and Lz are 0 ≤ e < 1 and 0 < Lz ≤ 1/3. In the limit as the aspect ratio becomes
large, e → 1 and Lz → 0. For the oblate spheroid the bounds on e and Lz are 0 ≤ e < 1 (or,
equivalently, 0 ≤ f < ∞) and 1/3 ≤ Lz < 1, and in the limit as the oblate spheroid becomes
flat, e → 1 (or f → ∞) and Lz → 1. Thus, for the prolate case, the bounds on the plasmon
resonance frequency, ωres, may be written

(11)

where the left-hand side can, in principle, go to zero as Lz → 0. For the oblate spheroid, the
bounds on the plasmon resonance frequency become
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(12)

Thus, from Eq. (11) we see that, as the aspect ratio of the prolate spheroid becomes large (Lz
→ 0), the resonance frequency is red shifted without bound. From Eq. (12), as the oblate
spheroid becomes increasingly flat, the resonance frequency is blue shifted, but up to the
limit given by the right-hand side of Eq. (12).

Oubre and Nordlander [9] give values for the constants ωp and ε∞ for silver and gold
derived by fitting the Drude model (8) to the data of Johnson and Christy [7]. They obtain
for silver, ε∞ = 5.0 and ħωp = 9.5 eV, and for gold, ε∞ = 9.5 and ħωp = 8.95 eV. Using
these values in Eq. (11), the model predicts bounds on the resonant frequency for a prolate
spheroid which, after converting to wavelength, are (in nm):

and the bounds on the oblate resonances are:

In the first two inequalities the infinity indicates that the Drude model predicts no upper
bound on the wavelength in the limit as the aspect ratio of the prolate spheroid increases
without bound. However, eventually other mechanisms will take effect and the Drude model
will break down. For example, the Drude model will require modification when the mean-
free path of the electrons exceeds the thickness of the spheroid.

For the transverse mode, Eq. (4) implies the following bounds on Lx for the prolate
spheroid: 1/3 ≤ Lx < 1/2, where Lx = 1/3 again corresponds to the limit of a sphere. Also, as
Lx → 1/2, the prolate aspect ratio increases without bound. From Eq. (10) these limits lead
to the following bounds on the frequency for the transverse mode of the prolate spheroid:

(13)

These bounds are narrower than and bracketed by the bounds of the longitudinal mode for
the oblate spheroid, given by Eq. (12). Finally, for the transverse mode of the oblate
spheroid, we have 0 ≤ Lx < 1/3, where, as Lx → 0, the spheroid becomes increasingly flat.
This result leads to frequency bounds identical to those for the longitudinal mode of the
prolate spheroid.
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3 ANALYSIS USING TABULATED DISPERSION DATA
The above results were computed using the expression Eq. (8) for the dielectric constant
using fitted values for ω∞, ωp and γ. An alternative approach is to search the tabulated data
for the frequency that satisfies the relation Eq. (7) for a given parameter Lj, which is defined
by the spheroid shape. That is, we search for the zeros of the function

(14)

given data for the real part of the dielectric constant, Re{εr(ω)}. For this purpose, we use
Johnson and Christy’s data for Re{εr(ω)}, which is plotted in Figure 1.

Figure 2 shows plots of F(ω) for a prolate spheroid of aspect ratio a/b = 5 (Lz = 0.056) for
silver and gold. The plasmon resonance frequencies for the two metals are given by the zero
crossing of the graphs, which are ħωAg = 2.04 eV and ħωAu = 1.76 eV. These values
compare well with those predicted by formula (10), which are ħωAg = 2.029 eV and ħωAu
= 1.741 eV. Figure 3 is a plot of F(ω) for an oblate spheroid of aspect ratio b/a = 5 (Lz =
0.751) for silver and gold. For silver, we obtain a zero crossing at 3.78 eV, as compared to
4.11 eV computed using Eq. (10). However, for the case of gold, the graph does not cross
zero, which evidently indicates that a gold oblate spheroid of this aspect ratio will fail to
have a plasmon resonance. Nevertheless, formula (10) predicts such a resonance at ħωAg =
2.854 eV, since the Drude model generates a smooth curve that crosses the zero axis.

Finally, as evident from Eq. (9), the effect of a nonzero γ in Eq. (8) will result in a small
red-shift in all of the above values. For very small particles, a correction to γ derived from
the bulk material is often included to account for electron scattering from the particle
boundaries, but this correction is expected to have a relatively minor effect on the location
of the resonance frequencies.
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Fig. 1.
Real part of dielectric constant (from [7]).
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Fig. 2.
Plot of the function F(ω) given by Eq. (14) for a prolate spheroid.
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Fig. 3.
Plot of the function F(ω) given by Eq. (14) for an oblate spheroid.
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