CONDUCTIVITY AS APPLIED TO STUDIES OF BACTE-RIAL METABOLISM

II. PARALLELISM BETWEEN AMMONIA AND CONDUCTIVITY IN NUTRIENT GELATIN CULTURES OF PUTREFACTIVE ANAEROBES¹

L. B. PARSONS AND W. S. STURGES Laboratory of the Cudahy Packing Company, Omaha

In a previous paper the possible value of conductivity measurements in studies of bacterial proteolysis was discussed and data were presented demonstrating a direct proportionality between conductivity change and ammonia production in the case of two anaerobes (C. flabelliferum and C. sporogenes). The investigation has been extended to a representative group of strongly proteolytic anaerobes to ascertain whether a correspondingly definite relationship exists for these organisms also.

Nutrient gelatin was selected as the medium for this study because of its universal use and because it lends itself readily to conductivity measurements. Bacto nutrient gelatin (dehydrated), adjusted to pH 8.0, was employed.

Following are the cultures and their sources:

C. sporogenes	Army Medical School
C. flabelliferum	Cudahy Laboratory
C. bifermentans	Lister Institute
C. histolyticum	Lister Institute
C. Reading	Lister Institute
C. parasporogenes	Lister Institute
C. putrificum	Yale Bacteriological Laboratory

Invigorated cultures were inoculated into 25 cc. portions of medium in large culture tubes and incubated in hydrogen at 20° and 37° C.

¹ Presented at twenty-seventh annual meeting of the Society of American Bacteriologists, Madison, Wisconsin, December 29 to 31, 1925.

Measurements of electrical conductivity were made at 30°C. Ammonia was determined by the Folin method using 1 cc. samples. Control tubes of sterile media were analyzed and appropriate conductivity and ammonia blanks subtracted from all subsequent determinations. Changes in specific conductivity in reciprocal ohms (Δk) , and changes in ammonia nitrogen were tabulated. To facilitate interpretation of the data Δk was plotted against milligrams of ammonia nitrogen per 100 cc. (ΔN) for each organism at each temperature. These $\Delta k - \Delta N$ plots in all cases appeared to be straight lines.

The curves for all organisms except C. histolyticum had the same slope. This line gave the equation

$$\Delta N = \Delta k \times 1.95 \times 10^4$$

This is the same proportionality constant which the writers previously found for C. flabelliferum and C. sporogenes. C. histolyticum also gave a linear relationship which was better expressed by the slightly different constant 1.87×10^4 .

To gain an idea of the applicability of these constants, data have been tabulated showing Δk and ΔN (both calculated and observed) and the per cent deviation of the calculated from the observed value for each culture. The data for *C. sporogenes*, *C. flabelliferum* and *C. bifermentans* are given for 20° only since the first two have been reported previously for 37°C. and the last was not run at 37° owing to an oversight.

The calculated ΔN values in tables 1 to 6 were computed using the constant 1.95×10^4 while those in table 7 were obtained with the constant 1.87×10^4 . Had the former constant been used for *C. histolyticum* the deviations would have been within 10 per cent but in all instances the calculated values would have been greater than the observed. It will be noted that in most cases where the ammonia value was very low large percentage deviations were obtained. This is not indicative of any inherent weakness in the conductivity method but is explicable by the fact that analyses for ammonia were invariably carried out on 1 cc. samples in order to maintain identical conditions for all determinations. Obviously slight unavoidable titration errors and possible varia-

268

tions in the initial composition of the media will yield relatively large errors when the ammonia content of the sample is low. If one were interested in obtaining measurements of such low con-

AGE	Δiε	Δ	PBR CENT		
AGE		Calculated	Observed	DEVIATION	
days					
2	0.9×10^{-3}	17.5	20	-12.5	
4	4.6×10^{-3}	90	86	+4.6	
6	8.3 × 10 ⁻³	162	158	+2.5	
10	18.3 × 10 ⁻³	357	363	-1.6	
16	21.1×10^{-3}	412	433	-2.1	

 TABLE 1

 Ammonia conductivity relationships.—C. sporogenes, 20°C.

TABLE 2
Ammonia conductivity relationships—C. flabelliferum, 20°C.

AGB	Δk	Δ.	PBR CENT		
AGB		Calculated	Observed	DEVIATION	
days					
2	1.1 × 10 ⁻³	21	14	+50.0	
4	8.1 × 10 ⁻³	158	162	-2.5	
6	12.3×10^{-3}	240	248	-3.2	
10	17.6×10^{-8}	343	363	-5.5	
16	22.5×10^{-3}	438	458	-4.4	

 TABLE 3

 Ammonia conductivity relationships—C. bifementans, 20°C.

AGE	Δk	Δ.	PER CENT		
202		Calculated	Observed	DEVIATION	
days					
2	2.7×10^{-3}	52	46	+13.0	
4	8.5 × 10 ⁻ ³	166	154	+7.8	
6	$16.3 imes 10^{-3}$	318	319	-0.3	
10	$22.6 imes 10^{-3}$	441	438	+0.7	
16	26.8×10^{-3}	523	525	-0.4	

centrations of ammonia it would doubtless be possible by the choice of larger samples and by careful observation of the initial conductance to reduce the deviations to a minimum.

AGE		20°C.			37°C.			
	*****			Per cent		Δ N		Per cent
	Δk	Calcu- lated	Ob- served	devia- tion	Δk	Calcu- lated	Ob- served	devi- ation
days								
2	0.8×10^{-3}	15	13	+15.4	$13.0 imes 10^{-3}$	254	255	-0.4
4	4.0×10^{-3}	78	79	-1.3	$17.0 imes 10^{-3}$	332	331	+0.3
6	8.4×10^{-3}	164	159	+3.1	$25.0 imes10^{-3}$	488	483	+1.0
10	15.2×10^{-1}	296	309	-4.2	$29.3 imes10^{-3}$	572	565	+1.3
16	22.6×10^{-3}	441	461	-4.3	$30.2 imes 10^{-3}$	588	599	-1.8

 TABLE 4

 Ammonia conductivity relationships—C. Reading

 TABLE 5

 Ammonia conductivity relationships—C. parasporogenes

		20°C.				37°C.			
AGE		ΔN		Per cent		Δ N		Per cent	
	Δk	Calcu- lated	Ob- served	devia- tion	Δk	Calcu- lated	Ob- sevred	devia- tion	
days									
2	0.8×10^{-3}	15	12	+25.0	13.6×10^{-3}	266	263	+1.1	
4	5.2×10^{-3}	102	122	-16.4	$21.2 imes10^{-3}$	414	402	+3.0	
6	11.5×10^{-3}	224	218	+2.8	$23.2 imes10^{-3}$	452	471	-4.0	
10	21.1×10^{-3}	412	409	+0.7	$26.7 imes10^{-3}$	521	517	+0.8	
16	25.2×10^{-3}	492	489	+0.6					

 TABLE 6

 Ammonia conductivity relationships—C. putrificum, 37°C.

AGE	Δk	Δ	PER CENT	
		Calculated	Observed	DEVIATION
days				
6	$5.3 imes 10^{-3}$	103	94	+9.6
10	17.5×10^{-3}	341	335	+1.8
16	19.6×10^{-3}	382	390	-2.0

Note: Cultures of C. putrificum did not show digestion at 37° until 6 days and at 20°C. no appreciable digestion was noted up to 16 days.

While it has been shown that change in conductivity exactly parallels change in ammonia content it must be borne in mind that the measured conductivity is the sum of the conductances of the ammonium ions and all other ions which are formed, both basic and acidic. It is not probable that any considerable quantity of basic ion other than ammonium would result from the proteolytic decomposition of gelatin. The fact that the same constant serves equally well for computing ammonia from conductivity for the first six anaerobes indicates that the average conductivity of the various acidic ions produced is practically identical although this does not necessarily mean that the acids

•		20°C.			37°C.				
AGE		ΔN		Per cent		ΔN		Per cent	
	Δk	Calcu- lated	Ob- served	devia- tion	Δk	Calcu- lated	Ob- served	devia- tion	
days									
2	6.4×10^{-3}	119	118	+0.8	$27.6 imes 10^{-3}$	516	494	+4.5	
4	$19.5 imes 10^{-3}$	365	354	+3.1	$24.3 imes 10^{-3}$	455	423	+7.0	
6	24.1×10^{-3}	450	442	+1.8	$32.3 imes 10^{-3}$	605	605	0.0	
10	$28.3 imes 10^{-3}$	530	536	-1.1	$39.4 imes 10^{-3}$	737	723	+1.9	
16	$39.9 imes 10^{-3}$	747	758	-1.4	$38.1 imes 10^{-3}$	713	712	+0.1	
2	6.0×10^{-3}	112	118	-5.1	$28.5 imes 10^{-3}$	532	525	+1.3	
4	$18.4 imes 10^{-3}$	344	333	+3.3	$33.7 imes 10^{-3}$	630	617	+2.1	
6	$23.7 imes 10^{-3}$	442	407	+8.6	36.4×10^{-3}	680	675	+0.7	
10	$28.3 imes10^{-3}$	530	539	-1.6	$47.7 imes 10^{-3}$	894	928	-3.6	
16	$36.5 imes 10^{-3}$	682	701	-2.7	42.1×10^{-3}	786	793	-0.9	

 TABLE 7

 Ammonia conductivity relationships—C. histolyticum

are the same either in character or quantity. It would appear, therefore, that the acidic ions in cultures of C. histolyticum have a greater average conductance than the acidic ions of the other anaerobes. This probably implies that C. histolyticum produces acids of a lower mean molecular weight than do these other anaerobes.

The relationship already shown to exist between conductance and ammonia for two anaerobes seems to be generally true for organisms of this type. Many possible applications to metabolic studies will suggest themselves.

SUMMARY

1. The conductivity method as a measure of ammonia, formerly proposed and employed in studies of C. *flabelliferum* and C. *sporogenes* by the writers, has been applied to cultures of six other representative proteolytic anaerobes.

2. The relationship expressed by the equation,—change in $NH_{3}N$ = change in conductivity $\times 1.95 \times 10^{4}$,—held true to within 10 per cent for cultures grown at 20° and 37°C.

3. C. histolyticum gave values better expressed by the constant 1.87×10^4 .

4. The method promises to be of considerable use in metabolic studies.