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Abstract
Plasmon resonances are computed for nanoshells of prolate and oblate spheroidal shape. Both
longitudinal and transverse resonances are investigated as a function of aspect ratio and shell
thickness. Formulas for the surface charge density on the outside and inside shell surfaces are
derived.
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I. INTRODUCTION
Plasmon resonances arise within a metallic nanoparticle from the collective oscillation of
free electrons driven by an incident optical field. The plasmonic response of nanoparticles
have played a role in a growing number of applications, including surface-enhanced Raman
scattering (SERS), chemical sensing, drug delivery, photothermal cancer therapy and new
photonic devices. Our laboratory has been involved in the investigation and application of
plasmonics nanosubstrates for SERS detection for over two decades. Since our first report
on the practical analytical use of the SERS techniques for the trace analysis of a variety of
chemicals including several homocyclic and heterocyclic polyaromatic compounds in 1984
[1], our laboratory has been involved in the development of SERS technologies for
applications in chemical sensing, biological analysis and medical diagnostics [2]–[8]. Our
substrates involve nanoparticles and seminanoshells consisting of a layer of nanoparticles
coated by silver on one side (halfshells).

Halas and collaborators have shown that plasmon resonances of spherical shells can be
tuned by controlling the shell thickness [9]–[15]. These shells consist typically of a metallic
layer over a dielectric core. In this report, we extend the analysis to spheroidal shells and
show how plasmon resonances (both longitudinal and transverse modes) are influenced by
both shell thickness and aspect ratio. A number of researchers have examined the plasmonic
response of the solid spheroidal particle in their analysis of surface-enhanced Raman
scattering [16]–[28], although the spheroidal shell appears not to have been investigated.

In this work, plasmon resonances are computed for nanoshells of prolate and oblate
spheroidal shape. In our analysis, several simplifying assumptions have been made for the
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sake of tractability. It is assumed that the particles are much smaller than the optical
wavelength, so that the incident electric field may be regarded as uniform over the
dimensions of the particle. We thus employ the quasi-static approximation and derive only
the dipole resonances (higher-order multipolar resonances are neglected). There is some
evidence however, that the quadrapole response of (solid) spheroidal particles is much
smaller than the dipole response [28]: this relative difference is less dramatic for spherical
particles. We shall also neglect finite-size effects, such as radiation damping and phase-
retardation effects, which become more important as the particle size approaches an optical
wavelength. For very small particles, some resonance broadening is expected due to electron
surface scattering as the particle size (or shell thickness) becomes smaller than the electron
mean free path, although some evidence suggests that this is a less important contributor to
broadening than particle size and shape inhomogeneities [14]. In our analysis, we shall not
attempt to correct for these effects. Finally, we employ the Drude free-electron model for the
frequency-dependence of the dielectric constant, given by

(1)

where ωp is the plasma frequency of the bulk material, γ is the width of the resonance and
ε∞ is a constant assumed independent of ω as a first approximation. In view of the above
assumptions, we expect only qualitative agreement with experimental results. Nonetheless,
our analysis should be useful in exhibiting the general features of the resonance behavior of
spheroidal shells relative to those of spherical shells. Our baseline for comparison will be the
spherical shell. In the following, we derive expressions for the surface charge density
induced by the incident electric field rather than, for example, an extinction cross section.
The advantage of computing the charge density is that it is independent of the spheroid
volume (unlike a cross section) and thus is more convenient for comparing spheroids with
differing aspect ratios.

In deriving the response of the spheroidal shell, we resolve the incident electric field into
two perpendicular components, one along the symmetry axis of the spheroid and the other
perpendicular to this axis. The two cases are treated separately with the general response
being a superposition of the two.

II. SPHEROIDAL COORDINATES AND BOUNDARY CONDITIONS
Consider a prolate spheroid centered at the origin with the z-axis along its major axis.
Assume the two foci are at z = ±d. Then the prolate spheroidal coordinates are given by
([29], p. 1284)

(2)

(3)

(4)

where 1 ≤ ξ < ∞, 0 ≤ ϑ ≤ π and 0 ≤ ϕ ≤ 2π (often the equivalent variable η = cos ϑ is
used). Evidently, ξ plays the role of the “radial” coordinate, ϑ is the spheroidal colatitude
angle and ϕ is the azimuthal angle. The spheroidal coordinate ϑ is analogous to the spherical
colatitude angle θ, and in the limit as ξ → ∞, ϑ tends toward θ. Setting ξ = ξ1 = constant
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defines the surface of a spheroid with a major semiaxis of length dξ1 and a minor semiaxis

of length ; thus the two parameters d and ξ1 define its shape uniquely. For a

prolate spheroid the aspect ratio is .

In the limit as the separation of the foci of the spheroid goes to zero (d → 0), the spheroid
becomes a sphere and the spheroidal coordinates reduce to spherical coordinates. Evidently,
as d → 0, then ξ1 → ∞ in such a way that dξ1 → a, the sphere radius, and ϑ → θ.

The gradient of a function, ψ(ξ, ϑ, ϕ), in spheroidal coordinates is given by

(5)

where ξ̂, ϑ̂ and ϕ̂ are the spheroidal unit vectors, and the metric scale factors for the prolate

spheroidal system are  and

. As d → 0, one can show that hξ → d, hϑ → r, hϕ → r sin θ, ξ̂ → r̂ and
ϑ̂ → θ̂, as expected. The corresponding relations for oblate spheroidal coordinates can be
formally obtained by replacing d by −id and ξ by iξ. For the oblate spheroid defined by the
parameters d and ξ1, the axial thickness of the spheroid is given by 2dξ1 and the equatorial

radius is , where 0 < ξ < ∞. In this case the aspect ratio is .

The electric field, E, in the quasi-static approximation can be expressed as the gradient of a
potential ψ; that is, E = −∇ψ, where ψ is the solution to Laplace’s equation. The boundary
conditions at each interface are continuity of the tangential component of E and continuity
of the normal component of the displacement vector D = ε E. These conditions can be
shown to be equivalent to the continuity of the potential ψ and ε ∂ψ/∂ξ across the interface.
Let E0 denote the incident electric field and let ψ0 represent its associated potential, that is,
E0 = −∇ψ0. Also, let the potentials ψs, ψ1, and ψ2 define the scattered field and the fields
inside the spheroidal shell and core, respectively, and let ε0, ε1, and ε2 denote the dielectric
constants external to the particle and inside the shell and core, as illustrated in Fig. 1. Letting
ξ1 and ξ2 define the outer and inner shell boundaries, the boundary conditions are given by

(6)

(7)

(8)

(9)

where the prime means differentiation with respect to the spheroidal “radial” coordinate, ξ.
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III. SOLUTIONS
A. Longitudinal Mode (Prolate Case)

Suppose the incident electric field is directed along the symmetry axis of the spheroid
(always assumed to be the z-axis), that is, E0 = E0ẑ, where ẑ is a unit vector. The incident
potential is then ψ0 = −E0z, which in spheroidal coordinates may be written in view of (4) as

(10)

The scattered potential, ψs, can be expressed as the following series solution to Laplace’s
equation in spheroidal coordinates:

(11)

where η ≡ cos ϑ, and  and  are the Legendre functions of the first and second
kind, and Rmn and Smn are constant coefficients. The Legendre functions can be expressed
in terms of elementary functions (see Appendix). The axial symmetry of the spheroid
implies that all m are zero, and (11) reduces to

(12)

Recalling that η = cos ϑ and using the relations in the Appendix, (10) can be written

(13)

In view of the orthogonality of the functions Pn(η) = Pn(cos ϑ), only the n = 1 term survives
in the sum (12), giving for the scattering potential

(14)

where R is a constant. The potentials inside the shell and core will have the form

(15)

(16)

Substituting (13)–(16) into the boundary conditions (6)–(7), we obtain the following four
equations for the coefficients R, A, B, and T:

(17)

(18)
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(19)

(20)

Solving for R, A, B, and T, we obtain:

(21)

(22)

(23)

(24)

where

(25)

The identity  was used in deriving the above
expressions.

From these results, the induced surface charge density on the outer surface of the shell can
be computed. This charge density is given by the jump in the normal component of the
polarization vector just inside and outside of the surface [30].

(26)

where Pout = Dout − ε0Eout and Pin = Din − ε0Ein are the polarizations just inside and outside
of the interface. In view of the boundary condition Dout · ξ̂ = Din · ξ̂ at the interface, this
implies

(27)

Using the above results and the definition of the gradient given by (5), we obtain after some
algebra
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(28)

where recall . From this we see that the angular dependence of
the surface charge density is of the form

(29)

where f(ξ1) is a function of ξ1 only. In the limit as ξ1 → ∞, the spheroid becomes a sphere
and the angular dependence becomes cos θ. As expected, the magnitude of σL(θ) is a
maximum on the ends of the spheroid (ϑ = 0) and vanishes on the sides of the spheroid
transverse to the incident field (where ϑ = π/2). The charge density on the inner surface of
spheroidal shell can be similarly calculated and is given by

(30)

Note the change in sign from (27) since the normal to the inner surface now points inward.
After some algebra, we find

(31)

where  with D given by (25).

In the limit as d → 0, the spheroidal shell reduces to a spherical shell and we can check that
the surface charge density reduces to that of a spherical shell as d → 0. In this limit, the
coordinates ξ1 and ξ2 go to infinity in such as way that ξ1d → r1 and ξ2d → r2, where r1
and r2 are the radii of the outer and inner spherical shell boundaries. The charge density (28)
can be shown to reduce to the spherical case using the following large argument asymptotic

forms of the Legendre functions: . We also note that hξ
→ d and ϑ → θ as d → 0. Making these substitutions in (28), we obtain the surface charge
density induced on a spherical shell [see (32)]. This can be shown to agree with the spherical
shell solution obtain Zhu et al. [31]. As another check on the analysis, we can verify that the
above expressions for R, A, B, and T reduce to those for the solid spheroid after setting ε2 =
ε1. In this case, one obtains A = 0, B = T, where now

and
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Using the expressions for  in the Appendix, these results can
be shown to agree with those of Ishimaru [32] for a solid spheroid.

(32)

B. Transverse Mode (Prolate Case)
In this case the incident field, E0, is transverse to the spheroidal symmetry axis (now along
the x-axis). Thus E0 = E0x̂ and the incident potential is ψ0 = −E0x, or in spheroidal
coordinates using (2),

(33)

This may be equivalently written as (see Appendix)

(34)

Employing the boundary conditions, we find that in the sum (11) only the m = 1 and n = 1
terms survive and thus ψs is of the form

(35)

It also follows that the potentials in the shell and core are of the form

(36)

(37)

Substituting these potentials into the boundary conditions (6)–(9) yields a set of equations

identical to (17)–(20) except that now  are replaced everywhere by . See

the Appendix for definitions of  in terms of elementary functions.

The induced surface charge density on the outer surface of the shell for a transversely
incident wave can again be computed from the jump in the normal component of the
polarization vector just inside and outside of the surface as given by (26). The result is

(38)

where in this case

(39)
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In deriving this, the identity  was used. Once again,
(38) can be shown to reduce to the surface charge density induced in a spherical shell when
d → 0, given by (32), with the aid of the large argument forms

.

C. Longitudinal Mode (Oblate Case)
The results for the oblate spheroid can be obtained directly from those of the prolate
spheroid by replacing everywhere ξ with iξ and d with −id in the prolate formulas given
above ([29], p. 1502). Thus, the surface charge density for the oblate spheroid for
longitudinal incidence is given by

(40)

where

(41)

and in this case . Expressions for 
are given in the Appendix in terms of elementary functions.

D. Transverse Mode (Oblate Case)
For transverse incidence, we replace

, which gives

(42)

where in this case

(43)

See the Appendix for expressions for .

IV. SIMULATIONS
In this section, we present calculations using the following values in (1) to define the free-
electron dielectric constant: ε∞ = 3.71, ωp = 9.21 eV and γ = 0.087 eV. These are bulk
values for silver obtained by fitting (1) to the data of Johnson and Christy [33]. These values
are close to but not identical to the values obtained by Oubre and Nordlander from the same
data set [34]. In these calculations, we set the core permittivity to that of silica: ε2 = 4.5.
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A. Prolate Resonances as a Function of Aspect Ratio
The plasmon resonances of a prolate shell were computed with different aspect ratios and
compared to the resonance of a spherical shell. In these calculations, the shell thickness is
10% of the inner shell dimensions. Recall that ξ1 and ξ2 are the spheroidal “radial”
coordinates that define, respectively, the outer and inner shell boundaries. We define a 10%
shell thickness by setting ξ1 = 1.1 ξ2 in the above equations. The charge density was
computed for four aspect ratios a/b equal to 1 (a sphere), 2, 3, and 4, which are labeled with
these numbers in the following plots. The spheroid shapes are illustrated in Fig. 2.

Fig. 3(a) and (b) show the real and imaginary parts of the induced surface charge density at
the ends of the prolate spheroid (ϑ = 0) for a longitudinally incident electric field. For this
direction of incidence, the peak magnitude of the charge density occurs at the two ends of
the spheroidal shell. Fig. 4(a) and (b) show the real and imaginary parts of the surface
charge density for a transversely incident electric field evaluated at ϑ = 90°, which is the
region on the surface of maximum charge density for this direction of incidence. The double
peak in the spectra corresponds to two eigenmodes, which is consistent with the description
given previously by Radloff and Halas [13] in their work on spherical shells. The resonances
of different energies physically correspond to the different charge distributions on the inner
and outer shell interfaces, as illustrated in Fig. 5(a) and (b) for a longitudinally incident
electric field. Fig. 5(a) and (b) correspond to the lower and higher energies, respectively.
Note that the higher energy resonance is a feature of the shell and does not arise in the solid
spheroid. The spectra also become sharper as the aspect ratio of the prolate shell increases
due to the increasing curvature of the spheroid tip which gives rise to an increasing charge
density there.

B. Oblate Resonances as a Function of Aspect Ratio
Fig. 6(a) and (b) show the surface-charge densities of an oblate shell with a longitudinally
incident electric field. Again real and imaginary parts are shown separately and in each plot
the aspect ratio a/b are labeled as 1 (sphere), 2, 3, and 4. Fig. 6(a) and (b) show the real and
imaginary parts of the charge density evaluated on the blunt end (ϑ = 0) of the oblate shell
for a longitudinally incident electric field. Fig. 7(a) and (b) show the real and imaginary
parts of the charge density on the equatorial edge (ϑ = 90°) of the oblate spheroid for a
transversely incident electric field. For the case of a longitudinally incident field, the
decreasing resonance magnitude with increasing aspect ratio on the blunt end of the oblate
shell is consistent with the results of Kelly et al. [28] in their study of the spectra of solid
oblate spheroids. In particular, this is true for the lower energy resonance, which
corresponds to the charge distribution of a solid spheroid.

C. Prolate Resonances as a Function of Shell Thickness
Fig. 8 shows the charge densities of a prolate shell for a fixed aspect ratio (2 to 1) and the
different shell thicknesses of 5%, 10%, 15%, 20% and 25%. The dashed curve is the charge
density of a solid spheroid (ε2 = ε1). Fig. 8(a) and (b) show the real and imaginary parts of
the charge density evaluated at one end (ϑ = 0) of the prolate shell for a longitudinally
incident electric field. Note that the lower energy resonances [corresponding to the charge
distribution of Fig. 5(a)] shift to lower energies as the shell gets thinner. This should be
expected since charges of the same sign coexist on the inner and outer shells and, due to
electrostatic repulsion, the surface charge density decreases in this case. For the higher
energy resonances [Fig. 5(b)], the opposite occurs since the charges on the inner and outer
surfaces are of opposite sign, which tends to increase the charge density as the shell
becomes thinner.
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D. Oblate Resonances as a Function of Shell Thickness
Fig. 9 shows the spectrum of an oblate spheroidal shell for a fixed aspect ratio (2 to 1) and
the different shell thicknesses of 5%, 10%, 15%, 20%, and 25%. Fig. 9(a) and (b) display
the real and imaginary parts of the charge density evaluated on the equatorial edge (ϑ = 90°)
of the oblate shell and the solid oblate spheroid (dashed curve) for a transversely incident
electric field.

V. CONCLUSION
Our analysis of prolate and oblate spheroidal shells shows some interesting qualitative
features in their plasmon resonances. We have chosen to compute the surface charge density
rather than, for example, an extinction cross section, since the charge density is invariant
with respect to the volume of the shell, whereas a cross section calculation depends on the
particle’s volume. For a proper comparison of cross sections of shells with differing aspect
ratios, a volume normalization would be needed. As Halas and collaborators have pointed
out, one parameter, the shell thickness of a spherical nanoshell, can be used to tune the
plasmon resonance frequency [13]. The results of our work indicate that the spheroidal shell
presents two degrees of freedom for tuning: the shell thickness and the shell aspect ratio.
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APPENDIX

LEGENDRE FUNCTIONS

We list here a number of useful properties of Legendre functions.  are

Legendre function of the first kind and  are Legendre functions of the second
kind. When ξ ≥ 1,

(A44)

(A45)

When the argument is real and confined to −1 ≤ x ≤ 1, we have 

(see [35], p. 333). The second-kind Legendre functions, , can be expressed in
terms of elementary functions as follows ([29], p. 1327):

(A46)

(A47)

The derivatives of these functions with respect to ξ are
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(A48)

(A49)

(A50)

(A51)

For large argument, the asymptotic forms for these functions are:

.

For oblate spheroids, we replace ξ with iξ in the arguments of the Legendre functions. With
the help of the relation ln[(iξ + 1)/(iξ − 1)] = −2i tan−1(1/ξ), we obtain

(A52)

(A53)

(A54)

(A55)

(A56)

(A57)

(A58)

(A59)
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Fig. 1.
Spheroidal shell.
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Fig. 2.
Shells of aspect ratios equal to a/b = 1 (sphere), 2, 3, and 4.
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Fig. 3.
(a) Real part of the surface charge density for prolate spheroidal shells for a longitudinally
incident field with the aspect ratios 1 (sphere), 2, 3, and 4. The charge density is evaluated at
the end (ϑ = 0°) of the shell.
(b) Imaginary part of prolate longitudinal response.
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Fig. 4.
(a) Real part of the surface charge density for prolate spheroidal shells for a transversely
incident field with the aspect ratios 1 (sphere), 2, 3, and 4. The charge density is evaluated at
the side (ϑ = 90°) of the shell.
(b) Imaginary part of the prolate transverse response.
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Fig. 5.
Surface charge distributions for a longitudinally incident electric field [(a) and (b)] and a
transversely incident electric field [(c) and (d)]. The lower-energy modes are (a) and (c) and
the higher energy modes are (b) and (d).
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Fig. 6.
(a) Real part of the surface charge density for oblate spheroidal shells for a longitudinally
incident field with the aspect ratios 1 (sphere), 2, 3, and 4. The charge density is evaluated
on the blunt end (ϑ = 0°) of the shell. (b) Imaginary part of the oblate longitudinal response.
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Fig. 7.
(a) Real part of the surface charge density for oblate spheroidal shells for a transversely
incident field with the aspect ratios 1 (sphere), 2, 3, and 4. The charge density is evaluated
on the equatorial edge (ϑ = 90°) of the shell. (b) Imaginary part of the oblate transverse
response.
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Fig. 8.
(a) Real part of the surface charge density for prolate shells of differing shell thicknesses
(5%, 10%, 15%, 20%, 25%) with a fixed aspect ratio (2 to 1) for a longitudinally incident
field. The dashed curve is the charge density of the solid prolate spheroid. In each case, the
charge density is evaluated at the blunt end (ϑ = 0°) of the shell.
(b) Imaginary part of the prolate longitudinal response for different shell thicknesses.
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Fig. 9.
(a) Real part of the surface charge density for oblate shells of differing shell thicknesses
(5%, 10%, 15%, 20%, 25%) with a fixed aspect ratio (2 to 1) for a transversely incident
field. The dashed curve is the charge density of the solid oblate spheroid. In each case, the
charge density is evaluated on the equatorial edge (ϑ = 90°) of the shell.
(b) Imaginary part of the oblate transverse response for different shell thicknesses.
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