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Abstract
The current study presents a series of computational simulations that demonstrate how the neural
coding of numerical magnitude may influence number cognition and development. This includes
behavioral phenomena cataloged in cognitive literature such as the development of numerical
estimation and operational momentum. Though neural research has begun to describe neural
coding of number, it is unclear how specific characteristics of the neural coding may relate to the
expansive list of behavioral phenomena in the development of number cognition. The following
study considers several possibilities.

Introduction
Number cognition, broadly speaking, includes numerical estimation, simple arithmetic
operations, magnitude judgments, and counting amongst other skills. There is a long history
of research on number cognition, including the cognitive and neural processes involving
numerical magnitude. Research includes behavioral studies of number development (e.g.
Gelman & Gallistel, 1978; Piaget, 1954, amongst others) and more recently a large number
of neural studies relevant to number cognition (e.g. Ansari & Dhital, 2006; Ansari, Garcia,
Lucas, Hamon & Dhital, 2005; Cantlon, Brannon, Carter & Pelphrey, 2006; Cantlon,
Libertus, Pinel, Dehaene, Brannon & Pelphrey, 2008; Cohen Kadosh & Walsh, 2009;
Dehaene, Piazza, Pinel & Cohen, 2003; Göbel, Calabria, Farnè & Rossetti, 2006; Pesenti,
Thioux, Samson, Bruyer & Seron, 2000; Walsh, 2003; Whalen, McCloskey, Lesser &
Gordon, 1997). This increasingly large literature involving humans has been supplemented
by research with non-human primates (e.g. Brannon & Terrace, 1998; Nieder & Miller,
2003; Roitman, Brannon & Platt, 2007) and by computational methods that incorporate
neural principles (e.g. Ahmad, Casey & Bale, 2002; Dehaene, 2007; Dehaene & Changeux,
1993; Verguts & Fias, 2004; Zorzi, Stoianov & Umiltà, 2004).

Significant contributions to cognitive development have been made through computational
modeling that connects neural and behavioral data – in areas of language learning (Elman,
1993), motor development (e.g. Spencer, Simmering, Schutte & Schöner, 2007), and visual
development (e.g. Mareschal & Johnson, 2002). For example, Spencer and colleagues use
neurocomputational modeling to provide evidence for a novel interpretation of the classic A-
not-B error developmental phenomenon (Piaget, 1954). By modeling of visual-motor neural
processes Spencer and colleagues conclude that the A-not-B phenomenon is an example of a
broader class of errors that occur in development. The current study presents a series of
simulations based on recent advances in the study of the neural coding of numerical
magnitude that offer new insights into behavioral phenomena described in the
developmental literature.
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Neural coding of number
A variety of investigations with both humans and non-human primates have characterized
the neural activity related to the perception of number. First, research has focused on the
localization of neural activity specific to number. There has been convergence on the
intraparietal sulcus and areas of prefrontal cortex (e.g. middle frontal gyrus) from both
humans (e.g. Ansari & Dhital, 2006; Ansari et al., 2005; Cantlon et al., 2006; Cantlon et al.,
2008; Dehaene et al., 2003) and non-human primates (Nieder, Freedman & Miller, 2002;
Nieder & Miller, 2003; Nieder & Merten, 2007; Sawamura, Shima & Tanji, 2002).
Numerical coding activity has been recorded in both intraparietal sulcus and prefrontal
cortex; two areas that have been found to be functionally connected (Cavada & Goldman-
Rakic, 1989; Chafee & Goldman-Rakic, 2000; Quintana, Fuster & Yajeya, 1989). Neural
activity in these areas has been recorded in tasks such as number magnitude comparison,
arithmetic operations and even the perception of a digit. The basic result has been replicated
across a variety of presentation formats, such as dot displays and written digits (Eger,
Sterzer, Russ, Giraud & Kleinschmidt, 2003) and cultures (Tang, Zhang, Chen, Feng, Ji,
Shen, Reiman & Liu, 2006).

Second, studies have described in detail neural responses to number with the use of direct
neural recording. Two types of neural coding have been described: number selective coding
and summation coding. Summation, or monotonic coding, of number includes graded
coding that increases as the perceived number magnitude increases (Roitman et al., 2007).
This type of coding is consistent with the accumulator model of number representation; that
number is represented by accumulating a fixed number of pulses produced serially by some
pacemaker (Meck & Church, 1983). There is also evidence of number specific activity in
that the spiking rate of a given set of neurons is correlated maximally to a particular value N,
and less so for N + 1, N − 1 and so on (Nieder et al., 2002; Nieder & Miller, 2003; Nieder &
Merten, 2007; Sawamura et al., 2002). This holds across presentation format (e.g. dot
displays, written digits) of the numerical values. This type of coding creates Gaussian-like
neural tuning function (see Figure 1). Each number magnitude is not coded exactly, but in a
manner that is consistent with Weber-Fechner’s law (Fechner, 1966 [1860]); that noticeable
differences between perceptual stimuli are a function of the proportional difference. As the
magnitude of the number increases the neural tuning function width increases
proportionally. For example, the width of the tuning function for the magnitude 5 is half that
of the magnitude 10, which is half of 20. Thus differences in the perceived value are a
function of the proportional stimulus differences, as with Weber-Fechner’s law.

Theories of how number sensitive neural activity develops have been supported by
computational models (e.g. Ahmad et al., 2002; Dehaene, 2007; Dehaene & Changeux,
1993; Miller & Kenyon, 2007; Pearson, Roitman, Brannon, Platt & Raghavachari, 2010;
Verguts & Fias, 2004). These studies demonstrate the development of number selective
activity from other inputs, such as perceptual object tracking, or accumulator-like
summation coding (Miller & Kenyon, 2007; Verguts & Fias, 2004). Computational results
show number selective activity coded with tuning functions that are proportional to the
number magnitude, skewed on the linear scale and symmetric on the log scale, similar to the
neural data (Dehaene, 2007).

The current simulations
The current simulations are in part based on prior neural and computational work. General
aspects of the model such as Gaussian tuning curves for number values have been illustrated
in prior neural (e.g. Nieder & Miller, 2003) and computational work (Dehaene, 2007;
Verguts & Fias, 2004). The current model posits these basic aspects and focuses on
developmental change in both the neural activity and behavior. Prior computational work
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has not provided a clear mechanism of how the neural coding of number may influence
developmental behavioral phenomena, such as the apparent log to linear shift in number line
estimations; ‘what triggers the conceptual shift from logarithmic to linear in children
remains unknown’ (Dehaene, 2007, p. 557). The current focus on how changes in neural
activity may influence behavioral changes provides possible answers to this and other
questions of numerical development.

The current model focuses on two aspects of the neural tuning curves. First, the width of the
function depends on the magnitude of the value being coded. Thus the tuning function for
the value 10 is narrower than the function for the value 30, on a linear scale. The functions
are proportionally similar, and thus similar on a log scale (Nieder & Miller, 2003; see Figure
1). Second, the tuning functions, though resembling Gaussian distributions, are positively
skewed on a linear scale. The positive skew also results from the transformation from a
logarithmic scale to a linear scale; if the tuning function is symmetric on a log scale it will
be positively skewed on a linear scale. In their studies of non-human primates, Nieder and
Miller (2003) reported that neural responses are positively skewed on a linear scale. In
addition, Nieder and Merten (2007) found that in the coding of values 1–30, smaller values
are clearly positively skewed, and larger values are not skewed as much. Computational
accounts (Dehaene, 2007; Verguts & Fias, 2004) have shown positive skew in number
coding that arises through unsupervised learning with number magnitudes. Thus these two
properties – the logarithmic scale and the positive skew – may be fundamental aspects of the
human number system. Although both positive skew and proportional tuning functions have
been reported in the literature, their role in number cognition has not been well studied.

The current study includes a series of computational simulations that explore how the
properties of the neural coding of number may contribute to the development of number
cognition. More specifically, the simulations provide a likely neural mechanism for several
phenomena previously only described behaviorally. The tasks used in the simulations reflect
the tasks used in behavioral investigations of number line estimation and operational
momentum. Within the simulations, for a given set of numerical values there is a
corresponding set of neural tuning functions that resemble Gaussian distributions with peak
activity corresponds to the number being coded (see Figure 2). The simulations specifically
examine the relation in coding between the positive skew and the varying width of the
tuning function. Building on the neural evidence (Nieder & Miller, 2003), it is assumed that
the more narrow distributions that characterize small number values are more skewed than
the wider distributions that represent larger numbers. Thus, the tuning functions resemble a
Poisson distribution in that both displays attenuate positive skew. Poisson distributions have
a history of use in neurocomputational work in describing neural spike trains (Ashby &
Valentin, 2007; Boccaletti, Latora, Moreno, Chavez & Hwang, 2006; Song, Miller &
Abbott, 2000). The tuning curves presented in prior work (Nieder & Miller, 2002) are
arranged to show one particular neural population’s relative activation to varied numerical
stimuli. The tuning curves used in the current work represent the relative activation of a
range of neural populations in response to one specific numerical stimulus. The shape and
characteristics of the neural tuning curves, if viewed this way, retain the identical shape of a
positively skewed Gaussian curve.

Prior research has also reported that when behavioral errors occur, the neural activity for the
preferred quantity is significantly reduced compared to correct trials (Nieder et al., 2002;
Nieder, Diester & Tudusciuc, 2006; Nieder & Miller, 2004; Nieder & Merten, 2007). Errors
in neural coding of number were linked to errors in the behavioral task. This is key to the
current framework. Errors or lack of precision in neural coding may occur and give rise to
these same properties in numerical judgments.
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Number estimation
By a variety of measures, young children are poor estimators of numerical values and
relative quantities in comparison to adults (e.g. Siegler & Booth 2004; Opfer & Siegler,
2007). One task that has been used to investigate the development of number estimation is
the mapping of number values to spatial representations such as a number line (e.g.
Baroody, 1999; Booth & Siegler, 2006; Opfer & Siegler, 2007; Siegler & Booth, 2004;
Siegler & Opfer, 2003). Older children’s and adults’ estimates are linear, but preschool (and
young school age) children produce estimations that are overall logarithmic. Researchers
have interpreted this developmental change as a change in children’s cognitive
‘representation’ of number being initially solely logarithmic changing to include linear also
(e.g. Siegler & Booth, 2004; for an alternative view see Moeller, Pixner, Kaufmann &
Nuerk, 2009). In brief, by this account, younger children rely on representations of number
on a log scale while older children are able to use multiple representations, including linear.
Though the behavioral phenomenon is quite robust, it is unclear what precipitates the change
toward linear estimation other than increased experience with numbers, nor is it clear why
young children initially have a logarithmic representation. Just what might be changing as a
function of experience with numbers?

The advances in understanding the neural coding of discrete quantities offer a potential
account. The assumption is that cognitive-level representations may reflect underlying
properties of the neural code. As pointed out by many (e.g. Nieder & Miller, 2003; Johnson,
Hsiao & Yoshioka, 2002), studying behavior limits conclusions to the realm of cognitive
representations; however, what we know about the neural code suggests a clear hypothesis
about the transition from logarithmic to linear mapping of numbers to a number line.
Children’s difficulty in the number estimation task may arise because the width of tuning
representations which increase proportionally with the magnitude of the number with respect
to the spatial representation of number on number line, which is not proportionally scaled.
Although this is true for adults aswell as children, mapping from aproportional
representational system to a linear one may be more difficult for young children than adults
if the tuning functions change in certain ways with age. This is the question investigated in
the simulations.

The present approach is consistent with findings suggesting that children and adults often
use the same neural networks for a task, and that differences in performance are largely a
matter of magnitude, timing, or extent of activation (Brown, Lugar, Coalson, Miezin,
Petersen & Schlaggar, 2005; Casey, Galvan & Hare, 2005; Casey, Giedd & Thomas, 2000;
Durston, Davidson, Tottenham, Galvan, Spicer, Fossella & Casey, 2006; Gaillard, Hertz-
Pannier, Mott, Barnett, LeBihan & Theodore, 2000; Rubia, Overmeyer, Taylor, Brammer,
Williams, Simmons, Andrew & Bullmore, 2000; Schlaggar, Brown, Lugar, Visscher, Miezin
& Petersen, 2002). That is, children may show quantitatively poorer or qualitatively
different patterns of performance because their networks are noisy, and are less able to drive
activation of parts of the network at the appropriate moment or to the optimal degree. This
has been illustrated in computational work in which narrowing of tuning functions of
neurons contributes to modeling developmental changes in cognition (e.g. Simmering,
Schutte & Spencer, 2008; Schutte, Spencer & Shoner, 2003). Narrow tuning curves have
been shown to be necessary for accurate coding of number (Diester & Nieder, 2008). In
addition, behavioral work shows that the Weber Fraction, the smallest proportional
difference that can be differentiated, changes with age (Halberda, Mazzocco & Feigenson,
2008), which may indicate a change in these underlying tuning functions..

The following series of simulations show (1) that the combination of positive linear skew
and broad neural tuning functions leads to estimation errors that are overall logarithmic; and
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(2) the log to linear development in number estimation is facilitated by neural coding of
number and its development, specifically that the narrowing of neural tuning curves with
development result in the log to linear shift seen in the behavioral literature.

Model specifications
The following simulations use vectors to represent neural tuning functions. Each item in the
vectors represents the relative activation level for a group of neurons that respond selectively
to some number stimuli. Each simulation included one vector for each of the number
magnitudes to be estimated. The values in each vector represent the relative activation
(spiking rates) of number selective neurons. For example, the value A was represented by
the vector A(n1, n2, … n150), where nx is the activation for the neurons selective for the
number magnitude X. Vectors for values A = 1 through 100 were calculated and each vector
contained 150 activation values. For example, the activation value at index 5 corresponds to
the average activation for all neurons which respond maximally to the number magnitude 5.
Activation values represent the relative activation levels for that specific vector only and do
not correspond to specific spiking rates. Research suggests that the maximum spiking rate
for large numbers is actually lower than for smaller numbers (e.g. Nieder & Dehaene, 2009),
thus here relative spiking rates are used for ease of comparison. Activation values for each
vector were calculated using a modified Gaussian distribution function. This a general
function that defines a variety of Gaussian distributions. Similar equations have been used in
prior computational work (Dehaene, 2007).

The values of h and m are set as constants for all simulations. Whereby h is the maximum
value of the function, this is set to 1; m is the mean of the distribution and is set to zero. The
value of s determines the width of the curve and varies across model instantiations. X is
defined by the logarithmic difference between the target number and vector item index. For
example if the target number is A = 6 and S = 1, for A(n6), x = log106 - log106, x = 0. The
remaining equation variables are constants other than s which for this example is equal to 1.
The equation result is A(n6) = 1; thus when the vector index is equal to the target number the
relative activation equals 1. Then, for A(n4), x = log106 - log104, x = 0.176, and A(n4) =
0.984. Thus, for index 4 the relative activation is slightly reduced. The method of defining X
by logarithmic differences results in Gaussian functions that are symmetric on a log scale
and of identical width (see Figure 2). On a linear scale the functions vary in width and
positive skew (skew merely refers to the fact that the function is not symmetric about the
mean). Smaller values are both more narrow and more skewed. Again this is simply the
consequence of transforming a Gaussian curve that is symmetric on a log scale to a linear
scale.

Methods
All simulations were evaluated using MATLAB (Mathworks) software. A series of
simulations were evaluated, including, as a point of comparison, both symmetric and
positively skewed coding of varying tuning function widths. In each case coding vectors
were calculated for target numbers 1 through 100. The initial vectors can be interpreted as
idealized activation patterns to which some activation noise is added to determine the model
output vectors. If the model produced vectors where the maximum value has the same index
then the model correctly estimated that number value. Noise is calculated as an change in
the vector values by some percent taken from a random distribution, where the mean noise is
zero. Thus some vector values increased, others decreased, and the mean amount of noise
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was zero. After the application of noise the vector output values were calculated, where the
index of the maximum value of the vector equaled the output. For example, prior to noise
the maximum value for the vector representing ‘5′ is A = 1 at index 5. After the application
of noise this value may have been reduced to some value, 0.79 while the value at index 6
was increased to 0.81. The vector has now, due to noise, overestimated the value 5 as 6 for
its output. The use of noise in neural models is well established (Schutte et al., 2003) and is
a more accurate representation of neural coding than static coding. The entire process of the
application of random noise to the set of tuning functions was repeated 200 times for 200
simulated ‘subjects’ per coding condition.

As previously noted, prior work has shown that when behavioral errors occur the neural
activity for the preferred quantity was significantly reduced compared to correct trials
(Nieder et al., 2002, 2006; Nieder & Miller, 2004; Nieder & Merten, 2007). The hypothesis
here is that the pattern of errors in the neural tuning functions influence the pattern of errors
in behavioral output. Thus for these simulations an incorrect index of the maximum
activation value is interpreted as an incorrect number estimate.

Results and discussion
For each instantiation the simulation produced estimations were plotted against the target
numbers and best fit lines were calculated. Variances of 0.5, 1, 2, and 3 were examined for
both symmetric and positive skew. R2 values were calculated for both linear and logarithmic
best fit lines, which will be referred to as linear R2 and log R2 values. For positive skew
coding linear R2 values decreased as variance increased (0.99, 0.95, 0.79, 0.70), while log
R2 values increased (0.81, 0.89, 0.97, 0.94) (see Figure 3). For symmetric coding, linear R2

values were similar as variance increased (0.99, 0.99, 0.99, 0.99), as were log R2 values
(0.80, 0.80, 0.83, 0.81). Thus, symmetric coding was overall quite accurate in estimation and
did not resemble the log function curve shown by young children. For positive skew coding
small variance values, which have narrow tuning functions, produce higher linear R2 values
than log R2, similar to older children; larger variance values, which have broader tuning
functions, produce higher log R2 values than linear R2 values, similar to younger children.
Thus with the positive skew coding there is a shift from more logarithmic estimates to linear
estimates as the tuning function narrows.

Further comparisons between behavioral data and simulations were completed. A direct
comparison was done between prior behavioral data with the current model results.
Behavioral data taken from Booth and Siegler (2006, Figure 1), included 37 data points
which were matched to corresponding simulation data points. Of the current simulations
positive skew with a broad tuning function (S = 2) fits this the closest (see Figure 3).
Simulation data points were highly correlated with the behavioral data points, R = 0.94.

Only with both an overly broad tuning function and positive linear skew does the model
produce estimations similar to that of very young children. A narrowing of the tuning curve
produces data similar to developmentally advanced children and adults. Younger children
tend to be overall less accurate in their estimates and tend to overestimate smaller numbers
in the number line task. The simulation matches this pattern due to several factors. As the
width of the tuning function increases, the potential for large misestimating increases, thus
wide neural tuning functions are less precise than broad tuning functions. In addition, the
positive linear skew of the tuning function causes any misestimating likely to be
overestimations. The more the skew the more likely an error to be an overestimation, as
opposed to an underestimation. As the magnitude of the estimated value increases, positive
skew decreases and misestimating tends to average towards zero, over- and
underestimations are nearly equally likely. Together these factors contribute to the

Prather Page 6

Dev Sci. Author manuscript; available in PMC 2013 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



simulation’s production of a logarithmic estimation pattern, closely mirroring behavioral
data.

The neural coding of number is unlikely to be the only influence on children’s performance
on estimation tasks. There certainly must be a ‘read-out’ process to go from a neural coding
to behavioral output. This process could add noise to the outcome or include influence from
top-down control. Children have been shown to change their estimation performance based
on structured feedback (Siegler & Booth, 2004; Opfer & Siegler, 2007) and this may reflect
top-down influences on estimations. In the two studies children who had previously shown
logarithmic estimation patterns were given an additional specific landmark on the number
line. After this additional feedback children adjusted their estimation to a more linear
pattern. While the neural coding may provide a starting point and present limitations in
accuracy, this may be mitigated by explicit feedback, particularly with older children.

In both the behavioral task and the current simulations, output estimations are limited to a
particular range. Neither child participants nor model simulations can provide an estimation
more than the top value of 100. This does have some consequences in both cases; by
limiting estimations neither can overestimate values as greater than 100. In the simulations,
removal of this barrier does slightly reduce the fit of the log function. It is unclear how child
participants would perform in such a situation. The current model predicts constant
proportional variance from the target number.

Prior work has also reported correlations between number line estimation and other number
tasks (Booth & Siegler, 2006). Children’s score on a standardized math achievement test
was significantly positively correlated with the linear R2 value of their given estimates. It
was, however, not significantly correlated with mean absolute error of estimates. This
suggests that producing linear estimation functions is correlated with superior performance
in related math tasks. This is unsurprising given the current account. Participants who
produce logarithmic estimations due to broad neural tuning functions will also show errors
in simple computation, while participants who produce linear estimations due to narrow
tuning functions may show fewer errors in computation.

Operational momentum
Another relevant aspect of number cognition is the development of knowledge of arithmetic
operations. Research on simple arithmetic includes participants from 5-month-olds (Wynn,
1992), to older children (e.g. Barth, Beckmann & Spelke, 2008; Prather & Alibali, 2011) to
adults (e.g. Barth, Mont, Lipton, Dehaene, Kanwisher & Spelke, 2006; Robinson &
Ninowski, 2003). In one such avenue of research several studies have described a
phenomenon termed operational momentum (Knops, Viarougue & Dehaene, 2009;
Lindemann & Tira, 2011; McCrink, Dehaene & Dehaene-Lambertz, 2007; McCrink &
Wynn, 2009). In short, for addition (A + B = C) participants tended to overestimate the
value of C, while for subtraction (A − B = C) participants tended to underestimate. The basic
phenomenon has been shown with participants ranging from 9 months to adults. A high-
level representational account of the phenomenon was envisaged: humans are able to
cognitively represent numbers spatially and thus addition and subtraction involve moving
along the mental number line. For both addition and subtraction the participants overshoot
the value of C, leading to overestimation in addition and underestimation in subtraction.
Arithmetic errors are a result of movement along the mental number line where the correct
answer is overshot; perhaps a similar mechanism to representational momentum (Hubbard,
2005). The original work describing operational momentum (McCrink et al., 2007) also
suggested that the effect may reflect properties of the neural coding of number and does so
in terms of arithmetic operations as movement along a mental number line.
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Given the prior work on the use of mental number lines (e.g. Dehaene, Bossini & Giraux,
1993), this appears to be a plausible behavioral description of the phenomenon. The current
simulation examined how and if the neural coding of number may contribute to this
behavioral phenomenon. The current simulations illustrate that for the operational
momentum effect, the mental number line explanation is unnecessary once the neural coding
of number is taken into account. Again, the simulations examined how two key tuning
function characteristics, positive skew on a linear scale, and proportional scaling, contribute
to the patterns of performance reported in the operational momentum literature – a tendency
to overestimate addition and underestimate subtraction.

Model specifications
Model specifications were identical to the prior experiment with the exceptions of the range
of number values, the length of vectors and tuning function widths considered. In the
following simulations values 1 to 30 were used in a variety of arithmetic equations. Each
value was represented by a vector contained of 50 items. Variance parameters 1, 1.5, and 2
were evaluated.

Method
All simulations were evaluated using MATLAB (Mathworks) software. Two separate
simulations were carried out; symmetric Gaussian coding and positively skewed Gaussian
coding (on a linear scale). In each case coding vectors were calculated for target numbers 1
through 30. Random noise was then added to each vector value, whereas the activation level
was altered by a percent calculated from a random distribution. The amount of noise applied
was random and independent for each vector value.

After the application of noise the vector output values were calculated, where the index of
the maximum value of the vector equaled the output. For example, prior to noise the
maximum value for the vector representing ‘5′ is A = 1 at index 5. After the application of
noise this value may have been reduced to some value, 0.79, while the value at index 6 was
increased to 0.81. The vector has now, due to noise, overestimated the value 5 as 6 for its
output. The output values for all vectors were then used to calculate the simulated results of
the full set of addition and subtraction equations. For example, for the equation 7 + 3, the
vectors representing 7 and 3 are applied some random noise, and then some resulting
outputs, e.g. 7, 4 are combined together to determine the model estimate of the addition
equation, in this case 7 + 3 = 11. Again, this paradigm is based on prior work reporting
correlations between neural coding errors and behavioral errors (Nieder et al., 2002, 2006;
Nieder & Miller, 2004; Nieder & Merten, 2007). The entire process for the set of equations
was repeated 200 times for 200 simulated ‘subjects’ per coding condition.

Results and discussion
Simulation results were analyzed separately by coding style and equation operation. For
addition and subtraction there were 435 equations evaluated each (all combinations of 1–
30). The percent deviation between the target result and the simulated result was calculated
for each equation. For positive skew coding, tuning function widths (S = 2, 1.5, 1) tended to
produce average overestimate deviations for addition and underestimate deviations for
subtraction, 72% and −39%, 56% and −19%, 37% and 2%, respectively. For symmetric
coding, all tuning function widths (S = 2, 1.5, 1) produced small average deviations for
addition and subtraction, 0.28% −0.32%, 0.21% 0.14%, 0.01% 0.03%, respectively. Thus
the operational momentum is more severe for relatively broad tuning functions.

Performance curves for addition and subtraction were calculated, similarly to that reported
in prior behavioral work regarding operational momentum (McCrink et al., 2007). For each
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equation the difference between the simulated result and the target result was calculated as a
percentage difference (see Figure 4). The performance curve conveys the frequency of over-
and underestimation errors for both addition and subtraction. The behavioral data show that
overestimates are more frequent for addition while underestimates are more frequent for
subtraction. The current simulation results show that for the positive skew broad tuning
function condition addition equation results are more frequently overestimated than
subtraction. Symmetric coding shows equal frequency of over- and underestimation for both
addition and subtraction. Thus, the simulated data with positive skew and broad tuning
function show the same cross-over between addition and subtraction as the behavioral work,
while symmetric coding does not.

The data reported here suggest that a positive linear skewed neural coding of number
(Nieder & Merten, 2007; Neider & Miller, 2002; Verguts & Fias, 2004) results in arithmetic
errors that are consistent with the reported behavioral phenomenon termed operational
momentum. That is, addition operations tend to be overestimated, while subtraction is
underestimated. This occurs because both the chance of a misestimate and the type of
misestimate vary by magnitude. While smaller numbers with sharper tuning functions tend
to have both less frequent and smaller errors, the errors that do occur are much more often
overestimations than underestimations. That relatively small values are typically
overestimated is consistent with prior work on the development of numerical estimation in
children (Booth & Siegler, 2006; Huntley-Fenner, 2001; Opfer & Siegler, 2007) and
numerical estimations in non-human animals (e.g. Brannon & Roitman, 2003; Platt &
Johnson, 1971). Given the relative magnitude of numbers in addition and subtraction
equations, this particular tendency of mis-estimation accounts for both overestimation of
addition and underestimation of subtraction.

Cognitive accounts of operational momentum (McCrink et al., 2007; Knops et al., 2009)
such as spatial associations with number (Dehaene et al., 1993; Knops et al., 2009; Santens
& Gevers, 2008) are not necessarily inconsistent with the current account. A variety of
cognitive representations could exacerbate the behavioral pattern including number-spatial
associations. However, the current account requires a priori only the experimentally
established neural coding of number. Prior research has illustrated how number selective
neurons can come about through unsupervised learning (Verguts & Fias, 2004), neural data
illustrate the positive skew and relative width of the neural tuning functions used in the
current simulations (e.g. Nieder & Miller, 2003). The effect can be described as a ‘natural
result’ of the neural coding.

There were several differences of note between the current model and typical behavioral
methodology. The behavioral methodology (McCrink et al., 2007; Knops et al., 2009) has
typically included a verification task in which participants evaluated presented arithmetic
results, whereas the current simulations produced the results of arithmetic equations. In
addition, the behavioral methodology has typically used a limited set of arithmetic
equations, due to experimental constraints, whereas the current simulations evaluated all
relevant arithmetic equations, resulting in a more comprehensive data set.

General discussion
The current work

The simulation results presented here illustrate how the neural coding of number magnitude
directly contributes to several known behavioral phenomena in numerical cognition. While
there has certainly been discussion regarding connections between neural coding and
numerical development, the current account presents an unprecedented level of detail
regarding the influences of neural coding patterns on specific behavioral patterns: the
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developmental change in number line estimation and the operational momentum effect.
Research in both these areas includes a variety of explanations such as log to linear
representational shifts (Siegler & Opfer, 2003) and spatial representations of number
(McCrink et al., 2007). However, the degree to which the neural coding of number and its
change during development can account for these behavioral phenomena should mediate the
need for additional cognitive-level explanations.

In brief, the present work contributes to current understanding of developmental changes in
number cognition by offering a framework for understanding both the age-invariant aspects
of number reasoning and developmental change. The simulations show how the neural
coding of number may influence several behavioral phenomena in the number cognition
literature. The current stimulation combines known characteristics of the neural coding of
number with other neurocognitive principles, such as activation noise and response function
sharpening. The sharpening of the simulated neural tuning functions lead to changes in the
modeled behavior that closely mirrored several developmental phenomena. More critically,
the current simulations suggest how both quantitative and qualitative changes in number
judgments with age and experience may be understood in terms of the fundamental
properties of how number magnitude is represented and in changes in the tuning functions of
those properties. Although the present study does not make a direct link between experience
and changes in these tuning functions, a large literature on perceptual learning both at the
behavioral and neural levels is consistent with the idea of a narrowing in tuning functions
with increasing experience (e.g. Goldstone, 1998; Luce, Green & Weber, 1976; Recanzone,
Schreiner & Merzenich, 1993; Saarinen & Levi, 1995; Simmering et al., 2008; Schutte et al.,
2003). Moreover, several studies of the development of number concepts and mathematical
reasoning have pointed to precision of encoding as contributing to the better performance of
older children; precision, in turn, may be related to experience-dependent aspects of these
tuning functions especially the breadth of the tuning function. Developmental research in
other domains (visual perception) has pointed towards similar ideas; developmental effects
may be caused by increased representational acuity of the underlying neural mechanisms.
The Representational Acuity Hypothesis (Westermann & Mareschal, 2004) posits that
infants’ visual development is driven in part by the narrowing of receptive fields for visual
cortex neurons. Thus, it may be the case that the same general mechanism of the sharpening
of neural tuning functions can account for developmental phenomena in a variety of
domains.

The simulations were specifically based on multiple non-human primate neural studies and
computational accounts that have reported both proportional scaling and positive linear skew
in the neural coding of number magnitude. Given these characteristics of the neural coding,
a simple model of neural activity shows that patterns of errors mirroring the behavioral data
emerge as a result of the neural coding. This is not to say that neural coding of number is the
only influence on behavior in these or any other tasks, nor that these are the only properties
of tuning functions that might be relevant. Indeed, dynamic aspects of this coding – rise
times, fall times, and potentially forms of inhibition of return (e.g. Spencer, Thomas &
McClelland, 2009) – may also be relevant as more sluggish representations rather than more
temporally defined ones may lead to difficulties in serial behaviors such as counting and
perhaps some forms of calculation. The properties of the coding and representation of
number are foundational to number cognition and the present simulations are a first step to
understanding their potential relevance to the development of number cognition.

The current account is a parsimonious account of several phenomena in the number
cognition literature. For both number line estimation and operational momentum prior
accounts posit cognitive representations such as mapping number to space and arithmetic as
movement along a line. For estimation the current simulations show how changes in neural
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coding account for known developmental patterns. For operational momentum the data
predict a possible developmental trajectory. Though prior work (Dehaene, 2007) has
discussed the possible influences of neural coding on cognitive development, no data have
been reported regarding either estimation development or operational momentum. The
simulations illustrate how the observed behavioral data could emerge as a direct result of
neural coding of number. While the current account does not necessarily contradict
cognitive-level explanations, the inclusion of the influence of neural coding is a significant
enhancement and provides a framework for further exploration of limitations and influences
on early number cognitive development.

Remaining theoretical issues
In the current simulations developmental changes are approximated through a narrowing of
the neural tuning functions. Though this developmental change has some support in the
literature (e.g. Simmering et al., 2008; Schutte et al., 2003), it is unclear whether other
factors may influence neural tuning functions of number magnitude. Prior computational
work (Verguts & Fias, 2004) has suggested that in number cognition the use of specific
symbols to refer to magnitudes leads to narrower tuning functions for the said magnitudes. If
this is the case, children’s experience with the symbolic number system may be a factor in
making more linear estimations (Dehaene, 2007). If symbolic representations lead to
narrower tuning functions, then one would expect a close relation within individual children
between their number knowledge, operational momentum, and ability to map numbers to a
number line, as well as the Weber fraction for discrimination. Moreover, one might expect
more linear mappings of numbers to a number line given tasks that encourage symbolic
representations versus those that do not. On the other hand, symbols per se may not be the
critical experience in changing these tuning functions; rather, discrimination of discrete
magnitudes (with or without symbols) may be, in domains outside of number, perceptual
tuning functions have been shown to sharpen with experience in making finer
discriminations (Yang & Maunsell, 2004).

The current simulations used neural coding of number placed on a linear scale. Much has
been written regarding the best description of neural and cognitive representations of
number being either linearly or logarithmically scaled. Nieder and Miller (2003) put forth
the most comprehensive augment regarding linear versus non-linear coding and concluded
that non-linear coding best described both neural and behavioral data. Given that number is
coded in a non-linear fashion, number representation is essentially proportional, consistent
with findings regarding perceptual magnitude representation (e.g. Billock & Tsou, 2011;
Stevens, 1957; Stevens & Marks, 1980). However, behavior regarding number and symbolic
number systems is frequently performed on a linear scale. In the broadly adopted Hindu-
Arabic base-10 number system, number increases linearly. Thus, examining the neural
coding with respect to a linear scale is relevant to mathematical reasoning and to number
concepts. Of course, linear and logarithmic representations are transformations of each
other, and so the present approach might be viewed simply as taking a transformation of the
neural coding system that makes the relevance of that system to common number tasks more
clear.

Further directions
Recent research suggests a relationship between the ‘primitive sense of number’ and math
ability (Libertus, Feigenson & Halberda, 2011). Children’s acuity with non-symbolic
number magnitudes (dot patterns) is associated with later performance in symbolic
mathematics, while controlling for other factors. The current results are consistent with the
idea that numerical acuity can have a direct influence on math performance. It may be the
case that numerical acuity influences math performance, and that acuity is in turn based on
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the neural tuning functions. This relationship raises the possibility that sharpening tuning
functions to improve numerical acuity may also be a way to improve symbolic math
performance. Future work will address what influences individual differences in number
acuity and what experiences may lead to the sharpening of neural tuning functions. The
answer to these questions could lead to design of interventions for children’s math
performance.

There are a wide array of behavioral phenomena in the number and mathematical literature,
including early non-symbolic arithmetic (Barth et al., 2006; Wynn, 1992), symbolic system
acquisition (McNeil & Alibali, 2004; Uttal, Scudder & Deloache, 1997), multimodal
presentations of number, such as auditory or tactile (Jordan & Brannon, 2006) and relations
to other forms of magnitude (Cohen Kadosh & Henik, 2006; Lourenco & Longo, 2010;
Walsh, 2003). Though there is evidence regarding neural coding of ‘pure number’, we need
more neural and behavioral data regarding number in multiple modalities, representations
and in comparison to other perceptual magnitudes, which may share some similarities with
discrete number and thus may be relevant to some aspects of early number judgments
(Clearfield & Mix, 1999). In addition, next steps require linking hypothesized changes in
these properties of neural codes to number judgments in individual children across a variety
of tasks that should be dependent on the properties of this coding, as well as examining how
– and what kinds of – experiences may play a role in these tuning functions. Adding this
perspective to the developmental study of number cognition offers a unifying framework for
the rapidly advancing knowledge about early number concepts, about the influence of
learning symbolic representations of number on number system, and about the patterns of
errors (and difficulties) that characterize young school age children’s mathematical learning.
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Figure 1.
Example neural tuning functions. Values 10 (black) and 20 (grey) are shown on both linear
(top graph) and log (bottom graph) scales.
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Figure 2.
Example tuning functions used in the current simulations (s = 0.5) for number magnitudes 5,
20, 50 (black, grey, dotted lines). Linear (top) and log (bottom) scales shown.
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Figure 3.
Simulation estimates for selected variance parameters. Variances of 2 and 3 produced
estimates best described by a Log function (left panel). Estimation data for model simulation
data with positive skew and broad tuning function (s = 2), compared to behavioral data with
kindergarten-aged children (Booth & Siegler, 2006) and the target values (right panel).
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Figure 4.
Performance curves showing the relative deviation from the target value for both addition
and subtraction equations. Behavioral data from McCrink et al. (2007) are also shown.
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