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Abstract

The boundaries between oceanographic domains often function as dispersal barriers for many temperate marine species
with a dispersive pelagic larval phase. Yelloweye rockfish (Sebastes ruberrimus, YR) are widely distributed across the
northeastern Pacific Ocean, inhabiting coastal rocky reefs from the Aleutian Islands in Alaska through southern California.
This species exhibits an extended pelagic larval duration and has the capacity for long distance larval transport. We assayed
2,862 YR individuals from 13 general areas in the northeast Pacific Ocean for allelic variation at nine microsatellite loci.
Bayesian model-based clustering analyses grouped individuals from the Strait of Georgia (SG) into a distinct genetic cluster,
while individuals from outer coastal water locations (OCLs) were partitioned equally across two genetic clusters, including
the cluster associated with the SG fish. Pairwise FST values were consistently an order of magnitude higher for comparisons
between the SG and OCLs than they were for all OCL-OCL comparisons (,0.016 vs. ,0.001). This same pattern was
observed across two time points when individuals were binned into an ‘‘old’’ and ‘‘young’’ group according to birth year
(old: ,0.020 vs. 0.0003; young: ,0.020 vs. ,0.004). Additionally, mean allelic richness was markedly lower within the SG
compared to the OCLs (8.00 vs. 10.54–11.77). These results indicate that the Strait of Georgia ‘‘deep-basin’’ estuary
oceanographic domain acts as a dispersal barrier from the outer coastal waters via the Juan de Fuca Strait. Alternatively,
selection against maladapted dispersers across this oceanographic transition may underlie the observed genetic
differentiation between the Georgia basin and the outer coastal waters, and further work is needed to confirm the SG-OCL
divide acts as a barrier to larval dispersal.
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Introduction

Population replenishment for a large number of marine

populations depends upon the input of exogenously derived

individuals [1–4], which can occur via an extended pelagic larval

phase [5,6]. The cumulative effects of larval trajectory, planktonic

survival, delivery to settlement habitat and postsettlement perfor-

mance result in variable contributions in local larval input from

outside sources [7,8]. Mismatches between the spatial scales of

exploited management units and of population replenishment may

precipitate overexploitation of targeted species [9–11]. Thus,

effective management of harvested species requires an under-

standing of the pattern of larval dispersal [12]. Furthermore, the

utility of marine protected area (MPA) networks increases with

their ability to enhance net larval production and export into

exploitable areas while remaining self-sufficient via larval input

from upstream MPAs [13–15].

Oceanography is an important driver of population structure in

temperate reef fishes, as ocean currents largely dictate larval

trajectories, planktonic survival and delivery to settlement habitat

[7,16]. Offshore advection of larvae or propagules may lead to

long distance larval transport [17,18]. On the other hand, there

are a number of retention mechanisms that limit dispersal

distances [18–22]. These include fronts associated with upwelling

[23] or the intersection of independent current systems [24], gyres

that form around seamounts or other complex bathymetric

features [25–27], and eddies [28,29], including those formed by

currents moving around rugged coastlines [30,31]. In lieu of

directly measuring dispersal distances, which is often difficult or

intractable [32], population genetic structure can inform indirect

estimates of the scale of dispersal [33–36]. Genetic structure that

occurs across oceanographic features suggests that these features

may function as long-standing barriers to dispersal [37–39],

influencing the spatial scale of ecological and evolutionary

processes.

Rockfishes (Sebastes spp.) constitute a diverse group of nearshore

fishes that are distributed in temperate waters around the world

[40]. The bulk of the diversity (,65 species) occurs in the

northeast Pacific Ocean, where rockfishes are found in every

habitat type from the intertidal waters to depths greater than

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e71083



1,500 meters [40]. This group shares many life-history attributes,

such as slow maturation rate and highly variable juvenile

recruitment that contribute to their low productivity and make

them susceptible to overfishing [41]. Rockfishes are characterized

by large populations, high fecundities, and pelagically dispersed

larvae with the potential for widespread gene flow. Population

genetic studies of rockfishes have shown that despite an extended

pelagic larval duration (PLD), they often exhibit population

structure over regional scales, potentially explained by the absence

of settlement habitat [42] or concordant oceanographic divisions

[43–49]. For example, Point Conception in southern California is

associated with a genetic break in blue rockfish (S. mystinus) [47]

and vermillion rockfish (S. miniatus) [50], while both copper

rockfish (S. caurinus) and brown rockfish (S. auriculatus) from the

Puget Sound basin exhibit significant genetic divergence from

populations located along the outer coast [45,48,51].

In this study, we used microsatellite genetic markers to assess the

population genetic structure of yelloweye rockfish (S. ruberrimus;

YR) in the northeast Pacific Ocean. We predicted that population

structure would occur across oceanographic features that likely

function as barriers to dispersal, resulting in three genetically

differentiated subdivisions. These predicted genetic subdivisions

include (i) the separation of the Georgia basin from the outer coast

via the Juan de Fuca Strait and (ii) isolation of the Bowie

Seamount location. We also predicted an isolation by distance

signal would be detected across the outer coast locations, which

span over 1,500 km of coastline. We detected subtle genetic

structure, partitioning the Strait of Georgia population from a

panmictic outer coast population. No signal of isolation by

distance was detected across the outer coast sampling locations.

Materials and Methods

Study area and study species
Water circulation patterns in the northeast Pacific Ocean are

largely structured by the eastward flowing Subarctic Current,

which divides into the southern flowing California Current and

northern flowing Alaska Current well offshore of Vancouver

Island, British Columbia [52]. In British Columbia, the nearshore

waters of the outer coast are dominated by the directional flow of

Figure 1. Map of sampling locations in Northeast Pacific Ocean. Sampling locations and location codes of yelloweye rockfish (Sebastes
ruberrimus), assayed at nine microsatellite loci.
doi:10.1371/journal.pone.0071083.g001
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the Davidson and Vancouver Island coastal currents, which

dominate in winter and summer, respectively [53]. Circulation

patterns within the inshore waters of the Georgia basin are typified

by tidal currents and, in the summer, estuarine currents caused by

freshwater input from the Fraser River [52,54]. Tidal forces cause

intense vertical mixing of brackish surface waters and deep water

from the Juan de Fuca Strait along sills located throughout the San

Juan Archipelago and southern Georgia basin [54]. Through the

vertical forcing of deep water and subsequent mixing that occurs

with surface waters, these sills may act as physical barriers to larval

dispersal [55,56].

Yelloweye rockfish are one of the larger and longest-lived

species of rockfishes, reaching lengths greater than 80 cm and

often living longer than 100 years [40]. Slow maturation rate,

highly variable juvenile recruitment success, and long lifespans

contribute to YR’s susceptibility to overfishing [41,57], and

conservation concerns in Canada and the United States have

precipitated formal status assessments by The Committee on the

Status of Endangered Wildlife in Canada (COSEWIC) and the

National Marine Fisheries Service. This species is currently listed

as ‘‘Special Concern’’ and ‘‘Threatened’’ in British Columbia and

Puget Sound, respectively [58,59].

Sample collection
Yelloweye rockfish tissue samples were collected from 13

general areas in the coastal waters of British Columbia (including

Bowie Seamount, approximately 200 km west of Haida Gwaii),

southeast Alaska, Washington and Oregon (Figure 1, Table 1).

Fish were sampled during Fisheries and Oceans Canada inshore

rockfish stock assessment longline surveys, and opportunistically

from commercial fishery vessels from 1998–2006. The majority of

sample locations are comprised of individuals that were collected

during a single survey. Strait of Georgia individuals, however,

were collected over two years of sampling. Surveys were not

restricted to a single season, and samples were collected over all

seasons. Although we defined each sample area as a single

location, they comprised samples collected from a range of

individual sites within the general area of each of the 13 sample

areas. Scientific collection permits and animal care approval were

not required as tissue samples were taken from individuals already

sampled as part of the DFO Inshore Rockfish Research Program,

and opportunistically from commercial fishery vessels. Tissue

samples were taken either onboard the fishing vessel or dockside

and stored in 95% ethanol for genetic analyses. Sagittal otoliths

were taken from a subset of individuals and locations for ageing.

Laboratory methods and scoring
Total genomic DNA was extracted with Qiagen Dneasy

extraction kits (Qiagen, Valencia, California). Nine microsatellite

Table 1. Sample location specific descriptive statistics.

Sample
Location Code N Mean ARHO HE FIS P-value

Southeast Alaska AK 85 11.13 0.711 0.722 0.015 0.2038

Brooks Bay BB 50 10.59 0.723 0.731 0.012 0.2812

Barber Point BP 345 11.14 0.711 0.728 0.024 0.0034

Bowie Seamount BS 779 11.10 0.701 0.726 0.034 0.0004

Calvert Island CI 87 11.15 0.701 0.725 0.033 0.0308

Cape St. James CJ 327 10.99 0.692 0.723 0.043 0.0004

Esperanza ES 46 10.99 0.725 0.730 0.007 0.3735

Oregon OR 75 10.54 0.684 0.714 0.043 0.0150

Strait of Georgia SG 123 8.00 0.630 0.631 0.003 0.4406

Tasu TA 231 11.32 0.743 0.741 20.002 0.5795

Top Knot TK 167 11.21 0.716 0.728 0.017 0.0718

Triangle TR 187 11.77 0.689 0.728 0.054 0.0004

Washington WA 81 11.12 0.707 0.723 0.024 0.0868

Sample size (N), mean allelic richness (AR), observed heterozygosity (HO),
expected heterozygosity (HE), coefficient of inbreeding (FIS) and associated P-
values are shown for each sample location. P-values in bold denote significant
heterozygote deficiencies at the 5% level after correcting for multiple
comparisons (critical value: 0.00043).
doi:10.1371/journal.pone.0071083.t001

Table 2. Pairwise FST values.

AK BB BP BS CI CJ ES OR SG TA TK TR WA

AK –

BB 0.0002 –

BP 20.0001 0.0019 –

BS 0.0004 0.0003 0.0005 –

CI 0.0033 0.0012 0.0015 0.0012 –

CJ 0.0005 0 0.0002 20.0001 0.0007 –

ES 0.0006 0.0002 20.0002 20.0011 0.0010 20.0018 –

OR 0.0036 0.0012 0.0016 0.0006 20.0004 0.0012 0.0013 –

SG 0.0163 0.0189 0.0156 0.0165 0.0175 0.0142 0.018 0.0193 –

TA 0.0003 0.0002 0.0011 0.0002 0.0018 0.0009 20.0001 0.0018 0.0193 –

TK 0.0009 0.0006 0.0005 0.0004 0.0006 0.0003 0.0014 0.0007 0.0138 0.0001 –

TR 0.0015 0.0004 0.0008 0.0003 0.0013 0.0006 0.0007 0.0016 0.0168 0.0011 0.0001 –

WA 20.0005 20.0023 0.0010 20.0001 0.0010 20.0003 0.0002 0.0018 0.0164 0.0009 0.0008 0 –

Pairwise FST values for all sample locations are shown. Values in bold type are significant after correcting for multiple comparisons using the Bonferroni correction
(adjusted critical value: 0.000641). All pairwise comparisons with the Strait of Georgia (SG) sample location are significant, and amongst the outer coast location
comparisons, only the Barber Point (BP) – Tasu (TA) pairwise comparison is significant.
doi:10.1371/journal.pone.0071083.t002
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loci (Table S1 in File S1) were amplified using polymerase chain

reaction (PCR). Typical PCR cycling conditions included an initial

denaturation at 94uC for 2 min, followed by ,30 cycles of 94u for
1 min, 46u–60u for 30 sec, a 72u extension for 1 min, and a final

extension at 72u for 10 min. Annealing times and temperatures

were adjusted to optimize specific locus amplification. Forward

PCR primers were fluorescently labeled and fragment sizing was

conducted on the ABI 377 automated DNA sequencer platform

(Applied Biosystems (ABI), Foster City, California). Fragments

were sized using the GeneScan-500 size standard and allele

scoring was performed with GENEMAPPER version 3.7 (ABI).

Data analysis
Deviations from Hardy-Weinberg equilibrium were assessed for

each locus-population combination with GENEPOP version 3.1

[60]. Estimates of the exact P-values were obtained using the

Markov chain method (1000 batches, 5000 iterations per batch).

Genotypic linkage disequilibrium for all combinations of locus

pairs within sample locations was calculated in GENEPOP (100

batches, 1000 iterations per batch). Measures of heterozygosity

and allelic richness were calculated in FSTAT version 2.9.3.2 [61].

The assumption of selective neutrality was assessed with the

selection detection workbench LOSITAN [62], which implements

the FST outlier approach of FDIST [63]. Tests for isolation-by-

distance (IBD) were performed with Mantel tests using the ade4

package [64] in the R environment [65]. Pairwise FST values were

linearized (FST/1-FST) according to Rousset [66].

Population structure was assessed with estimates of the summary

statistic, FST, as well as with the genetic clustering program

STRUCTURE version 2.3 [67–69]. Pairwise FST values were

estimated with h [70] using the permutation approach imple-

mented in FSTAT. To test for temporal stability of pairwise FST
values, 420 individuals (which have accompanying age data) from

eight sample locations were binned into a ‘‘young’’ or ‘‘old’’ age

group according to birth year. Individuals born before and after

1980 were binned into the ‘‘old’’ and ‘‘young’’ group, respectively.

The year 1980 was chosen as the cutoff as it is the median birth

year, which also maximizes sample size similarity between the

sample locations for each age group (Table S2 in File S1).

STRUCTURE was used to determine the number of distinct

genetic clusters (K) among the sample locations, and to estimate

individual assignment probabilities for each fish to each resolved

cluster. The number of putative genetic clusters assessed ranged

from 1 to 7. Each run consisted of a 500,000 step burn-in plus an

additional 1,000,000 steps, and 20 iterations were run for each K-

value. Due to low overall genetic structuring (global FST = 0.002),

the number of genetic clusters was evaluated under both an

admixture model including a location prior [69] in addition to an

admixture model without a location prior. We did not utilize the

method of Evanno et al. [71], which calculates the second order

rate of change (DK) as an estimator of K, due to the limited success

of this method observed when overall differentiation is low [72].

Results

Genotyping and scoring
A total of 2862 individuals from 13 general sample locations

(sample sizes ranged from 46 to 779) were assayed at nine

microsatellite loci. Only individuals with allele scores from a

minimum of seven loci were retained for analysis. The majority of

individuals (66.8%) had genotype scores across all nine loci, 628

(21.9%) contained missing data for one locus, and 323 (11.3%)

individuals had missing data for two loci. Missing data, therefore,

constitutes only 4.9% of the total dataset. There was no evidence

for selection acting at any of the microsatellite loci using

LOSITAN (for all loci P.0.24; data not shown).

Within population variation
The number of alleles across all populations ranged from 10

(Sal3) to 39 (Sme3) with an average of 18.9 alleles per locus.

Expected heterozygosity ranged from 0.488 (Sru9) to 0.877 (Sal1)

and averaged 0.702 across loci and sample locations (Table S3 in

File S1). A relatively high proportion of samples (24 out of 117

comparisons) were found to be out of Hardy-Weinberg equilib-

rium (HWE) with a critical value of 0.05. After using the

Bonferroni correction for multiple comparisons, however, the

number of departures from HWE dropped to eight (critical value:

0.0004). Samples exhibiting a departure from HWE were

distributed across sample locations and loci, and, therefore are

unlikely to affect our results because they do not point to

consistently anomalous loci or localities. Only 39 (out of 468)

locus-locus within sample location comparisons exhibited signifi-

cant deviations from linkage equilibrium (P,0.05). These 39

departures were not concentrated on a particular locus pair or

within specific sample locations, and are also unlikely to affect our

results.

Among population variation
The amount of genetic variation attributable to differences

between sample locations was low (global FST = 0.002, P,0.01).

Pairwise FST values range from less than 0 to 0.0193, and were

consistently an order of magnitude higher for all comparisons

between the Strait of Georgia (SG) sample location and outer

coastal water locations (OCLs) than for comparisons between

OCLs (,0.016 vs. ,0.001; Table 2). This same pattern was

observed when comparisons were restricted to both the ‘‘old’’ and

‘‘young’’ groups (mean value for old SG-OCL vs. old OCL-OCL:

,0.0203 vs. ,0.0003; mean value for young SG-OCL vs. young

OCL-OCL: 0.0204 vs. 0.0041; Table S4 and Table S5 in File S1).

Furthermore, mean (across loci and locations) allelic richness was

markedly lower in the SG location compared to the OCLs (8.00

vs. 10.54–11.77, average for OCLs: 11.10; Table 1).

Two admixture models, one without a location prior and one

with a location prior were evaluated using STRUCTURE. The

results based on the model without the location prior failed to

detect more than a single genetic cluster (highest support for a K of

1) among our samples. By contrast, results from the model

including a location prior had equal support for a K of 1 and a K of

2 (Table S6 in File S1), yet SG individuals exhibited high q-values

(minimum is 0.87, mean is 0.93), while all OCL individuals

exhibited approximately equal admixture of both genetic clusters

(q-value approximately equal to 0.5; Figure 2).

No significant association between genetic distance and

geographic distance was detected with the Mantel tests (Figure 3).

Two IBD analyses were conducted, one including all pairwise

sample location comparisons (Mantel P=0.250) and one with the

Strait of Georgia and Bowie Seamount sample locations removed

(Mantel P=0.268).

Discussion

Population genetic structure in yelloweye rockfish
We detected subtle population genetic structure that separates a

putative Strait of Georgia population from a panmictic outer coast

population. The results presented here constitute a re-analysis of

YR population genetic structure originally investigated by

Yamanaka et al. [73] and Yamanaka et al. [74]. Yamanaka et al.

[73] present genetic data from several OCLs (including fish from

Population Structure in Yelloweye Rockfish

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e71083



Bowie Seamount), and failed to reject the hypothesis that all

individuals were derived from a single, panmictic population.

Yamanaka et al. [74] extended the sampling to include fish from

the SG, and, using tree-based analyses, identified a putative SG-

OCL genetic break with moderate bootstrap support. Our

analyses support this putative population boundary, and provide

some support for the temporal stability of this population

structure. While increasing the number of sample locations within

the Strait of Georgia, as well as the number of temporal

comparisons would bolster the robustness of the population

structure we observed, similar results were found in a separate

analysis conducted with a different molecular marker type,

Amplified Fragment Length Polymorphisms [75] and with results

for other rockfishes [45,48,51].

Natural selection as a mechanism promoting genetic
isolation of the Georgia basin
One interpretation of the genetic structure observed between

the SG and the OCLs is that the oceanographic transition between

these areas functions as a physical barrier to larval dispersal.

Alternatively, dispersal may occur across this oceanographic divide

and natural selection against maladapted dispersers reduces

connectivity and promotes genetic differentiation [8]. The Georgia

basin is a unique environment, and likely presents individuals with

varying selective forces [52]. Selection, however, is more likely to

differentiate a subset of functionally important loci [45], while the

genetic differentiation we observed was due to the combined

effects of all (putatively neutral) loci, rather than being driven by a

single locus with a large effect. This suggests that a genome-wide

process, such as reduced gene flow, underlies the observed genetic

structure. If selection were driving this pattern, we would expect it

to be operating on many loci spread across the genome in order to

affect all nine of the microsatellite markers via hitchhiking, a

scenario less consistent with our data.

Lack of genetic structure in the outer coastal waters
Bowie Seamount (58.23uN 135.74uW) is approximately 200

kilometers west of Haida Gwaii and rises to within 30 meters of

the surface from depths over 3,000 meters creating rockfish

habitat that is isolated from coastal areas [52]. Despite these

putative barriers to larval exchange, we found no evidence for

genetic differentiation of the Bowie Seamount sample from other

outer coast sample locations. Episodic recruitment of larvae from

coastal populations to Bowie Seamount may be driven by Haida

eddies [76–79], mesoscale vortices that form along the west coast

of Haida Gwaii and move westward into the Gulf of Alaska and

may persist for several years [76,77]. While the PLD of YR is

unknown, the PLDs of other rockfishes ranges from one to several

months, but may be up to one year [40]. Given the average

velocity of a Haida eddy, pelagic larval durations on the longer

side may allow for sufficient transport time to Bowie Seamount,

which may help explain the apparent genetic homogeneity we

observed in this study.

The apparent lack of genetic structure or a significant IBD

relationship between the OCLs should not be taken, on its own, as

evidence supporting high connectivity between these locations.

Figure 2. STRUCTURE analysis. STRUCTURE outputs for the admixture model without a location prior (a) and the admixture model with the
location prior (b). The genome of each individual fish is represented by a thin vertical line as assayed by nine microsatellite markers, where each shade
of grey represents a unique genetic cluster, and the proportion of each genetic cluster that contributes to an individual’s genome is illustrated by the
relative amount of each shade within each vertical line. Under the admixture model without a location prior, all individuals exhibit roughly equal
admixture between the two genetic clusters (q is approximately 0.5). Under the admixture model with a location prior, however, the Strait of Georgia
individuals exhibit a q-value close to 1.0, while the outer coast location individuals still exhibit equal admixture of both clusters.
doi:10.1371/journal.pone.0071083.g002
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High effective population sizes (Ne), commonly observed in

marine fishes, may resist the effects of drift and contribute to

low FST values [80]. Using estimates of population genetic

structure to infer contemporary patterns of gene flow (and

migration rates) may be problematic, as these estimates reflect

both historical and contemporary patterns of gene flow, [81]. Over

evolutionary time, one migrant per generation can be sufficient to

homogenize neutral allele frequencies [82,83]. Thus, rare histor-

ical dispersal events may be sufficient to confound contemporary

patterns of gene flow, but not reflect ecologically relevant influx of

larvae. Moreover, consistent dispersal following a stepping-stone

pattern over long time scales may lead to genetic homogenization.

Management and conservation of yelloweye rockfish
Conservation concerns surrounding Pacific rockfishes (Sebastes

spp.) in the late 1990’s [41] precipitated a number of changes to

the management of inshore rockfish in British Columbia. In 2002,

Fisheries and Oceans Canada (DFO) introduced a Rockfish

Conservation Strategy to address these concerns and slow

apparent population declines. Four specific measures were

implemented: (i) account for all rockfish catch, (ii) decrease fishing

mortality, (iii) establish areas closed to fishing, and (iv) improve

stock assessment and monitoring (for details please see [53]).

Concurrent with the implementation of the Rockfish Conservation

Strategy, YR were reviewed by COSEWIC [58] to determine if

available information warranted a protected status. Based on the

genetic and demographic differences identified by Yamanaka

et al. [74] and supported by this study, two Designatable Units

(DUs) of YR were delineated and assessed by COSEWIC. Both

the inside and outside DUs (SG and outer coastal waters,

respectively) are listed as ‘‘Special Concern’’, owing mainly to

the life-history characteristics (e.g., long-life spans, slow maturation

rate, and highly variable juvenile recruitment) that make YR

susceptible to overfishing and have the potential to slip into

‘‘Threatened’’ status [58].

As part of the Rockfish Conservation Strategy, areas suitable for

protection were identified through a series of consultations and

habitat modelling [57]. The first rockfish conservation areas

(RCAs) were designated in 2002, and at present there are 164

RCAs in the coastal waters of British Columbia (Figure S1 in File

S1). The RCAs constitute approximately 20% and 30% of outer

coast and Georgia basin rockfish habitat, respectively. While the

implementation of the RCAs constitutes a significant achievement

in marine conservation, much work remains to understand how

these protected areas affect demographic and ecological processes

within the greater region.

Understanding larval movement is a critical component in

understanding the regional effect of marine protected areas

(MPAs) [84,85]. Larvae originating within protected areas may

either recruit locally, enhancing populations within the MPA or

spill over MPA boundaries, enhancing outside fished areas. The

extent to which MPAs are self-sufficient (i.e. self-recruiting)

depends upon the size of the MPA in relation to the dispersal

distances of locally produced larvae. This is an important

consideration for the RCAs, as they were not delineated to

purposefully function as a network connected by larval dispersal.

Furthermore, there is considerable variation in the size and

spacing of RCAs between those located in inside and outside

waters. Future studies will need to assess the number of individuals

residing in outside and inside RCAs to understand how larval

output from RCAs may vary between outside and inside areas,

and what effect that entails for the role of upstream RCAs acting

as larval sources for downstream RCAs.

Conclusion

Our analyses support a population boundary between the

inshore waters of the Strait of Georgia and the outer coastal waters

that coincides with the transition between two oceanographic

domains via the Juan de Fuca Strait. Several important

implications can be drawn from this result. Principally, the genetic

data suggest that dispersal is restricted regionally by major

oceanographic features. This scale of dispersal seems to match

the scale at which YR stocks are managed, although more detailed

studies are needed to fully elucidate the complex metapopulation

dynamics observed. If dispersal between the Strait of Georgia and

the outer coastal waters is indeed rare or demographically

insignificant, it is unlikely that outside areas will function as

substantial larval sources for the inshore population.

Supporting Information

File S1 Supporting figures and tables. Figure S1. Rockfish

Conservation Areas. The distribution of rockfish conservation

areas (RCAs) in British Columbia (figure reproduced with

permission from Yamanaka & Logan [57]). Information about

the RCAs can be found on the DFO website: http://www.pac.dfo-

mpo.gc.ca/fm-gp/maps-cartes/rca-acs/index-eng.htm. Table S1.

Primer information. The forward (F) and reverse (R) primer

sequences, PCR annealing temperatures (TA), Genbank accession

number (GB AC #), and reference for each microsatellite locus

are shown below. Table S2. Temporal population structure

comparisons. The sample size for the ‘‘old’’ and ‘‘young’’ datasets

(Nold, Nyoung), as well as the pairwise FST value for each within

Figure 3. Isolation-by-distance analysis. The relationship between
genetic distance (FST/1-FST) and geographic distance is shown for all
pairwise locations, excluding the Strait of Georgia and Bowie Seamount
sample locations. No significant correlation was detected with a Mantel
test (P.0.25).
doi:10.1371/journal.pone.0071083.g003
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location, ‘‘old’’ vs. ‘‘young’’ comparison is shown below. None of

the pairwise FST values is statistically significant. Table S3.

Individual locus descriptive statistics. Mean number of alleles

(NA), total number of alleles (NT), observed heterozygosity (HO),

expected heterozygosity (HE), inbreeding coefficient (FIS), theta,

and standard error of theta (S.E.) for each locus are shown.

Table S4. ‘‘Old’’ pairwise FST values. Pairwise FST values for the

‘‘old’’ dataset are shown below. Statistically significant values are

shown in bold. Table S5. ‘‘Young’’ pairwise FST values. Pairwise

FST values for the ‘‘young’’ dataset are shown below. Statistically

significant values are shown in bold. Table S6. STRUCTURE

mean log likelihood results. Mean log likelihood of each K value

(LnP(K)) and standard deviation (S.D.) are shown for both models

evaluated in STRUCTURE: an admixture model without a

location prior, and an admixture model with a location prior. The

most likely value of K is shown in bold under each model.
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