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Abstract

ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor,
selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global
effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative
proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight
into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the
quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141
differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the
expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in
gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for
macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic
aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better
understanding of the links between metabolism and tumorigenesis in cancer therapy.
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Introduction

Lung cancer is the leading cause of cancer-related death

worldwide, with nearly 1.4 million people dying from lung cancer

each year [1]. One of the treatment strategies for lung cancer is

based on the discovery that subsets of lung cancer harbor specific

mutations in genes coding crucial proteins involved in signaling

pathways of cell survival and proliferation. For example, gefitinib

(Iressa) and erlotinib (Tarceva), two drugs inhibiting epidermal

growth factor receptor (EGFR) tyrosine kinase, are effective

therapies for non-small cell lung cancer (NSCLC) [2–4]. However,

unavoidable drug resistance eventually develops in patients with

objective responses to gefitinib or erlotinib initially [5,6].

Furthermore, 30% of patients receiving gefitinib showed not

much change from pre-treatment conditions [7,8].

The oncogenic gene expression in cancer causes alterations to

metabolism besides affecting signaling pathways. Nutrients are

converted to biosynthetic building blocks, which are further

converted to macromolecules for constituting new cells [9].

Glucose is the major source of cellular energy and building blocks

for new cells. Hence, glucose metabolism and dependence are

altered in cancer cells. In 1924, Otto Warburg observed that

rapidly proliferating cancer cells exhibited higher glucose

consumption than normal cells through higher levels of glycolysis,

which turns glucose into lactate even in the presence of oxygen

[10,11]. This phenomenon is known as the Warburg effect, and is

also called aerobic glycolysis to distinguish from traditional

anaerobic glycolysis, where glucose is converted to lactate when

limited oxygen is available. The major advantage of aerobic

glycolysis is maintaining the level of glycolytic intermediates to

sustain continuous building blocks for macromolecular synthesis,

including generating nucleotides, lipids, and amino acids [12,13].

The understanding of cancer metabolism showed that aerobic

glycolysis is a promising target for cancer therapies.

ATP synthase is nature’s smallest motor that is important in

producing energy to drive many processes in cells. Although ATP

synthase has been thought to be exclusively located on the inner

membrane of mitochondria, several reports have showed that

components of ATP synthase also exist on the plasma membrane

of several types of cells. ATP synthase located on the plasma

membrane is called ectopic ATP synthase or ecto-ATP synthase.

In tumor cells, ectopic ATP synthase was recognized as a ligand of

a cytolytic pathway used by naive natural killer (NK) and

lymphokine-activated killer (LAK) cells [14,15]. Furthermore,

ATP synthase was also found on the surface of breast cancer cells

and was involved in cell proliferation, which showed that it could

be a target for cancer therapy [16]. Diverse categories of ATP

synthase inhibitors have been discovered and investigated,

including peptides, polyphenolic phytochemicals, polyketides,

polyenic a-pyrone derivatives, and so on [17]. One of the
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compounds called citreoviridin is a polyene mycotoxin produced

by several molds of genera, such as Penicillium and Aspergillus. It

consists of an a-pyrone ring conjugated to a furan ring.

Citreoviridin inhibits the activity of ATP synthase by interacting

with the b subunit of F1 ATP synthase [18,19]. It was shown to

affect several metabolic enzymes, including glycogen synthase,

glutamic-oxaloacetic transaminase and transketolase [20–22].

Citreoviridin has been proved to inhibit the proliferation of the

lung adenocarcinoma cell lines A549 and CL1-0 by activating the

unfolded protein response [23].

Proteomics, which measures mature proteins, could be used to

closely observe biological functions in cells. There are two major

methods available for mass spectrometry (MS) quantitation, the

stable isotope-based and the label-free approaches [24]. A well-

established and widely used stable isotope-based method is isobaric

tags for relative and absolute quantitation (iTRAQ) [25]. iTRAQ

reagents are amide reactive and covalently link to the N terminus

and side chain of lysine residues of peptides. It provides multiplex

protein quantitation by labeling peptides from different samples

with different iTRAQ reagents. One of the most significant

advantages of iTRAQ quantitation is that the intensities of peptide

precursor ions in MS and fragment ions in MS/MS are enhanced

by combination of all iTRAQ-labeled samples prior to MS

analysis, which increases the accuracy of quantitation. However,

global biases can arise from the sample preparation, reducing the

accuracy of protein quantitation [26]. Therefore, a good

normalization method is of significant importance and should be

performed to access accurate quantitation. Another key concern

about iTRAQ is the integration of peptide-level information into

the measurement of protein abundance [27]. A variety of

algorithms were proposed and many software packages are also

available for estimation of protein expression.

In this study, our major objective was to elucidate the effect

induced by citreoviridin in a lung cancer xenograft model.

Applying proteomic analysis, we investigated the proteomic

changes and pathways leading to cell proliferation inhibition

caused by citreoviridin in lung cancer. First, the reproducibility of

the iTRAQ-based proteomic strategies was assessed, followed by

the acquisition of the proteomic profiling of citreoviridin-treated

tumors with iTRAQ proteomic experiments. For data analysis, we

optimized the normalization of iTRAQ signals and quantified the

expression of proteins identified. After selecting differentially

expressed human proteins between control and citreoviridin-

treated tumors, we investigated the pathways induced by

Figure 1. Tumor growth and cell proliferation analysis in the CL1-0 xenograft model. (A) Tumor regression in a xenograft model. The
tumor volume was decreased after treatment with citreoviridin. 56106 CL1-0 cells were implanted subcutaneously in SCID mice and the abdominal
injection of citreoviridin was performed after tumor size reached 100 mm3. (B) The histology (left, H&E, 1006) and Ki67 staining (right, Ki67, 1006)
within the same area of tumor tissues. (C) The percentage of proliferating cells in tumor sections using Ki67-immunohistochemistry. Ki67 staining
showed a lower percentage of proliferating cells in citreoviridin-treated tumors. (D) Histological analysis of tumor tissues and mice organs. The
histology of tumor and organ tissue sections was analyzed by H&E staining (tumor sections, 406; organ sections, 1006). No obvious histological
damages were observed in citreoviridin-treated organ sections, including the heart, kidney and liver. All the staining was performed in 10 mm cryostat
sections. H&E, hematoxylin and eosin.
doi:10.1371/journal.pone.0070642.g001
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citreoviridin in lung cancer xenograft tumors. Finally, the most

significant pathway elucidated by bioinformatics methods was

subsequently validated.

Results

The effect of an ATP synthase inhibitor on tumor
xenografts

We investigated the effect of an ATP synthase inhibitor on lung

cancer growth in vivo by monitoring the growth rate of tumors in a

xenograft model. By measuring the tumor volume, our study

showed a reduced tumor growth rate in citreoviridin-treated mice

(Figure 1A). We further studied cell proliferation by immunohis-

tochemical analysis of Ki67, an important marker of proliferating

cells [28]. Our results showed that the percentage of Ki67 positive

cells was significantly lower in citreoviridin-treated tumor tissues

(Figure 1B and Figure 1C). All these results suggest a role for ATP

synthase inhibitors that suppresses the malignant development of

tumors. Moreover, the histological analysis of citreoviridin-treated

tumor tissues and other organs (heart, kidney, and liver) also

revealed a less serious condition of tumor development with low

toxicity to major organs of mice (Figure 1D).

Reproducibility assessment by analysis of the iTRAQ
duplicate experiment

We applied proteomic analysis to investigate the effects of

targeting ectopic ATP synthase in a human lung cancer xenograft

model. Reproducibility is an important concern for quantitative

proteomic studies. Any procedure, including protein extraction,

reduction, alkylation, trypsin digestion and iTRAQ labeling, may

affect the reproducibility and accuracy of quantitation. In order to

check the reproducibility, two replicate preparations of proteins

from both controls (C1a and C1b) and citreoviridin-treated (T1a

and T1b) tumor samples were analyzed (Figure S1). Two replicate

proteins were independently extracted from tumors and separately

subjected to reduction, alkylation and trypsin digestion. For

iTRAQ labeling, equal amounts of peptides from each sample

were labeled with iTRAQ. Sample C1a was labeled with iTRAQ

114 tag while sample C1b was labeled with iTRAQ 115 tag.

Sample T1a was labeled with iTRAQ 116 tag while sample T1b

was labeled with iTRAQ 117 tag. All iTRAQ-labeled peptides

were combined and analyzed by LC-MS/MS. The proteomic

data were provided in Table S1 and the information of single-

peptide-based protein identifications was in Spectra S1. After

protein identification and peptide selection, the original intensity

of each of the iTRAQ signature ions was plotted in Figure 2.

There was a high correlation (the correlation coefficient

R2 = 0.9769) between two replicate control tumor samples,

iTRAQ 114-labeled C1a and iTRAQ 115-labeled C1b

(Figure 2A). Two replicate citreoviridin-treated tumor samples,

iTRAQ 116-labeled T1a and iTRAQ 117-labeled T1b, also

showed high correlation (the correlation coefficient R2 = 0.987,

Figure 2B). The high correlation of peptide iTRAQ signature ion

intensity between duplicate samples indicated that the iTRAQ

quantitative proteomic experiment has high reproducibility and

accuracy.

Proteomic profiling of citreoviridin-treated tumors
To investigate the proteomic change induced by citreoviridin,

proteins of two control tumors (C1 and C2) and two citreoviridin-

treated tumors (T1 and T2) from a total of four different mice were

analyzed (Figure S2). We first performed a small-scale experiment,

which analyzed 5 mg peptides of each sample. For iTRAQ

labeling, peptides from samples C1, C2, T1 and T2 were labeled

with iTRAQ 114, 115, 116 and 117 tags, respectively. The

proteomic data of the small-scale experiment were provided in

Table S2 and the information of single-peptide-based protein

identifications was in Spectra S2. We identified 277 proteins with a

false discovery rate (FDR) of 3.51%. It was confirmed that 99.72%

of identified peptides were labeled with iTRAQ and a total of

1,185 peptides were qualified for protein quantitation (Table 1).

To identify more proteins, a large-scale experiment, which

analyzed 150 mg peptides of each sample, was performed to

acquire the proteomic profiling of two control tumors (C1 and C2)

and two citreoviridin-treated tumors (T1 and T2) from a total of

four different mice (Figure S2). Peptides from samples C1, C2, T1

and T2 were also labeled with iTRAQ 114, 115, 116 and 117 tags,

respectively. To reduce the sample complexity and increase the

possibility of detecting low abundance proteins, the combined

iTRAQ-labeled peptides were fractioned by strong cation

exchange (SCX) chromatography. A total of 39 fractions were

individually analyzed by LC-MS/MS. The SCX chromatogram

and the number of proteins identified in each fraction were shown

in Figure 3. The proteomic data of the large-scale experiment were

provided in Table S3 and the information of single-peptide-based

protein identifications was in Spectra S3, Spectra S4 and Spectra

S5. In this large-scale experiment, we identified a total of 2,659

proteins with FDR of 2.22% (Table 1). Compared to the results of

the small-scale experiment, SCX chromatography reduced the

sample complexity and enhanced protein identification. It was also

confirmed that 99.53% of identified peptides were labeled with

iTRAQ and a total of 28,894 peptides were qualified for protein

quantitation (Table 1).

Optimization of peptide iTRAQ signal normalization
After protein identification, the peptides with qualified intensi-

ties of iTRAQ signature ions were selected for further quantitative

analysis. Deviation of the iTRAQ signature ions intensities of

peptides (hereafter referred to as peptide iTRAQ signals) may exist

due to measurement errors in the experiments and individual

variations from biological replicates of samples. Therefore,

normalization is necessary for accuracy in protein quantitation.

We have tried seven different normalization methods. The details

of the normalization methods and evaluation were described in

Method S1. First, we use the dataset from the duplicate

experiment (Figure S1), which contained 296 identified proteins

and 1,159 qualified peptides for protein quantitation (Table 1).

Briefly, the normalized peptide iTRAQ signals were used for

calculation of the S values, which represent the errors of the

protein abundance ratios, followed by the calculation of mean of

all S values (Table S4). Considering normalization performed

directly on the level of peptide iTRAQ signals, the methods 1 and

2, which had relative small mean of S values (Table 2) were

selected.

To test whether method 1 and method 2 had the capability of

normalizing larger datasets, we applied these two normalization

methods to the dataset of the large-scale experiment (Figure S2),

which contained 2,659 identified proteins and 28,894 qualified

peptides for protein quantitation. Similarly, the mean of S values

was also calculated from the normalized peptide iTRAQ signals

(Table S5). It was shown that method 1 had a smaller mean of S

values than method 2 (Table S6). Next, normalized peptide

iTRAQ signals were used for the calculation of the protein

abundance ratios, C2/C1 and T2/T1, which should be close to 1

with a good normalization method. The results showed that the

mode of log2 (T2/T1) was 20.2 with normalization method 1,

while the mode of log2 (C2/C1) and log2 (T2/T1) were both 0 with

normalization method 2 (Figure 4). Compared with method 1,

Citreoviridin in Human Lung Tumor Xenografts
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method 2 was able to correct both the protein abundance ratios,

C2/C1 and T2/T1. Therefore, we chose method 2 as the optimal

normalization approach for our data.

Quantitation of protein expression by iTRAQ signals
The normalized peptide iTRAQ signals were used for the

quantitation of proteins identified in the small-scale and large-scale

experiments. We applied the sum of intensities in protein

quantitation. The iTRAQ signature ion intensities of peptides

matching the protein were summed and the protein abundance

ratio was calculated as dividing a sample’s summation of intensities

to another sample’s summation of intensities. This is a weighted

calculation because the larger intensity has more contribution to

the protein abundance ratio. For each protein, we calculated four

protein abundance ratios, T1/C1, T2/C2, T2/C1 and T1/C2. There

were over 90% of proteins quantified in both experiments

(Table 1). The distribution of these four sets of protein abundance

ratios in both experiments was shown in Figure 5, indicating that

the expression level of most proteins remained unchanged with the

treatment of citreoviridin. The R value of each protein, which

represents the relative abundance of the protein, was calculated

with the four protein abundance ratios, T1/C1, T2/C2, T2/C1 and

T1/C2. The distribution of R values in the small-scale and large-

scale experiments was shown in Figure 6A and Figure 6B,

respectively. The median of R values (MR) in the large-scale

experiment was 0.0037.

Cut-off value calculation for selecting differentially
expressed proteins

In order to elucidate the proteomic change induced by

citreoviridin in lung cancer xenograft tumors, differentially

expressed proteins were selected by their relative protein

abundance between control and citreoviridin-treated tumors.

However, differences observed between control and treatment

groups may arise from measurement errors in experiments and

individual variations among tumors from different mice. There-

fore, to positively select the differentially expressed proteins, we

first calculated the cut-off values that indicate a significant degree

of up-regulation or down-regulation. The large-scale experiment,

which contains two biological replicates for both control and

citreoviridin-treated tumor samples, is suitable for measuring the

errors. The S value of each protein, which represents the error of

protein abundance ratios, was calculated by its protein abundance

ratios, T1/C1 and T2/C2. Each protein had one S value and the

distribution of S values can be deemed as the distribution of errors

(Figure 6C). Assuming that the errors follow a normal distribution,

a 1.96-fold of the standard deviation (1.96 S.D.) of S values is

statistically significant (P,0.05) and can be taken as the cut-off

Figure 2. iTRAQ quantitative proteomic experiments showed high reproducibility and accuracy. (A) Scattering plot of two replicate
control tumor samples, iTRAQ 114-labeled C1a and iTRAQ 115-labeled C1b. (B) Scattering plot of two replicate citreoviridin-treated tumor samples,
iTRAQ 116-labeled T1a and iTRAQ 117-labeled T1b.
doi:10.1371/journal.pone.0070642.g002

Table 1. Statistics of three iTRAQ quantitative proteomic experiments.

iTRAQ quantitative proteomic
experiment

Number of proteins
identified FDR (%)a

Percentage of iTRAQ-
labeled peptides (%)

Number of qualified
peptidesb

Percentage of
quantified proteins
(%)

Duplicate experiment 296 2.14 99.67 1,159 93.92

Small-scale experiment 277 3.51 99.72 1,185 98.56

Large-scale experiment 2,659 2.22 99.53 28,894 94.55

aFDR (false discovery rate) was calculated by the formula: D/R6100%, where D and R are the number of matches above identity threshold determined by searching
decoy and real databases, respectively.
bQualified peptides are peptides satisfying all the four criteria (see Methods for details) and were used for protein quantitation.
doi:10.1371/journal.pone.0070642.t001
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value. The standard deviation of S values (sS) calculated from the

large-scale experiment was 0.4256. The median of R values (MR)

in the large-scale experiment was 0.0037. The cut-off values were

defined as MR61.96 sS . Hence, we took 0.8379 and 20.8306 as

cut-off values for selecting differentially expressed proteins. The

data of cut-off value calculation were provided in Table S7.

To select the differentially expressed proteins from the datasets

of small-scale and large-scale experiments, the R value of each

protein was compared with the cut-off values. In the small-scale

experiment that identified 277 proteins, there were five proteins

with R values larger than the cut-off value 0.8379 and can be taken

as up-regulated proteins. On the other hand, three proteins, which

had R values smaller than the cut-off value 20.8306, were down-

regulated (Figure 6A). Among the 2,659 identified proteins in the

large-scale experiment, 84 proteins with R values larger than

0.8379 were up-regulated, while 60 proteins with R values smaller

than 20.8306 were down-regulated (Figure 6B).

The standard deviation of S values (sS) calculated from the

large-scale experiment was the estimation of the errors from both

of the experimental measurements and the individual variations

among biological replicates of samples. We were also able to

determine the errors only from the experimental measurements.

The S value of each protein identified in the duplicate experiment

was calculated by its protein abundance ratios, T1a/C1a and T1b/

C1b. Samples C1a and C1b were from the same control tumor and

T1a and T1b were from the same citreoviridin-treated tumor. In

theory, T1a/C1a and T1b/C1b were free from the error caused by

the individual variations of biological replicates of samples.

Therefore, the standard deviation of S values from the duplicate

experiment (sS(t)) can be deemed as the errors arising only from the

experimental measurements. The distribution of S values and the

sS(t) calculated from the duplicate experiment were shown in

Figure S3. With the sS, which represented the total errors of

experimental measurements and individual variations among

tumors, and the sS(t), which represented the errors only from the

experimental measurements, the errors arising from the individual

variations of biological replicate of samples (sS(b)) can be estimated:

s2
S(b)~s2

S{s2
S(t)

The sS(b) calculated by the above equation was 0.2461 (Table S7).

Bioinformatics analysis of human differential proteomic
profiling induced by citreoviridin

To elucidate the pathways induced by the ATP synthase

inhibitor citreoviridin in tumors of lung cancer xenografts, we

applied bioinformatics analysis to the differentially expressed

proteins between control and citreoviridin-treated tumors. In the

xenograft mouse model, mouse cells may be present in the

subcutaneous tumors of human lung cancer. To exclude the

contaminants of mouse proteins in our analysis, we selected only

human proteins from the differential proteomes in the small-scale

and large-scale experiments acquired previously. A total of 141

differentially expressed human proteins were selected, including 78

proteins with identified peptides only matched to human proteins

Figure 3. Strong cation exchange (SCX) chromatogram. The
absorbance of peptide bonds occurs at 214 nm. Therefore, the left axis
represents the contents of combined iTRAQ-labeled peptides. Fractions
were collected every minute. The right axis is the number of identified
proteins in each fraction. Error bars represent standard deviation of the
replicate analysis of LC-MS/MS. Fraction 19: n = 5; fraction 47: n = 3;
fraction 54: n = 4; other fractions: n = 2.
doi:10.1371/journal.pone.0070642.g003

Table 2. The S values calculated by seven different normalization methods in the duplicate experiment.

S valueb

Normalization level Method Descriptiona Mean S.D.c

Peptide iTRAQ signal 1 Equal summation of peptide iTRAQ signals 20.02026 0.34727

2 Median of log2 (peptide iTRAQ ratio) to zero 0.01946 0.34727

3 Trend line of peptide iTRAQ signals 0.16265 0.29973

4 Trend line of log2 (peptide iTRAQ signal) 0.04154 0.33903

5 Multi-Q normalization factor performing on peptide iTRAQ signals 0.02810 0.34727

Protein abundance ratio 6 Multi-Q normalization factor performing on protein abundance ratio 0.02810 0.34727

7 Median of log2 (protein abundance ratio) to zero 0.00816 0.34727

aDetailed calculation methods are described in Method S1.
bS value is in log2 scale:

S~
1

2
log2

T1a
:C1b

T1b
:C1a

� �
~

1

2
log2

T1a

C1a

� �
{log2

T1b

C1b

� �� �
where T1a/C1a is the protein abundance ratio of citreoviridin-treated tumor sample T1a to control sample C1a,

while T1b/C1b is the protein abundance ratio of citreoviridin-treated tumor sample T1b to control sample C1b.
cS.D.: standard deviation.
doi:10.1371/journal.pone.0070642.t002
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and 63 proteins with identified peptides matched to both human

and mouse proteins (Table S8).

To characterize the biological functions of differentially

expressed proteins, first we performed functional annotation with

Gene Ontology biological process by using DAVID Bioinformatics

Resources [29,30]. The functional annotation clustering enriched

in our dataset was shown in Table 3 and Table S9. The top two

GO biological process clusters were related to glucose metabolism,

indicating that several citreoviridin-regulated proteins were

involved in glucose metabolism pathways. The protein ubiquitina-

tion process was also enriched in the differentially expressed

protein dataset. In the proteomic profiling, we also identified

ubiquitin to be up-regulated 3.31-fold in tumors treated with

citreoviridin (Table S8).

Next, we used MetaCore to analyze the pathway maps that

differentially expressed proteins were involved in. The level of

intersection between pre-existing pathway maps in the MetaCore

database and our differentially expressed protein dataset was

calculated and ordered based on the significance of relevance

(Figure 7A and Table S10). The top pathway map enriched in our

Figure 4. The distribution of log2 (C2/C1) and log2 (T2/T1) in the large-scale experiment by using normalization method 1 and
method 2. C2/C1 and T2/T1 were the protein abundance ratios of sample C2 to C1 and sample T2 to T1, respectively.
doi:10.1371/journal.pone.0070642.g004

Figure 5. The distribution of four sets of treatment to control log2 protein abundance ratios. (A) Small-scale experiment. (B) Large-scale
experiment. T1/C1, T2/C2, T2/C1 and T1/C2 were the protein abundance ratios of sample T1 to C1, sample T2 to C2, sample T2 to C1 and sample T1 to C2,
respectively.
doi:10.1371/journal.pone.0070642.g005

Citreoviridin in Human Lung Tumor Xenografts
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data was the glycolysis and gluconeogenesis pathway map (p-

value = 9.7661028). Besides, six of the ten most enriched pathway

maps were related to glycolysis and gluconeogenesis. The eight

differentially expressed proteins involved in the glycolysis and

gluconeogenesis pathway map were all up-regulated in tumors

treated with citreoviridin. The change in expression level of

enzymes involved in gluconeogenesis and glycolysis in the large-

scale experiment were summarized in Figure 7B. The list of

proteins involved in gluconeogenesis and glycolysis processes were

in Table 4 and most enzymes were up-regulated with the

treatment of citreoviridin.

We found that differentially expressed proteins involved in the

glycolysis and gluconeogenesis pathway were all up-regulated with

the treatment of citreoviridin. To investigate the functions of the

62 down-regulated proteins, they were annotated with Gene

Ontology biological process by using DAVID. It was shown that

several down-regulated proteins were involved in macromolecular

complex assembly and mitosis (Table S9 and Table S11). To

further investigate the interactions between the differentially

expressed human proteins in citreoviridin treatment tumors, we

performed network analysis with these proteins as seed nodes by

using MetaCore. The top five networks related to the differentially

expressed proteins were shown in Table S10 and Table S12. The

top network was related to the macromolecule catabolic process

and ubiquitin-regulated cell cycle (Figure S4).

In summary, three major pathways, i.e. glucose metabolism,

protein ubiquitination and cell cycle regulation, were involved in

the citreoviridin-induced effects on lung cancer xenograft tumors.

Of the three major pathways induced by citreoviridin, glucose

metabolism had the most prominent role. We identified and

quantified most of the enzymes catalyzing glycolysis and gluco-

neogenesis (Figure 7B). Besides, enzymes involved in glucose

metabolism were identified with high confidence and their

expression levels were significantly changed by citreoviridin

(Table 4). Furthermore, gluconeogenic enzymes and the enzyme

catalyzing the reaction of converting glucose to myo-inositol was

also up-regulated (Table 5). Therefore, we focused on the

citreoviridin-induced gluconeogenesis process.

Validation of citreoviridin-induced gluconeogenesis in
lung cancer xenograft tumors

To confirm the regulation of gluconeogenesis by citreoviridin in

lung cancer xenograft tumors, we measured the protein expression

Figure 6. Quantitation of differentially expressed proteins. (A)
The distribution of the R values in the small-scale experiment. The R
value of each protein was calculated by the protein abundance ratios
T1/C1, T2/C2, T2/C1 and T1/C2. There were 277 proteins identified and 8
proteins were differentially expressed as determined by comparing with
the cut-off values. (B) The distribution of the R values in the large-scale
experiment. There were 2,659 proteins identified and 144 proteins were
differentially expressed as determined by comparing with the cut-off
values. (C) The distribution of the S values in the large-scale experiment.
The S value of each protein was calculated by the protein abundance
ratios T1/C1 and T2/C2. The standard deviation of the S values was
0.4256. sS: standard deviation of the S values.
doi:10.1371/journal.pone.0070642.g006

Table 3. Gene Ontology biological process clustering
enrichment analysis of the differential proteome induced by
citreoviridin in humans.

GO biological process cluster Enrichment scorea

Carbohydrate catabolic process 6.20

Glucose metabolic process 5.96

Protein ubiquitination 5.25

Macromolecule catabolic process 3.15

Regulation of developmental growth 2.83

Intermediate filament organization 2.40

Cellular amide metabolic process 2.34

Protein modification by small protein
conjugation

2.19

Regulation of programmed cell death 1.67

Cellular polysaccharide metabolic
process

1.57

Macromolecular complex assembly 1.50

Negative regulation of apoptosis 1.47

aThe enrichment score is the geometric mean (in 2log scale) of the p-values of
the members in the annotation cluster. It represents the significance of
relevance between the group of annotations and the experimental dataset.
doi:10.1371/journal.pone.0070642.t003
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level of seven proteins involved in glucose metabolism. L-lactate

dehydrogenase B chain (LDH-B), a-enolase, phosphoglycerate

kinase 1 (PGK-1), fructose-bisphosphate aldolase C (aldolase C)

glucose-6-phosphate isomerase (GPI) are enzymes that shared by

glycolysis and gluconeogenesis. On the other hand, mitochondrial

phosphoenolpyruvate carboxykinase (PEPCK-M) and cytoplasmic

malate dehydrogenase (MDH1) are two the key eznymes

catalyzing gluconeogenesis. The expression levels of these seven

enzymes were all higher in citreoviridin-treated tumors than in

control tumors (Table 4). We analyzed the proteins previously

extracted from two control (C1 and C2) and two citreoviridin-

treated (T1 and T2) biological repeated tumor samples for

Figure 7. Bioinformatics analysis of human differential proteomic profiling induced by citreoviridin. (A) Pathways associated with
differentially expressed human proteins by MetaCore pathway map analysis. The top associated pathway was the glycolysis and gluconeogenesis
pathway and there were eight differentially expressed human proteins involved in the glycolysis and gluconeogenesis pathway. (B) The expression
level of enzymes involved in gluconeogenesis and glycolysis in the large-scale experiment. Several enzymes were up-regulated with citreoviridin
treatment. Enzymes specific for gluconeogenesis and glycolysis are shown in light blue and purple, respectively.
doi:10.1371/journal.pone.0070642.g007
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proteomic analysis by western blotting, and the protein expression

levels of the enzymes were measured. Quantitation of the western

blots showed that expressions of the seven glucose-metabolism-

related proteins were all up-regulated in citreoviridin-treated

tumor samples, which confirmed the results of the proteomic

analysis (Figure 8). The up-regulation of both PEPCK-M and

MDH1 also indicated the activation of gluconeogenesis in

citreoviridin-treated tumors.

Discussion

Shotgun proteomics is a powerful strategy for large-scale studies

of the proteome. However, the peptide-centric nature of it raises

the protein inference problem and complicates the interpretation

of the data [31]. A set of peptides might be assigned to multiple

different proteins or protein isoforms, making the determination of

protein identity ambiguous. In studies with xenograft models,

tumor samples often contain both human and mouse cells and this

complicates the protein inference problem. Many human and

mouse proteins share a high degree of sequence homology, so it is

hard to distinguish conserved human proteins from mouse

proteins. The problem was also addressed and the assignment of

human proteins was performed by the criteria of at least one

peptide uniquely mapping to human entry [32]. Another similar

method is searching the putative human peptides against the

mouse sequence using BLAST and removing the peptides

matching the mouse sequences [33,34]. A method combined

searching the mouse database with BLAST and was also used to

distinguished human proteins from mouse proteins [35]. Except

the methods described above, most of the proteomic studies in

xenograft models neglected to consider the protein inference

problem of human and mouse proteins. In this study, we noticed

the problem and adopted a more conservative strategy. For the

protein identification step, the combined sequence database of the

Swiss-Prot human database and Swiss-Prot mouse database was

searched, and proteins matched only to human proteins or to both

human and mouse ones were selected. Because we could not

exclude the possibility that double-matched proteins were of

mouse-origin, the proteins were labeled in the protein identifica-

tion table. By this way, proteins that may be of human-origin were

not completely excluded and noting of this protein inference was

retainable during the following analysis.

For protein quantitation, the intensities of iTRAQ signature

ions should be normalized to diminish the global bias. We have

tried seven methods of normalization (Method S1) and making the

median of log2 (peptide iTRAQ ratio) equal to zero is the best way

to minimize the errors. The optimal normalization method may

depend on the structure of the dataset. For the calculation of

protein abundance ratios, several algorithms and software tools are

available [27] and there are three major algorithms used by the

current software tools. ProteinPilot (AB Sciex, Foster, CA, USA),

ProQuant (AB Sciex), Multi-Q [36], PEAKS (Bioinformatics

Solutions Inc., Waterloo, ON, Canada) and MassTRAQ [37]

apply the weighted average of peptide ratios; Phenyx (GeneBio,

Geneva, Switzerland), VEMS [38] and Proteome Discoverer

(Thermo Fisher Scientific, Waltham, MA, USA) apply the median

of peptide ratios; Spectrum Mill (Agilent Technologies, Santa

Clara, CA, USA) and Libra (Institute for Systems Biology, Seattle,

WA, USA) apply the mean of peptide ratios as protein ratios.

Mascot (Matrix Science) offers all the three major methods

described above, while i-Tracker [39] only provide data in peptide

level. We applied the sum of intensities in protein quantitation,

which has similar idea as the weighted average. A previous study

showed that compared to others, the sum of intensities (or the

weighted average) provides lower errors, especially with the

existence of outliers [40]. Besides, the sum of intensities has the

advantage of being computationally simple. In this study, we

provided the criteria for selecting peptides and a simple method

for calculating protein abundance ratios. Furthermore, we

proposed a robust workflow for selecting differentially expressed

proteins by also considering measurement errors in experiments

and individual variations among samples.

With the quantitative proteome, we found that citreoviridin-

regulated proteins in lung cancer were associated with glucose

Figure 8. Citreoviridin induced the up-regulation of proteins catalyzing glucose metabolism. Protein expressions of seven proteins
involved in glucose metabolism, a-enolase, PEPCK-M, GPI, MDH1, LDH-B, PGK-1 and aldolase C, were measured by western blotting. Actin was used
as an internal loading control. The expression levels of two control tumors (C1 and C2) and two citreoviridin-treated tumors (T1 and T2) from a total of
four different mice were quantified. The band intensities were normalized to actin, and the averages of intensities from two control samples and two
treatment samples were calculated, respectively. Fold change of protein expression shown was obtained by dividing the intensity of control group by
the intensity of treatment group. The T/C (treatment to control) ratios from the iTRAQ large-scale experiment were listed for comparison.
doi:10.1371/journal.pone.0070642.g008
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metabolism, especially gluconeogenesis and glycolysis. We identi-

fied and quantified most of the enzymes involved in gluconeo-

genesis and glycolysis processes (Figure 7B). The confidence for

identification of these proteins was high so as to ensure the

existence of these proteins in the samples (Table 4). Furthermore,

the expression level of several proteins in the processes was

significantly up-regulated with treatment of citreoviridin

(Figure 7B), suggesting two possible results: the activation of

gluconeogenesis or the activation of glycolysis. These two processes

share almost the same set of enzymes except some catalyzing the

irreversible reactions. We identified all eight enzymes shared by

gluconeogenesis and glycolysis. All three enzymes catalyzing the

irreversible steps in glycolysis were also identified, and we noticed

that all of these enzymes were not up-regulated by citreoviridin.

Regarding the major seven enzymes catalyzing the irreversible

steps in gluconeogenesis, we identified and quantified three

enzymes in our proteomic analysis, including PEPCK-M,

MDH1 and mitochondrial malate dehydrogenase (MDH2).

MDH1 was significantly up-regulated 1.93-fold with treatment

of citreoviridin. Although the expression levels of MDH2 and

PEPCK-M showed no significant up-regulation, these two

enzymes had higher expression levels in citreoviridin-treated

tumors than control tumors.

Is it possible that gluconeogenesis occurs in cancer cells when

treated with citreoviridin? The whole proteomic profiling of

control and citreoviridin-treated tumors may provide some hints.

The expression level of several other proteins related to glucose

metabolism was changed with citreoviridin treatment (Table 5).

These proteins are involved in synthesis of glycogen from glucose,

conversion of glucose to inositol or sorbitol (a sugar alcohol that

the human body metabolizes slowly) and glucose transport. The

expression levels of three enzymes, which convert glucose to other

compounds, were higher in the citreoviridin-treated tumors. The

first one is UTP-glucose-1-phosphate uridylyltransferase (UDP-

glucose pyrophosphorylase, UDPGP), which catalyzes the reaction

of converting glucose 1-phosphate to UDP-glucose, the immediate

donor of glucose for glycogen synthesis. The second one is inositol-

3-phosphate synthase 1 (IPS 1), which catalyzes the conversion of

glucose 6-phosphate to 1-myo-inositol 3-phosphate. Third, aldose

reductase reduces glucose to sorbitol, which accumulated in the

cells in response to hyperosmotic stress that causes shrinkage of the

cells [41,42]. Surplus glucose enters the polyol pathway by

converting to sorbitol catalyzed by aldose reductase. From the

above observations, glucose might be overproduced in cancer cells

with treatment of citreoviridin. We also noticed that the expression

level of glucose transporter GLUT-3 was lower (0.70-fold) with the

treatment of citreoviridin, which indicated that excess glucose

mainly came from gluconeogenesis.

Citreoviridin was shown to suppress lung adenocarcinoma

growth by targeting ectopic ATP-synthase [23]. The observation

of activated gluconeogenesis by citreoviridin in the proteomic

profiling raised the question of whether there is a relationship

between gluconeogenesis and inhibition of lung cancer cell

proliferation. There are only limited literatures describing the

effects of gluconeogenesis on cancer and most of them were

reported in the 1970s. The role of gluconeogenesis in cancer cells

can vary depending on the gluconeogenic precursors, including

lactate, pyruvate, amino acids and other metabolites. It was

suggested that gluconeogenesis from alanine is increased in cancer

patients with cachexia, a syndrome with significant loss of appetite

resulting in weakness and loss of weight [43,44]. A recent report

showed that gluconeogenesis was down-regulated in hepatocellular

carcinoma and the reduced gluconeogenesis may facilitate

tumorigenesis by accumulation of glucose 6-phosphate, the

precursor for nucleotide synthesis [45].

The expression profile of proteomes in control and citreoviridin-

treated tumors provides novel implications for understanding the

antitumorigenic effect by activation of gluconeogenesis in cancer

cells. First, the glucose synthesized could be converted into myo-

inositol, which has anti-cancer activity. We observed the up-

regulation of the enzyme IPS 1 with treatment of citreoviridin

(Table 5). This enzyme catalyzes the key rate-limiting step in the

myo-inositol biosynthesis pathway. The level of myo-inositol was

found to be higher in normal tissue compared to breast cancer

tissue [46] but lower in lung tumors [47]. Besides, myo-inositol was

shown to have anti-cancer activity by inhibiting tumor formation

of colon, mammary, soft tissue and lung cancers. The phosphor-

ylated myo-inositol, inositol hexaphosphate (IP6) was also recog-

nized for its effectiveness in cancer prevention [48]. IP6 is able to

induce G1 cell cycle arrest by modulating cyclins, CDKs, p27Kip1,

p21CIP1/WAF1, and pRb in prostate cancer and breast cancer [49–

52].

With the treatment of citreoviridin, the glucose synthesized from

gluconeogenesis may also be converted to other compounds and

escape from utilization by glycolysis. The reduction in glycolysis

flux results in the decrease of glycolytic intermediates to sustain the

continuous building blocks for macromolecular synthesis [12,13]

and thereby inhibits the proliferation of cancer cells. We found

that the expression level of aldose reductase that converts glucose

to sorbitol was higher in citreoviridin-treated tumors (Table 5).

The increased intracellular glucose results in its conversion to

sorbitol. Although sorbitol entering the polyol pathway can be

converted to fructose by sorbitol dehydrogenase, high glucose

levels still favors the production of sorbitol.

Glucose synthesized from gluconeogenesis may also be

polymerized into glycogen for storage. Thus, the decrease of

glucose influx into glycolysis inhibits proliferation of cancer cells. A

previous report showed that the expression level of UDPGP,

activities of phosphoglucomutase (PGM) and glycogen synthase

were all decreased in tumor tissues, so the defective glycogen

synthesis process is unable to compete with glycolysis [53]. In our

proteomic profiling data, we observed that the expression levels of

PGM and UDPGP were higher with citreoviridin treatment in

lung cancer (Table 5). Regarding glycogen breakdown, previous

studies suggested that glycogen phosphorylase was expressed in

tumor tissues and served as a target for anticancer therapy [54,55].

In our proteomic profiling data, we found that the glycogen

phosphorylase liver form was up-regulated by citreoviridin. Why

does there seem to be a contradiction between the expression

levels of enzymes involved in glycogen synthesis and glycogen

breakdown? In fact, glycogen synthase and glycogen phosphory-

lase are both allosterically regulated by kinases and phosphatases,

the activities of which are also post-translationally regulated.

Therefore, the activities of glycogen synthase and glycogen

phosphorylase in citreoviridin-treated tumors remain unknown.

However, it is still possible that glucose from gluconeogenesis is

converted into UDP-glucose in citreoviridin-treated lung cancer

xenograft tumors.

In conclusion, proteomic analysis provided novel implications

about targeting ectopic ATP synthase by the inhibitor citreoviridin

in a lung cancer xenograft model (Figure 9). With high

reproducibility of quantitation, we identified 2,659 proteins in

the proteomic profiling of the tumors. We applied an optimized

normalization method and an appropriate calculation of protein

abundance ratio, and over 90% of identified proteins were

quantified. Besides, we were able to estimate the errors arising

from experimental measurements and individual variations
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individually. Based on the errors estimated, we calculated the cut-

off values and selected 141 human proteins as differentially

expressed. Bioinformatics analysis of the differentially expressed

human proteins illustrated the enrichment of glucose metabolism-

related processes. We found that citreoviridin may activate

gluconeogenesis by up-regulation of the expression levels of

gluconeogenic enzymes. Furthermore, the change in expression

levels of other glucose metabolism-related enzymes may link

gluconeogenesis to cell proliferation inhibition. This study helps to

achieve a better understanding of the complexity of metabolic

regulations and the plasticity of cancer cells, which may shed light

on improvements to cancer therapy.

Materials and Methods

Reagents
Citreoviridin was obtained from Enzo Life Sciences (Farming-

dale, NY, USA). Dimethyl sulfoxide (DMSO, cell culture grade)

was purchased from AppliChem (Darmstadt, Germany). Optimal

cutting temperature (O.C.T.) compound was obtained from Exibo

Research (Taipei, Taiwan). 3,39-Diaminobenzidine was purchased

from Kirkegaard & Perry Laboratories (Gaithersburg, MD, USA).

Protease inhibitor was obtained from Bioman Scientific (Taipei,

Taiwan). MatrigelTM was from BD Biosciences (Bedford, MA,

USA). Glycerol was purchased from Scharlau (Barcelona, Spain).

BCATM Protein Assay Reagent kit was obtained from Pierce

(Rockford, IL, USA). Triethylammonium bicarbonate buffer

(TEABC), tris(2-carboxyethyl)phosphine hydrochloride (TCEP),

S-Methyl methanethiosulfonate (MMTS), N,N,N9,N9-Tetramethy-

lethylenediamine (TEMED), trifluoroacetic acid (TFA), Tween 20,

anti-rabbit IgG-HRP and anti-mouse IgG-HRP were purchased

from Sigma-Aldrich (St Louis, MO, USA). Acrylamide/bisacry-

lamide (40%, v/v, 37.5:1) was obtained from Bioshop (Burlington,

ON, Canada). Ammonium persulfate (APS, ACS grade) was from

Amresco (Solon, OH, USA). Acetonitrile (ACN) was obtained

from Lab-Scan (Dublin, Ireland). Sequencing grade modified

trypsin was purchased from Promega (Madison, WI, USA).

iTRAQH Reagent kit (including iTRAQ Reagent 114, iTRAQ

Reagent 115, iTRAQ Reagent 116, iTRAQ Reagent 117 and

iTRAQ Dissolution buffer) was obtained from Applied Biosystems

(Forster City, CA, USA). Ki67 antibody was purchased from

Abcam (Cambridge, MA, USA). ENO1, PCK2, GPI, MDH1,

PGK1, LDHB and ALDOC antibodies were purchased from

GeneTex (Irvine, CA, USA). Anti-actin antibody clone 4 and

Immobilon Chemiluminescent HRP substrate were from Milli-

pore (Bedford, MA, USA).

Cell culture
The human lung adenocarcinoma cell line CL1-0 was kindly

provided by Dr. Pan-Chyr Yang (Department of Internal

Medicine, National Taiwan University Hospital, Taiwan) [56].

Cells were grown as previously described [56]. Briefly, cells were

cultured in Dulbecco’s modified Eagle’s medium (Gibco, NY,

USA) containing 10% fetal bovine serum (Gibco) at 37uC and 5%

CO2.

Tumorigenicity assays in athymic mice
This study had been approved by the animal care and use

committee of National Taiwan University (Permit Numbers: 97-

47). All animal work was performed in accordance with NIH

animal use guidelines. NOD.CB17-Prkdcscid female mice (4–5 weeks

old) were purchased from National Taiwan University hospital

and housed in an isolator and fed ad libitum with autoclaved food.

For tumor growth in animals, 56106 CL1-0 cells resuspended in

0.1 ml Hanks’ balanced salt solution (HBSS) were mixed with

matrigel and injected subcutaneously into mice. The tumor masses

were measured every two days and the tumor volume was

calculated as 1/2 width26length in mm3. After tumor volumes

Figure 9. Citreoviridin affects the glucose metabolism in lung cancer xenograft tumors. Proteomic analysis of lung cancer xenograft
tumors treated with citreoviridin indicated that differentially expressed proteins were involved in gluconeogenesis and the conversion of glucose to
other compounds. The activation of these pathways may decrease glycolysis and thus cause the inhibition of cell proliferation and tumor growth.
doi:10.1371/journal.pone.0070642.g009
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reached 100 mm3, animals were randomly assigned into two

groups: those receiving intraperitoneal injection with the vehicle

control (DMSO, N = 5) or the ATP synthase inhibitor (citreovir-

idin, N = 4). The citreoviridin treatment (1 mg/kg) was adminis-

tered three times a week to a final dosage of 12 mg/kg for 27 days.

Tumor size was measured after treatment and the mice weights

were monitored as a health indicator. Animals were sacrificed

when the tumor volume of control animals reached 1000 mm3. At

sacrifice, mice were anesthetized and cervical dislocation was

performed. Tumors were excised and stored at 280uC for further

analysis. For immunohistochemistry, dissected organs and tumors

were fixed in 10% paraformaldehyde.

Immunohistochemistry
Immunohistochemistry was performed with 3,39-Diaminoben-

zidine (DAB) as a detection agent. Cryostat sections prepared from

O.C.T. compound embedded tissues were treated with blocking

buffer (10% normal goat serum) to inhibit endogenous enzyme

activity. Sections were then incubated with Ki67 antibody at 4uC
overnight. A horseradish peroxidase containing polymer conju-

gated with IgG antibody was applied at room temperature for 1 h.

The enzymatic reaction was developed in freshly DAB solution as

a chromogen for horseradish peroxidase. The sections were then

counterstained with hematoxylin and mounted in xylene. The

negative control, where the primary antibody was substituted with

Tris-HCl buffer, was also included in each staining case.

Protein preparation
Tumor tissues were ground into a fine powder using a mortar

and pestle in liquid nitrogen. Liquid nitrogen was added to the

mortar frequently to ensure that the tissues did not thaw during

grinding. Tissue power was then suspended in lysis buffer

containing 1% (v/v) SDS, 50 mM Tris-HCl, 10% (v/v) glycerol

and protease inhibitor. The amount of lysis buffer added was

based on the amount of tissue powder. The solution containing

tissue powder was resuspended by pipetting until there was almost

no visible pellet. The sample solution was homogenized on ice

using a homogenizer (LABSONICH M ultrasonic homogenizer;

Sartorius AG, Göttingen, Germany) with 60% amplitude,

cycle = 0.6 (operated 0.6 s every 1 s) for 4–5 min. The lysate

was centrifuged at 17,000 g, 4uC for 30 min. The supernatant,

which contained the crude extract proteins, was collected. The

concentration of proteins was measured with the BCATM Protein

Assay Reagent kit.

Reduction, alkylation and digestion of proteins
We followed the methods of a previous study by Han et al. for

protein reduction, alkylation and digestion [57]. Equivalent

amounts of proteins in control and treatment samples were used

for further processing: 100 mg/sample was used for the duplicate

experiment, while 400 mg/sample was used for the small-scale

experiment and the large-scale experiment. Each sample was

adjusted to have the same protein concentration by adding lysis

buffer. We added 1 M TEABC to make the final concentration of

50 mM TEABC (pH was about 8.5) for every sample. Proteins

were reduced by 5 mM TCEP in a dry bath at 37uC for 30 min

and then alkylated by 2 mM MMTS at room temperature

avoiding light for 30 min.

Next, we applied gel-assisted digestion for proteins. Acrylam-

ide/bisacrylamide (40%, v/v, 37.5:1), 10% APS (w/v) and

TEMED were mixed with the protein solution (protein solution:

acrylamide/bisacrylamide: APS: TEMED = 14:5:0.3:0.3, v/v) to

allow gel polymerization. The gel was cut into small pieces and

washed with 25 mM TEABC and 25 mM TEABC/50% (v/v)

ACN several times. Briefly, buffer was added to the gel and then

the solution was vortexed. The gel was further dehydrated with

100% ACN and dried completely with a centrifugal evaporator

(CVE-2000; Eyela, Tokyo, Japan). 25 mM TEABC was added to

rehydrate the gel and trypsin (protein: trypsin = 10:1, w/w) was

subsequently added to the rehydrated gel. After ensuring the gel

was fully covered by 25 mM TEABC, the sample was incubated at

37uC overnight (at least 16 h). Peptides were extracted from the

gel with 0.1% (v/v) TFA, 50% (v/v) ACN/0.1% (v/v) TFA, and

100% ACN sequentially. Like the gel washing step, buffer was

added to the gel and the gel solution was vortexed. The liquid part

of the sample was collected and combined. The extracted peptide

solution was dried with a sample concentrator (miVac Duo

Concentrator; Genevac, Ipswich, UK).

iTRAQ labeling of peptides
The peptides were resuspended in iTRAQ Dissolution buffer.

We confirmed that the solution was basic (about pH 8.5). The

concentration of peptide was measured with the BCATM Protein

Assay Reagent kit. For the duplicate experiment and small-scale

experiment, 5 mg of peptides from each sample were required for

iTRAQ labeling. For the large-scale experiment, 150 mg of

peptides from each sample were required. Each vial (1 unit) of

iTRAQ Reagent was brought to room temperature and dissolved

in 70 mL absolute ethanol by vortexing for 1 min. Equal amounts

of peptides from different samples were labeled by adding iTRAQ

Reagent 114, iTRAQ Reagent 115, iTRAQ Reagent 116, or

iTRAQ Reagent 117, and vortexing at room temperature for 1 h.

Labeled peptides were combined and dried with a centrifugal

evaporator (CVE-2000; Eyela, Tokyo, Japan).

Strong cation exchange (SCX) chromatography
For the large-scale experiment, SCX chromatography was

performed after iTRAQ labeling. The labeled peptides were

resuspended in 2 mL buffer A (5 mM KH2PO4 and 25% (v/v)

ACN, pH 3) and fractioned by SCX chromatography. The

peptide solution was subjected to a 2.16200 mm PolySUL-

FOETHYL ATM column containing 5 mm particles with 200 Å

pore size (PolyLC, Columbia, MD, USA). A flow rate of 200 ml/

min with a gradient of 0–25% buffer B (5 mM KH2PO4, 350 mM

KCl and 25% ACN (v/v), pH 3) for 30 min followed by a gradient

of 25–100% buffer B for 20 min was applied for peptide elution.

The eluate was monitored by the absorbance of the peptide bond

at 214 nm, and fractions were collected every 1 min. Each fraction

was dried with a sample concentrator (Savant SpeedVacH Plus

SC210A Concentrator; Thermo Fisher Scientific).

ZipTip desalting
For the duplicate experiment and small-scale experiment,

iTRAQ-labeled peptides were directly subjected to the desalting

step. For the large-scale experiment, each fraction of peptides was

desalted individually. We performed desalting using ZipTipH
Pipette Tips (Millipore, Bedford, MA, USA). Dried peptides were

resuspended in 20–30 mL of 0.1% (v/v) TFA, and 10% TFA was

added to adjust the pH of the solution to about pH 2–3. The

ZipTip was first wetted with 50% (v/v) ACN/0.1% (v/v) TFA and

then equilibrated in 0.1% (v/v) TFA. The peptides were bound to

the ZipTip by aspirating and dispensing the peptide solution for 20

cycles. Subsequently, the ZipTip was washed with 0.1% (v/v)

TFA. At last, peptides were eluted with 20 mL of 50% (v/v) ACN/

0.1% (v/v) by aspirating and dispensing the eluate for 10 cycles.

The eluate was dried with a centrifugal evaporator (CVE-2000;

Eyela, Tokyo, Japan).
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LC-MS/MS analysis
After ZipTip desalting, samples containing about 3 mg peptides

were reconstituted in 24 mL buffer A (0.1% (v/v) formic acid (FA)

in H2O) and analyzed by LC-ESI-Q-TOF mass spectrometry

(Waters SYNAPTH G2 HDMS; Waters Corp., Milford, MA,

USA). Samples were injected into a 180 mm62 cm capillary trap

column and separated by a 75 mm625 cm nanoACQUITY

UPLCTM 1.7 mm Ethylene Bridged Hybrid (BEH) C18 column

using a nanoACQUITY Ultra Performance LCTM System

(Waters Corp.). The column was maintained at 35uC. Buffer A

was 0.1% FA in H2O and buffer B was 0.1% FA in ACN. Bound

peptides were eluted with a linear gradient of 6 to 50% buffer B at

a flow rate of 300 ml/min for 100 min. MS was operated in

electrospray ionization sensitivity mode. NanoLockSprayTM

source (Waters Corp.) was used for accurate mass measurements,

and the lock mass channel was sampled every 30 s. The mass

spectrometer was calibrated with a synthetic human [Glu1]-

Fibrinopeptide B solution (1 pmol/ml; Sigma-Aldrich) delivered

through the NanoLockSpray source. Data acquisition was

performed using data directed analysis (DDA). The DDA method

included one full MS scan (m/z 350–1700, 1 s) and three MS/MS

scans (m/z 100–1990, 1.5 s for each scan) sequentially on the three

most intense ions present in the full scan mass spectrum. Each

sample was analyzed in duplicate.

Protein identification
The peak list resulting from MS/MS spectra was exported to

mgf format by Mascot Distiller v2.3.2 (Matrix Science, London,

United Kingdom) with charge state set to 2+, 3+, 4+, 5+, and

other default parameters. Data files were merged and searched

against the combined sequence database (containing 36,774

sequence entries) of the Swiss-Prot human database (April 2,

2012) and the Swiss-Prot mouse database (April 2, 2012) using

Mascot search engine v2.3.02 (Matrix Science, London, United

Kingdom). Search parameters for peptide and MS/MS mass

tolerance were both 60.3 Da with allowance for two missed

cleavages made from the trypsin digestion. Variable modifications

of deamidated (NQ), oxidation (M), iTRAQ4plex (K), iTRAQ4-

plex (N-term), and methylthio (C) were selected and none of the

fixed modifications was selected. Peptide charge was set to Mr,

instrument was set to ESI-QUAD-TOF and decoy database was

searched. Mascot search results were filtered using ‘‘Significance

threshold’’ set at P,0.05 and ‘‘Ions score or expect cut-off’’ set at

0.05. Only peptides with ion scores higher than the Mascot

identity score (P,0.05) were confidently assigned. A protein hit

required at least one ‘‘bold red’’ peptide match to have the most

likely assignment. The peptide shown in ‘‘red’’ indicates the

highest scoring match for the spectrum. When the peptide

matched to the spectrum does not appear in any higher scoring

protein, it is shown in ‘‘bold’’. Thus, the ‘‘bold red’’ match is the

highest scoring match to a particular spectrum listed under the

highest scoring protein containing that match. To evaluate the

false discovery rate (FDR), we performed a decoy database search

against a randomized decoy database created by Mascot using

identical search parameters and validation criteria. FDR was

calculated as D/R6100%, where D and R are the number of

matches above identity threshold using the decoy and real

databases, respectively.

Selecting peptides for quantitation
Mascot search results were exported in XML format and raw

data files from Waters SYNAPTH G2 HDMS mass spectrometer

were converted to mzXML format using massWolf (Institute for

Systems Biology, Seattle, WA, USA). Data files in XML and

mzXML formats were analyzed using Multi-Q software (v1.6.5.4)

[36] to detect signature ions (m/z = 114, 115, 116 and 117) and

select peptides satisfying all the following four criteria: 1) the

peptide is labeled with iTRAQ tags; 2) the peptide is considered as

confidently identified (the peptide has ion score higher than the

Mascot identity score (P,0.05)); 3) the peptide is unique (non-

degenerate); 4) the iTRAQ signature ion peak intensity (ion count)

of the peptide is within the dynamic range (the peak intensity of

each iTRAQ signature ion must be .0, the average of the peak

intensities of all iTRAQ signature ions must be $30). Only

peptides satisfying the above four criteria were considered as

qualified peptides and applied for further analysis. We ensured

that the percentage of peptides indeed labeled with iTRAQ tags in

every dataset was over 99%.

iTRAQ signal normalization
Before quantitation of the expression of each protein, we first

normalized the peak intensity (ion count) of the iTRAQ signature

ion (hereafter referred to as peptide iTRAQ signal), which was

used for calculating protein abundance ratios. We have tried seven

different normalization methods (Method 1 and 3–7 in Method

S1) and chose the optimal normalization method (Method 2), as

described below.

Each of the proteomic experiments performed in this study

contained four different cell states, A, B, C, and D labeled with

iTRAQ tags m/z = 114, 115, 116, and 117, respectively. For

peptide i in cell state X, the original peptide iTRAQ ratio rX ið Þ0 is

calculated as follows:

rX ið Þ0~ xi
0

ai
0

where xi
0 and ai

0 denote the original peptide iTRAQ signal

representing the abundance of peptide i in cell state X and A ,

respectively. The peptide iTRAQ ratio represents the relative peak

intensity of the iTRAQ signature ion m/z 114, 115, 116 or 117 to

the iTRAQ signature ion m/z 114.

Next, the original log2 peptide iTRAQ ratio of peptide i,

log2½rX (i)0� is calculated.

The normalization is performed to make

MX i[Ið Þ~0

where MX i[Ið Þ denotes the median of the normalized log2

peptide iTRAQ ratio log2½rX (i)� of all peptides i belonging to I in

cell state X. I is the set containing all qualified peptides in the

dataset, which satisfy the four criteria described above; rX ið Þ is the

normalized peptide iTRAQ ratio calculated from the normalized

iTRAQ peak intensity xi.

To achieve the above normalization, the normalized peptide

iTRAQ signal xi is calculated as follows:

xi~xi
0:NX

where NX is the normalization factor, which is expressed as

NX ~2{MX
0

where MX
0 denotes the median of log2½rX (i)0� of all peptides i

belonging to I. Normalized peptide iTRAQ signals were used for

calculating protein abundance ratios.
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Protein quantitation
For determination of the relative expression of proteins in two

different cell states, C and T, the relative protein abundance ratio

T/C of protein p in two different cell states, C and T, is expressed

as

T

C
~

P
i[P

tiP
i[P

ci

where ci and ti denote the normalized peptide iTRAQ signal

representing the abundance of peptide i in cell state C and T,

respectively; P is the set containing qualified peptides assigned to

protein p.

We have checked that over 90% of proteins in each dataset

were quantified and had the protein abundance ratios.

Selection of differentially expressed proteins
For both the small-scale and the large-scale experiments, there

were two biological sample replicates in every condition. In other

words, two control tumors (C1 and C2) and two citreoviridin-

treated tumors (T1 and T2) from a total of four different mice were

analyzed. Therefore, each protein identified had four protein

abundance ratios, T1/C1, T2/C2, T2/C1 and T1/C2, in an

experiment. We calculated the R value of each protein, which is

expressed as

R~
1

2
log2

T1
:T2

C1
:C2

� �
~

1

2
log2

T1

C1

� �
zlog2

T2

C2

� �� �

~
1

2
log2

T2

C1

� �
zlog2

T1

C2

� �� �

~
1

4

log2
T1
C1

� �
zlog2

T2
C2

� �
zlog2

T2
C1

� �
zlog2

T1
C2

� �
2
64

3
75

The R value is also the average of the log2 of these protein

abundance ratios. Besides, we calculated the median of the R value

(MR) in the large-scale experiments. On the other hand, the

standard deviation of the R value (sR) of each protein can be

calculated as follows:

sR~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
log2

C2

C1

� �� �2

z
1

2
log2

T2

T1

� �� �2
s

where C2/C1 and T2/T1 are the protein abundance ratios of two

control tumors (C1 and C2) and two citreoviridin-treated tumors

(T1 and T2), respectively.

To select proteins which are differentially expressed between

control and citreoviridin-treated tumors, errors in the R value

should be first considered. The measurement errors in experi-

ments and individual variations among tumors from different mice

cause errors in the R value. These errors cannot be accounted for

by the difference between the proteomes of control and

citreoviridin-treated tumors. To estimate the errors, C2 and T2

of the R value equation are exchanged to calculate the S value of

each protein, which is given by:

S~
1

2
log2

T1
:C2

T2
:C1

� �
~

1

2
log2

T1

C1

� �
{log2

T2

C2

� �� �

If there are no measurement errors and individual variations, the S

value should be equal to zero. The S value of each protein

quantified in the large-scale experiment was calculated to estimate

the measurement errors in experiments and individual variations.

In reality, the S values are not zero due to the errors. Therefore,

the distribution of all the S values can be deemed as the

distribution of errors. Assuming that the errors follow a normal

distribution, 1.96-fold of the standard deviation (1.96 S.D.) of the S

values (1.96 sS) calculated from the large-scale experiment is

statistically significant (P,0.05) and can be taken as the cut-off

value for selecting differentially expressed proteins. In the small-

scale and large-scale experiments, proteins with R value larger

than (MR + 1.96 sS) (up-regulated) or smaller than (MR - 1.96 sS)

(down-regulated) were selected as differentially expressed. MR is

the median of the R value and sS is the standard deviation of the S

values calculated by the data in the large-scale experiment.

The duplicate experiment, containing two replicate prepara-

tions of both controls (C1a and C1b) and citreoviridin-treated (T1a

and T1b) tumor samples, is suitable for estimation of the

measurement errors in experiments. Subsequently, the individual

variations between biological replicates of samples can be

measured. The S value of each protein in the duplicate experiment

was also calculated as follows:

S~
1

2
log2

T1a
:C1b

T1b
:C1a

� �
~

1

2
log2

T1a

C1a

� �
{log2

T1b

C1b

� �� �

The standard deviation (S.D.) of S values from the duplicate

experiment (sS(t)) was calculated. The individual variation resulting

from biological replicates of samples (sS(b))was expressed as:

sS(b)
2~sS

2{sS(t)
2

where sS is the S.D. of S values calculated from the large-scale

experiment, which represents the total measurement errors and

individual variations among biological replicates of samples.

Integration of differentially expressed human proteins
Proteomic data was searched against the combined sequence

database of the Swiss-Prot human database and the Swiss-Prot

mouse database, followed by selecting differentially expressed

proteins as described previously. To select only human proteins

from all the differentially expressed proteins, protein inferencing

from three situations was performed as described: 1) if a set of

peptides matched only human protein, then this protein was

selected; 2) if a set of peptides matched only mouse protein, then

this protein was excluded; 3) if a set of peptides matched both

human and mouse proteins (these proteins are conserved between

human and mouse), then this protein was selected. With the above

strategy, differentially expressed human proteins were selected.

Subsequently, we took the union of differentially expressed human

proteins acquired from both small-scale and large-scale experi-

ments to form the human differential proteomic profiling induced

by citreoviridin, which was later analyzed by bioinformatics

methods.

Bioinformatics analysis
We analyzed the human differential proteomic profiling

induced by citreoviridin using bioinformatics methods to investi-

gate the effects of citreoviridin on lung cancer xenografts. For

Gene Ontology (GO) analysis, DAVID Bioinformatics Resources
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version 6.7 [29,30] was used for functional annotation of GO

terms biological processes (GOTERM_BP_FAT). The differen-

tially expressed proteins were uploaded and analyzed using

functional annotation clustering with human background, high

stringent clustering option and enrichment threshold set as 0.05.

The functional annotation clustering is designed to reduce the

redundancy of GO annotations. For the analysis of only down-

regulated proteins, the medium stringent clustering option was set

and enrichment threshold was set as 0.05.

MetaCoreTM databases and software version 6.10 build 31731

(GeneGo, St. Joseph, MI, USA) were used to map the differentially

expressed human proteins. For pathway map analysis, the list and

expression level data of differentially expressed proteins was

uploaded and the intersection between the proteins in our data

and the proteins of all pre-existing pathway maps was calculated.

The pathway maps were ordered based on the significance of

associating with our protein dataset. We also used the ‘‘Analyze

network’’ option to build sub-networks enriched with the

differentially expressed proteins as seed nodes. Sub-networks were

ranked by p-value and interpreted in terms of Gene Ontology

processes.

Western blotting
Proteins for western blotting were extracted from two biological

replicates of control and citreoviridin-treated tumors. For electro-

phoresis, 20 mg protein for each sample was mixed with 56sample

buffer (250 mM Tris-HCl, pH 6.8, 20% (w/v) SDS, 50% (v/v)

glycerol, 40% (v/v) b-mercaptoethanol, 0.25% (w/v) bromophe-

nol blue) and incubated at 95uC for 5 min. Proteins were subjected

to an 8% polyacrylamide gel in SDS-PAGE and the electropho-

resis was run at 100 V for 90 min. After electrophoresis, proteins

were transferred to a 0.45 mm polyvinylidene fluoride (PVDF)

membrane (Millipore, Bedford, MA, USA) at 20 V for 45 min.

Blocking was performed in 5% (w/v) nonfat milk in PBS

containing 0.1% (v/v) Tween 20 (PBST) at room temperature

for 1 h. Subsequently, the membrane was incubated with ENO1

antibody (1:2500) for a-enolase, PCK2 antibody (1:1000) for

PEPCK-M, GPI antibody (1:1250), MDH1 antibody (1:25),

PGK1 antibody (1:125), ALDOC antibody (1:250) and LDHB

antibody (1:50) at 4uC overnight. The membrane was then

incubated with anti-rabbit IgG-HRP (1:100000) at room temper-

ature for 1 h. For actin, the membrane was incubated with anti-

actin antibody (1:5000) at room temperature for 2 h and

incubated with anti-mouse IgG-HRP (1:100000) at room temper-

ature for 1 h. The immunoblots were all visualized using

Immobilon Chemiluminescent HRP substrate. The membrane

of ENO1 and PCK2 was exposed to X-ray film (Fuji, Tokyo,

Japan), while the images of others were captured on FluorChem M

(Proteinsimple, Santa Clara, CA, USA). Scanned X-ray films or

captured images of western blots were quantified by Kodak 1D

image analysis software (Eastman Kodak Co, Rochester, NY,

USA). The band intensities were first normalized to the intensity of

actin, followed by averaging the intensities of two biological

replicates of control samples and treatment samples, respectively.

Fold change of protein expression (T/C) was calculated by dividing

the intensity of control group by the intensity of treatment group.

Supporting Information

Method S1 Seven different normalization methods and
evaluation process of the seven different normalization
methods.

(PDF)

Figure S1 The experimental design and data analysis
process of the iTRAQ duplicate experiment. Tumor

samples from control and citreoviridin treatment mice were both

separated into two samples and labeled with different iTRAQ tags.

For reproducibility assessment, the intensities of iTRAQ signature

ions of selected peptides were plotted.

(TIF)

Figure S2 The experimental design and data analysis
process of the iTRAQ small-scale experiment and large-
scale experiment. Two biological replicates of both control and

citreoviridin-treated tumor samples were labeled with different

iTRAQ tags. For the small-scale experiment, combined iTRAQ-

labeled peptides were directly analyzed by LC-MS/MS. For the

large-scale experiment, combined iTRAQ-labeled peptides were

first fractioned by SCX chromatography and each fraction was

individually analyzed by LC-MS/MS. The cut-off values for

selecting differentially expressed proteins were calculated from the

S values acquired from the large-scale experiment. Subsequently,

the protein abundance ratios were used for calculating the R values

and selecting differentially expressed proteins by comparing with

the cut-off values.

(TIF)

Figure S3 The distribution of the S values in the
duplicate experiment. The S value of each protein was

calculated by the protein abundance ratios T1a/C1a and T1b/C1b

in the duplicate experiment. The standard deviation of the S value

was 0.3473. sS(t): standard deviation of the S values.

(TIF)

Figure S4 Top network: macromolecule catabolic pro-
cess and ubiquitin-regulated cell cycle network. p-

value = 3.38610211. Blue circles indicate differentially expressed

proteins, which were identified in experiments.

(TIF)

Table S1 The proteomic data of the duplicate experi-
ment. S1-1: Information of proteins identified in the duplicate

experiment. S1-2: The peptide iTRAQ signals of proteins

identified in the duplicate experiment.

(XLSX)

Table S2 The proteomic data of the small-scale exper-
iment. S2-1: Information of proteins identified in the small-scale

experiment. S2-2: The protein abundance ratios of proteins

identified in the small-scale experiment. S2-3: The R values of

proteins identified in the small-scale experiment.

(XLSX)

Table S3 The proteomic data of the large-scale exper-
iment. S3-1: Information of proteins identified in the large-scale

experiment. S3-2: The protein abundance ratios of proteins

identified in the large-scale experiment. S3-3: The R values of

proteins identified in the large-scale experiment.

(XLSX)

Table S4 Normalized data of the duplicate experiment
obtained from seven different normalization methods.
The S values of proteins identified in the duplicate experiment

obtained by using the normalization methods.

(XLSX)

Table S5 Normalized data of the large-scale experiment
obtained using normalization method 1 and method 2.
S5-1: The S values of proteins identified in the large-scale

experiment by using normalization method 1. S5-2: The protein

abundance ratios C2/C1 and T2/T1 of proteins identified in the
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large-scale experiment by using normalization method 1. S5-3:

The S values of proteins identified in the large-scale experiment by

using normalization method 2. S5-4: The protein abundance

ratios C2/C1 and T2/T1 of proteins identified in the large-scale

experiment by using normalization method 2.

(XLSX)

Table S6 The S value calculated by normalization
method 1 and 2 in the large-scale experiment.
(PDF)

Table S7 Calculation of cut-off values and estimation of
individual variations among biological replicates of
samples. S7-1: Calculation of cut-off values for selecting

differentially expressed proteins. S7-2: Calculation of the varia-

tions resulting from the biological replicates of samples.

(XLSX)

Table S8 List of differentially expressed human pro-
teins between control and citreoviridin-treated tumors.
(XLSX)

Table S9 The results of Gene Ontology biological
process clustering enrichment analysis. S9-1: Gene

Ontology biological process clustering enrichment analysis of the

differential proteome induced by citreoviridin in humans. S9-2:

Gene Ontology biological process clustering enrichment analysis

of down-regulated human proteins with citreoviridin treatment.

(XLSX)

Table S10 The results of pathway map analysis and
network analysis. S10-1: Pathways associated with differen-

tially expressed human proteins determined by MetaCore pathway

map analysis. S10-2: Networks associated with differentially

expressed human proteins determined by MetaCore network

analysis.

(XLSX)

Table S11 Gene Ontology biological process clustering
enrichment analysis of down-regulated proteins with
citreoviridin treatment.
(PDF)

Table S12 Top 5 networks of the differential proteome
induced by citreoviridin in humans.

(PDF)

Spectra S1 The information of single-peptide-based
protein identifications in the duplicate experiment.

(PDF)

Spectra S2 The information of single-peptide-based
protein identifications in the small-scale experiment.

(PDF)

Spectra S3 The information of single-peptide-based
protein identifications in the large-scale experiment
(part 1).
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protein identifications in the large-scale experiment
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(part 3).

(PDF)
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