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Introduction

Collagen is the most abundant protein in the body. It plays 
critical roles in many supporting and connecting tissues such 
as tendon, ligament, bone, blood vessels, skin, etc. Collagen gel 
prepared from commercially available collagen solution have 
been broadly used as a biomaterial in tissue engineering, drug 
delivery, and wound healing for its biocompatibility, low toxic-
ity, and well-documented physical, chemical, and immunologi-
cal properties.1-3 Collagen gel is also used as three-dimensional 
model systems of extracellular matrix (ECM) in numerous stud-
ies of cell-ECM interactions under physiological and pathological 
conditions.4-7 Collagen thin film, or dehydrated collagen gel, has 
been used as a two-dimensional platform in a number of studies 
to examine cell-ECM interactions.8

As a biphasic material, collagen matrices contain a solid phase 
representing by collagen network and an interstitial fluid phase.9 
This special structure makes collagen a viscoelastic material. The 
interstitial water can be assorted into two different types: tightly 
bound with collagen molecules and “free” or bulk like.10 The 
tightly bound water is believed to play an important role in sta-
bilizing collagen structure by forming hydrogen bonds between 
collagen molecules and is not easily lost. The free water are the 
ones usually exchanges. The hierarchical structure of collagen, 
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first unveiled by Kastelic et al.,11 is believed to be responsible 
for the necessary elastic strength and viscoelastic responses. 
Viscoelasticity is important for force/energy storage, transmis-
sion, and dissipation in biological tissues.12

To study the mechanical properties of collagen gel, direct 
measurements using uniaxial tensile testing,13-15 rheological 
method,16,17 dynamic mechanical analysis,18 and noninvasive 
microscopy approaches17,19,20 have been used in previous stud-
ies. Uniaxial tensile test has also been used to study the elastic 
property of collagen thin film.21,22 Tensile stress relaxation test 
has been broadly used to understand the viscoelastic properties 
of many materials. Previous studies have shown that it can effec-
tively demonstrate the chemical and microstructural changes 
on the macroscopic viscoelastic properties.23 However the rela-
tionship between tissue level mechanical responses and micro-
level structural changes is still not well understood. Further 
studies are needed to better understand the stress relaxation 
mechanisms.

Viscoelastic biomaterials likely contain a continuous spec-
trum of relaxation time constants.24 In the present study, the 
time-dependent distribution spectrum σ(τ) is obtained through 
numerical inverse Laplace transform. Investigating the spectrum 
in terms of the number of peaks, time constants, and peak inten-
sity was found to appropriately demonstrate the main properties 



e24651-2	 Biomatter	 Volume 3 Issue 3

Results

Figure 1 shows the averaged (n = 3) tangent stiffness calcu-
lated from the equi-biaxial tensile stress-strain data of collagen 
matrices. The tangent modulus of dehydrated collagen thin film 
is about one order of magnitude higher than collagen gel. The 
effect of GP concentration on the stiffness of the matrix is more 
obvious at strains below ~2%, although the tangent moduli of 
collagen matrices crosslinked with 0.25% GP remains to be the 
highest for the entire strain range.

Figure 2 shows the representative stress relaxation curves 
obtained from three repeated testing of the same collagen gel 
sample. Collagen gel exhibits significantly more stress relax-
ation in the first test. The repeatability is highly improved in the 
subsequent cycles of stress relaxation tests. Although not shown 
here, collagen thin film shows similar behavior with the initial 
stress relaxation behavior significantly different from subsequent 
testing.

Effect of initial stress levels on stress relaxation behavior of 
collagen matrices was investigated. Each sample was tested at 
multiple initial stress levels. To better illustrate the initial stress 
level dependency of stress relaxation, the rate of stress relaxation 
at each initial stress level was obtained by taking the slope of the 
semi-log fit of the stress relaxation plots. As shown in Figure 3, 
multiple stress relaxation tests demonstrate a linear increase in 
the rate of stress relaxation with higher initial stresses for both 
collagen gel and thin film (n = 2).

The continuous relaxation spectrum obtained from CONTIN 
analysis is plotted in Figures 4 and 5 for collagen gel and thin 
film, respectively. The effect of crosslinking on stress relaxation 
was studied by varying the GP concentration at 0.03%, 0.1%, 
and 0.25%. At each GP concentration, collagen matrices were 
tested at different initial stress levels. It is noted from the relax-
ation spectrum that the intensity of the peaks as well as the area 
under the spectrum increases with increasing initial stress level 
for both collagen gel and thin film. Usually there are three peaks 
in the continuous distribution curve located at short relaxation 
time (0.3 s ~1 s), medium relaxation time (3 s ~90 s), and long 
relaxation time (> 200 s). However, the number of peaks can 
increase with higher initial stress levels, as shown for the 0.1% 
and 0.25% GP crosslinked collagen matrices in Figures 6 and 7.

To study the effect of crosslinking on the stress relaxation 
behavior of collagen matrices, in Figures 6A and 7A we plotted 
the normalized biaxial stress relaxation curves. Stresses were nor-
malized to the initial stresses at time t = 0. To eliminate the effect 
of initial stress levels on the rate of stress relaxation, samples with 
different crosslinking were tested at the initial stresses of 12 ± 
0.2 kPa and 85 ± 2 kPa for collagen gel and thin film, respec-
tively.30 For collagen thin film in Figure 7A, the rate of stress 
relaxation is almost independent on crosslinking. For collagen gel 
in Figure 6A, however, the rate of stress-relaxation shows obvious 
inverse dependency on crosslinking. More crosslinked collagen 
gel relaxes slower than the less crosslinked ones, which suggests 
that less crosslinked collagen gels are more viscous.

The effect of crosslinking on the stress relaxation behavior 
of collagen matrices can also be seen from the relaxation time 

of viscoelastic behaviors.25,26 The intensity of the peak reflects 
the amount of dissipated energy during relaxation. The number 
of peaks and time constants are often correlated with specific 
molecular architectures; as a result it can be used as an approach 
to understand the structural behavior of biomaterials, as well as a 
useful tool to distinguish materials.27,28

The present study is designed to understand the stress relax-
ation mechanisms in collagen matrices with the effects of cross-
linking and hydration on the viscoelastic properties of collagen 
matrices. We have previously studied the effects of crosslinking 
on the elastic properties of collagen gel.29 Some of the experi-
mental approaches were adopted in the present study. Genipin 
(GP) solution was used to induce crosslinking in collagen matri-
ces. Biaxial stress relaxation tests were performed to characterize 
the viscoelastic behavior of collagen matrices. Viscoelasticity was 
also studied with the effect of initial stress levels. The relaxation 
time distribution spectrum is obtained from stress relaxation 
data by means of inverse Laplace transform. This spectrum is 
employed to understand the mechanisms of stress relaxation in 
collagen network.

Figure 1. Averaged tangent moduli obtained from biaxial tensile tests 
of collagen gel and thin film crosslinked with 0.03%, 0.1% and 0.25% GP. 
Direction of arrows indicates increased crosslinking.

Figure 2. Stress relaxation preconditioning results showing the relax-
ation behavior of collagen gel (crosslinked with 0.3% GP) subjected to 
three cycles of repeated stress relaxation tests.
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spectrum in Figures 6B and 7B. For both 
collagen matrices, the relaxation times 
at each peak are similar for different 
crosslinking. For collagen gel, there is a 
decrease in peak intensity for higher GP 
concentration in general, although the last 
peak shows the most prominent decrease 
in intensity. However collagen thin film 
shows little variation of peak intensity as 
the GP concentration changes.

Discussion

Hydration level is important to many 
connective tissues in order to main-
tain their normal biomechanical func-
tions.31-33 The dehydration process may 
change the structure of collagen network 
by deducing the space between molecules as well as affecting the 
inter-and intra-molecular chemical bonds.34 Our macroscopic 
mechanical testing results show that the stiffness of collagen thin 
film is about one order of magnitude higher than the hydrated 
collagen gel (Fig. 1). McDaniel et al. (2007) found that the con-
tact stiffness of collagen fibrils increases an order of magnitude 
when dehydrated. The changes of hydrogen bonds and network 
structure during dehydration were believed to cause the increased 
stiffness. Infrared reflection spectroscopy showed a strengthening 
and shortening of hydrogen bonds within the triple helix dur-
ing the dehydration process.35 Using Raman spectroscopy, Leikin 
et al.36 demonstrated the structural role for hydration layers in 
keeping the spacing between collagen fibrils. The tighter pack-
ing of fibrils during dehydration resulted in enhanced mechani-
cal rigidity. Also, molecular dynamics simulations of a collagen 
like peptide showed that the number of intra-molecular hydrogen 
bonds increased due to the absence of water and the molecule 
tended to be stiffer.34

Both experimental and modeling efforts have been made to 
determine the mechanisms by which strain is dispersed within 
the tissue. Tendon has received considerable interest in many 
studies for its simple aligned structure and well documented vis-
coelastic nature. Puxkandl et al. used in situ X-ray diffraction 
to measure simultaneously the elongation of the collagen fibrils 
inside the tendon and of the tendon as a whole.37 Their study 
demonstrates that the deformation takes place in the individual 
fibrils as well as in the matrix between fibrils. They also mod-
eled tendon as an interacting viscoelastic system of the fibrils 
and the proteoglycan matrix described by two different Kelvin-
Voigt models in series. The viscosity of tendon collagen was 
assumed to be due to the viscosity of the fibril and the matrix. 
Screen used confocal microscopy in conjunction with mechani-
cal testing to examine the mechanisms of stress relaxation in 
tendon.38 Their study suggests that the relaxation behavior is 

Figure 3. The rate of stress relaxation vs. initial stress levels for (A) collagen gel, and (B) collagen 
thin film crosslinked with 0.03%, 0.1%, and 0.25% GP. Solid lines are linear fit to aid viewing.

Figure 4. Relaxation time distribution spectra obtained from biaxial 
stress relaxation tests of collagen gel under different initial stress levels. 
Collagen gel is crosslinked with (A) 0.03%, (B) 0.1% and (C) 0.25% GP.
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the viscoelastic behavior of collagen fibril may involve molecular 
sliding within the fibril.40

In the present study, three peaks were observed in the relax-
ation spectra for most of the collagen matrices. The time con-
stants corresponding to these peaks are between 0.3 s ~1 s, 3 s ~90 
s, and > 200 s. Following previous microstructural observations, 
it is reasonable to hypothesis that the three peaks in the relax-
ation spectra indicate that the relaxation behavior of collagen 
matrices through hierarchy can be depicted as inter fiber relax-
ation; inter fibril relaxation, and fibril relaxation with increased 
order of relaxation time constants. This is in agreement with the 
fact that intra fibril crosslinks is the most stable part under long-
term load,39,41 and therefore the fibril relaxation is likely to be the 
slowest. Previous studies have shown that the stress–relaxation 
behavior of collagen based material was well described by a func-
tion with three exponential decay terms which reflecting the 
short-, medium- and long-term relaxation components in the tis-
sue.42-44 According to study by Sundararaghavan et al., collagen 
fibers are observed in GP crosslinked collagen gel.45 However it 
is important to note that crosslinking can affect the relaxation 
rate and thus the time constants. In a recent work, atomic force 
was used to assess the viscoelastic properties of collagen fibrils 
(Yang et al., 2012). The authors found that the two time con-
stants for native collagen fibrils, attributing to inter-fibril and 
molecular sliding, are roughly 1 s and 60 s, but for crosslinked 
collagen fibrils they are roughly 3 s and 250 s, which are roughly 
in the range of time constants for inter-and intra-fibril molecular 
sliding mechanisms suggested by our study.

Initial stress/strain level can also change the relaxation 
rate. The relaxation spectra provide insights on the effects of 
mechanical stresses on the major relaxation components in col-
lagen matrices. Our results show that the rate of stress relax-
ation of collagen matrices increases linearly with initial stress 
level (Fig. 4). Similar trend has been observed in previous stud-
ies on skin tissue46 and tendon.47 It is noted that opposite rela-
tionship between stress level and stress relaxation was reported 
in ligament,47,48 i.e., the rate of stress relaxation decreases with 
higher stress level. While the reason is currently unclear, studies 
combining stress relaxation distribution spectrum analysis and 
microstructural observations may provide some insight.

The relaxation spectra demonstrate an increase in the inten-
sity of peaks with higher initial stress level (Figs. 4 and 5). It is 
also noted that there is a more significant increase in the inten-
sity of the long-term peak with higher initial stress levels. The 
long-term relaxation component has been attributed to more sta-
ble polymer networks.28,49 For collagen matrices, this long-term 
relaxation component is associated with the relaxation in the 
fibrils. The covalent crosslinks between collagen molecules and 
microfibrils plays an important role in stabilizing the fibrils and 
the collagen network. Periodic banding and fibril diameter was 
observed to change significantly only at higher tissue strains.50 
The appreciable increase in the intensity of the long-term peak 
in the relaxation spectra at higher stress levels from our results 
further suggests the engagement of collagen fibrils at higher lev-
els of tissue strain. For some collagen matrices the number of 
peaks increases from three to four at higher initial stress levels. 

predominated by fiber sliding mechanisms, with possible fibril 
sliding as the applied loads become greater. In a recent study 
Gupta et al. employed high time resolutions synchrotron X-ray 
diffraction and confocal microscopy to investigate the struc-
tural reorganization at the nano-and micro-length scales of 
tendon during stress relaxation.39 The viscoelastic behavior 
of tendon was modeled by serially coupling three viscoelastic 
elements at the fibril, inter-fibril, and inter-fiber levels. A stiff 
Kelvin-Voigt element represents the collagen fibrils and two 
Maxwell elements correspond to the inter-fibril and inter-fiber 
matrices. Molecular modeling results by Gautieri et al. suggest 

Figure 5. Relaxation time distribution spectra obtained from biaxial 
stress relaxation tests of collagen thin film under different initial stress 
levels. Collagen gel is crosslinked with (A) 0.03%, (B) 0.1%, and (C) 0.25% 
GP.
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Conclusions

Understanding the mechanisms controlling the viscoelastic prop-
erties of collagen matrices has profound importance for biomate-
rial research. Here we performed a systematic study on the effects 
of hydration, crosslinking, and mechanical loading on the stress 
relaxation behavior of collagen matrices using coupled experi-
ment-modeling method. Relaxation time distribution spectrum 
obtained from inverse Laplace transform provides useful infor-
mation on understanding the underlying microstructural mecha-
nisms. Our study shows that relaxation at the fiber, inter-fibril, 
and fibril level plays important roles in the viscoelastic behavior 
of collagen matrices. The rate of stress relaxation increase linearly 
with initial stress levels for both collagen gel and thin film. The 
appreciable increase in the intensity of the long-term peak in the 
relaxation spectra at higher stress levels suggests the engagement 
of collagen fibrils at higher levels of tissue strain. The relaxation 

Specifically, the middle peak from the relax-
ation spectra splits into two peaks resulting in 
the increase of peak numbers. The number of 
peaks in the spectrum reflects the amount of 
heterogeneity of the material.26,51 From poly-
mer science studies, it is widely accepted that 
molecular weight and structure of polymers 
are linked to the viscoelastic behavior of the 
material. The splitting of the middle peak in 
the relaxation spectrum indicates increased 
structural heterogeneity at the fibril level 
with mechanical loading. Such correlations 
may shed light on understanding the complex 
structure-function relationship in collagen 
matrices.

Collagen crosslinking plays important 
roles in the biological and biomechanical 
functions of connective tissues. Recent fun-
damental and clinical studies have found 
that collagen crosslinking in native tissues 
have a great close correlation with osteopo-
rosis and cardiovascular diseases.52,53 In the 
present study, the dependence of relaxation 
on crosslinking was studied by varying GP 
concentration. Increase of crosslinking would 
develop lateral network linkages between col-
lagen molecules and microfibrils54 and cause 
dehydration of the fibers by drawing the 
molecules closer,55 which prevents slippage 
of inter and intra fibrils. Crosslinking also 
reduces the swelling56 and increases fiber vol-
ume fraction,57 which prevent the relaxation 
induced by fiber sliding. Consequently, less 
crosslinked collagen gel demonstrates faster 
stress relaxation, as shown by the results from 
biaxial stress relaxation (Fig. 6). Similar rela-
tionships between crosslinking and viscosity 
of collagen gel have been reported in previ-
ous studies.19,56,57 Furthermore, the variance 
among the intensity of long time relaxation peaks is much more 
significant than the other two, which indicate that crosslinking 
has a greater effect on preventing the slippage between molecules 
or microfibrils. However the rate of stress relaxation of collagen 
thin film doesn’t seem to have any obvious dependency on cross-
linking or GP concentration (Fig. 7). The relaxation spectra are 
similar for different GP concentration, which demonstrates that 
the contribution from different relaxation components are not 
affected much by GP crosslinking. It is possible that the hierar-
chical structures of the collagen thin film is already extremely 
tight due to dehydration, which would prevent fiber and fibril 
sliding. Such kind of effects may weaken the contribution from 
chemical crosslinking. In the present study, we contribute the 
stress relaxation mechanisms to fiber sliding, inter-fibril sliding 
and intra-fibril sliding. However the movement/rearrangement 
of water molecules upon applied mechanical stresses is impor-
tant for these events.

Figure 6. (A) Effect of crosslinking on the stress relaxation behavior of collagen gel cross-
linked with 0.03%, 0.1%, and 0.25% GP. For each sample, the relaxation data in the x-and 
y-direction are averaged. Stresses were normalized to the initial stresses at time t = 0. (B) The 
corresponding relaxation time distribution spectra.

Figure 7. (A) Effect of crosslinking on the stress relaxation behavior of collagen thin film 
crosslinked with 0.03%, 0.1%, and 0.25% GP. For each sample, the relaxation data in the x-and 
y-direction are averaged. Stresses were normalized to the initial stresses at time t = 0. (B) The 
corresponding relaxation time distribution spectra.
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characterized using a planar biaxial 
tensile tester.58 During biaxial ten-
sile testing, a roughly square-shaped 
sample was mounted so that it could 
be stretched along the x and y in-
plane directions simultaneously. 
Four carbon dot markers were 
placed at the center of the sample, 
and a CCD camera was used to track 
the position of markers from which 
the tissue strains in both directions 
can be determined throughout the 
deformation. The load applied to 
the specimen was measured and 
recorded using load cells during 
the loading and unloading pro-
cesses. Samples were preconditioned 

equi-biaxially for 8 cycles to achieve a repeatable mechanical 
response. A half cycle time of 10 s was used. The samples were 
then subjected to 8 cycles of equi-biaxial loads with the maxi-
mum loads varying from 40 g to 70 g for hydrated collagen gel 
and from 70 g to 100 g for collagen thin film. Cauchy stress and 
logarithm strain was calculated59 and used for the description of 
the mechanical behavior of collagen matrices under biaxial ten-
sile test. Tangent stiffness was obtained by taking the derivative 
of the stress-strain curve. To do so, a six-order polynomial is fit 
to the loading-unloading stress-strain curves. Tangent stiffness 
from the x-and y-directions are then averaged for each sample. 
Three samples were tested under each hydration and crosslink-
ing condition.

Stress relaxation test. Biaxial tensile test was first performed 
as described above to reach sychronization. Immediately after 
the sample was loaded to the target stretch with a rise time of  
5 s and held at this constant stretch for 600 s. The load in both 
loading directions was recorded during the holding period. 
Stress relaxation preconditioning tests were first performed to 
achieve repeatable stress relaxation behavior. Specifically, Three 
cycles of stress relaxation tests were performed to confirm the 
repeatability of the viscoelastic behavior. Stress relaxation exper-
iments were performed at different initial strain levels. Stress at 
each strain level are reported during the holding period.30 The 
relaxation time distribution spectrum was obtained from the 
stress relaxation experiment data through inverse Laplace trans-
form using the CONTIN program.60 Usually there are mul-
tiple peaks in the relaxation spectrum owing to the different 
stress relaxation components. The peaks and the corresponding 
relaxation time in the relaxation spectrum reflect the dominant 
relaxation processes.
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spectrum also suggests increased fibril structural heterogeneity 
at higher initial stress level. Future studies are needed to con-
firm such microstructural changes.

Materials and Methods

Sample preparation. Collagen gel. Nutragen Type I collagen 
solution (6 mg/ml) was purchased from Advanced BioMatirx. 
Collagen was dissolved in 0.01 N HCl with a pH value of 
approximately 2.0. Neutralized collagen solution was prepared 
by quickly mixing Nutragen collagen solution, 10× PBS (Fisher 
Scientific) and 0.1 M NaOH (Fisher Scientific) solution with 
a ratio of 8:1:1 at 4°C with a final collagen concentration of  
4.8 mg/ml. The pH value of the solution was adjusted to 
between 7.2~7.4. The neutralized solution was transferred into 
a custom made square reservoir that sits in a Petri dish. On each 
side of the reservoir, a notch was cut to fit the polyethylene bars 
(Fisher Scientific) pre-threaded with nylon sutures. The solu-
tion was incubated at 37°C for 12 h for gelation. During gela-
tion, the polyethylene bars were polymerized into the collagen 
gel (Fig. 8A). The collagen gel was then immersed in 0.03%, 
0.1% and 0.25% GP solutions for another 6 h in the incubator 
for crosslinking.28 The collagen gel was then rinsed with dis-
tilled water to remove the residual GP solutions. The dimension 
of the collagen gel samples are approximately 20 × 20 × 1 mm.

Collagen thin film. Neutralized collagen solution was pre-
pared as described above. The solution was poured into Petri 
dishes and incubated at 37°C for 12 h for gelation. Genipin 
solutions of 0.03%, 0.1%, and 0.25% were added into the 
dishes for further crosslinking for another 6 h. The collagen gel 
was then rinsed with distilled water to remove the residual GP 
solutions, and dried in air at room temperature. Collagen thin 
film, about 0.3 mm in thickness, was cut into square pieces of 
about 20 × 20 mm. Each side of the thin film samples was glued 
with sand paper at the edges, which was connected to nylon 
sutures for biaxial tensile loading (Fig. 8B).

Mechanical testing. Equi-biaxial tensile test. The elastic 
properties of collagen gel (n = 3) and thin film (n = 3) were 

Figure 8. Images of (A) collagen gel with pre-threaded polyethylene bars at the edges for biaxial 
mechanical testing; and (B) collagen thin film sample with sand paper glued to the edges and sutures 
looping through the sandpaper tab.
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