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Abstract

We combine kinship estimates with traditional F-statistics to explain contemporary

drivers of population genetic differentiation despite high gene flow. We investigate

range-wide population genetic structure of the California spiny (or red rock) lobster

(Panulirus interruptus) and find slight, but significant global population differentiation

in mtDNA (ΦST = 0.006, P = 0.001; Dest_Chao = 0.025) and seven nuclear microsatellites

(FST = 0.004, P < 0.001; Dest_Chao = 0.03), despite the species’ 240- to 330-day pelagic lar-

val duration. Significant population structure does not correlate with distance between

sampling locations, and pairwise FST between adjacent sites often exceeds that among

geographically distant locations. This result would typically be interpreted as unex-

plainable, chaotic genetic patchiness. However, kinship levels differ significantly

among sites (pseudo-F16,988 = 1.39, P = 0.001), and ten of 17 sample sites have signifi-

cantly greater numbers of kin than expected by chance (P < 0.05). Moreover, a higher

proportion of kin within sites strongly correlates with greater genetic differentiation

among sites (Dest_Chao, R2 = 0.66, P < 0.005). Sites with elevated mean kinship were

geographically proximate to regions of high upwelling intensity (R2 = 0.41, P = 0.0009).

These results indicate that P. interruptus does not maintain a single homogenous pop-

ulation, despite extreme dispersal potential. Instead, these lobsters appear to either

have substantial localized recruitment or maintain planktonic larval cohesiveness

whereby siblings more likely settle together than disperse across sites. More broadly,

our results contribute to a growing number of studies showing that low FST and high

family structure across populations can coexist, illuminating the foundations of cryptic

genetic patterns and the nature of marine dispersal.
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Introduction

Determining the temporal and spatial scales of dispersal

and gene flow across species’ ranges is essential for

effective conservation and management. F-statistics

(Wright 1943) and their analogues (e.g. Nei 1973; Weir

& Cockerham 1984; Excoffier et al. 1992; Hedrick 1999)

have been the workhorses in this regard for over

65 years. However, as both the number and diversity of

genetic markers have increased, so has the demand for

analyses that can complement fixation indices and
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extend our understanding of genetic data beyond the

single marker, two-allele system pioneered by Wright

(1943). Coalescent simulations (Kingman 1982) have

emerged as the most informative techniques for distin-

guishing between historical and contemporary drivers

of population differentiation (Hey & Wakeley 1997;

Tavare et al. 1997; Rosenberg & Nordborg 2002; Rozas

et al. 2003; Drummond et al. 2005; Hickerson et al. 2006;

Hey & Nielsen 2007; Eldon & Wakeley 2009). By incor-

porating data from multiple nucleotide sequence-based

markers, these equilibrium-independent analyses can

isolate the effects of effective population size, demo-

graphic history, migration, mutation and drift summa-

rized by FST (Hart & Marko 2010; Marko & Hart 2011,

2012). However, for fragment length data such as that

generated by microsatellite markers, a number of alter-

native approaches have been advanced that can add

insight into what is driving FST patterns (reviewed in

Hedgecock et al. 2007; Lowe & Allendorf 2010).

One underutilized approach is the coupling of indi-

rect metrics of gene flow (e.g. F-statistics, Dest_Chao) with

more direct measures such as kinship or parentage

analyses (e.g. Loiselle et al. 1995; Selkoe et al. 2006;

Buston et al. 2009; Christie et al. 2010; Palsbøll et al.

2010). Broadly speaking, kinship analyses provide an

index of the relative relatedness of all genotyped indi-

viduals in a data set, and parentage is a distinct case of

kinship whereby the most likely parents of individual

juveniles are identified (Vekemans & Hardy 2004; Jones

& Arden 2003; reviewed in Blouin 2003; Jones et al.

2010). Kinship coefficients (also known as coefficients of

coancestry) are widely interpreted as the probability of

identity by descent of the genes, but they are more

properly defined as ‘ratios of differences of probabilities

of identity in state’ (Hardy & Vekemans 2002, p. 23)

from homologous genes sampled randomly from each

pair of individuals (Hardy & Vekemans 2002; Rousset

2002; Blouin 2003; Vekemans & Hardy 2004).

By comparison, F-statistics and Dest_Chao are often

blind to the relatedness of individuals; different popula-

tion samples with the same kinship structure can have

very different levels of genetic differentiation among

them and vice versa. By assessing how alleles are shared

among individuals, kinship analyses can elucidate which

locations have comparatively little ongoing genetic

exchange in situations where low FST values suggest

high contemporary population connectivity. This clarifi-

cation is important because such inferences can in fact

be due to historically high migration rates, effective pop-

ulation sizes or measurement error (Hart & Marko 2010;

Marko & Hart 2011, 2012; Faurby & Barber 2012).

Direct evidence of coancestry between individuals

provides a particularly valuable complement to F-statis-

tics when it is not possible to derive other independent

estimates of demographic connectivity such as through

the tagging and tracking of adults or larvae (e.g. Bell-

quist et al. 2008; Meyer et al. 2009; Cartamil et al. 2011;

Carson et al. 2011; L�opez-Duarte et al. 2012; reviewed in

Lowe & Allendorf 2010). In marine systems, the major-

ity of taxa have relatively sedentary adults, but a pela-

gic larval stage that persists in the water column from a

few minutes to over a year (Thorson 1950; Strathmann

1987; McEdward 1995). These larvae are notoriously dif-

ficult to track directly (Levin 2006), but the time that

larvae spend in the open ocean has led to the intuitive

expectation that the majority of marine species have

high levels of gene flow (Hedgecock et al. 2007). How-

ever, the preponderance of recent indirect genetic evi-

dence, based mostly on F-statistics, indicates that there

is generally a weak relationship between dispersal

potential inferred from pelagic larval duration (PLD)

and genetic structure (reviewed in Bradbury et al. 2008;

Shanks 2009; Weersing & Toonen 2009; Riginos et al.

2011; Selkoe & Toonen 2011). Furthermore, it is gener-

ally overlooked that indirect gene flow via multigenera-

tional stepping-stone dispersal at small scales can

mimic direct gene flow across large scales (Puebla et al.

2012). The relatively few studies that have directly mea-

sured larval dispersal through larval tagging or parent-

age analyses have bolstered the claim that many larvae

have limited dispersal and often recruit back to their

region of origin (Jones et al. 2005; Gerlach et al. 2007;

Planes et al. 2009; L�opez-Duarte et al. 2012). Due to the

nature of these direct (kinship/parentage) versus indi-

rect (F-statistics) measures of population connectivity, it

is possible that direct analyses may identify recruitment

patterns that cannot be detected using traditional

F-statistics (Waples & Gaggiotti 2006; Saenz-Agudelo

et al. 2009; Palsbøll et al. 2010). For example, Christie

et al. (2010) found little genetic differentiation (max

FST = 0.0097) among populations of bicolor damselfish

(Stegastes partitus) in Exuma Sound, Bahamas, but par-

entage analysis identified high levels of self-recruitment

at two of the eleven sampled locations. The direct iden-

tification of parent–offspring pairs resulted in very dif-

ferent management advice for this species than

interpretation based on the FST data alone.

To date, most marine kinship studies have under-

standably focused on parent–offspring identification in

reef fishes with fairly short larval durations. Here, we

show that kinship analyses can also be useful at the

opposite end of the potential dispersal continuum: the

California spiny, or red rock lobster, Panulirus interruptus

(Randall 1840), spends at least the first 8 months of its

life in the plankton, during which time it can presum-

ably disperse across its entire geographic range. Species

without barriers to dispersal are expected to exhibit no

detectable neutral genetic population structure. Here, we
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use the California spiny lobster as a model to test the

intuitive assumption of genetic homogeneity in species

with extended PLD. We demonstrate the utility of indi-

vidual-based estimates of genetic exchange in the inter-

pretation of connectivity based on F-statistics.

Methods

Study system

The California spiny or red rock lobster, Panulirus inter-

ruptus, exhibits high site fidelity during its adult phase

(Withy-Allen 2010), but has a two-phase pelagic larval

stage with a total PLD of 8–11 months (Johnson 1956,

1960; Serfling & Ford 1975). The initial phyllosoma

stage undergoes multiple moults to produce 11 verti-

cally and geographically stratified stages in the pelagic

environment (Johnson 1960; Pringle 1986). The 11th

phyllosoma stage molts into the final puerulus stage,

which settles into the lobster’s preferred juvenile habi-

tat. Panulirus interruptus can be found across a 1400-km

Pacific coast range from Monterey Bay, CA (although

very rare north of Point Concepcion) to Bahia Magda-

lena, Mexico. Throughout its geographic distribution,

P. interruptus plays an important ecological role in

structuring both kelp forest and intertidal communities

(Tegner & Levin 1983; Robles 1987; Lafferty 2004).

Spiny lobsters are also a valuable commercial and recre-

ational fisheries species in both Mexico and the USA

with a combined value of over $39 million from the

most recent estimates (Ch�avez & Gorostieta 2010; Porzio

2012).

Sample collection and DNA extraction

We collected tissue samples from 1102 P. interruptus

individuals across 17 sites located throughout the entire

Pacific coastal range from Point Conception, CA, in the

north to Bahia Magdalena (BMG), Baja California Sur,

Mexico, in the south (Fig. 1, Table 1). Samples were col-

lected nonlethally by removing a small piece of an

antenna or a leg segment from each lobster. Lobsters

were either captured by hand while Scuba diving or

obtained from commercial fishermen. Tissue samples

were preserved in 95% ethanol and stored at room tem-

perature until extracted. DNA was isolated using a

standard salting-out protocol (Sunnucks & Hales 1996),

a rapid-boil technique (Valsecchi 1998) or DNeasy Ani-

mal Tissue kits (Qiagen, Inc., Valencia, CA, USA).

Mitochondrial DNA (mtDNA)

We amplified a 494-bp fragment of cytochrome c oxi-

dase subunit I gene (COI) using species-specific primers

PintCOI-F (5′-GCTTGAGCTGGAATGGTAGG-3′) and

PintCOI-R (5′-CACTTCCTTCTTTGATCCC-3′), which

were designed from GenBank sequence #AF339460

(Ptacek et al. 2001) using PRIMER3 (Rozen & Skaletsky

2000). Polymerase chain reactions (PCRs) for each

sample were performed in a 20-ll reaction volume con-

taining 10 lL of 29 Biomix Red (Bioline, Taunton, MA,

USA), 0.125 lM each of forward and reverse primer,

5–50 ng of genomic DNA and 0.759 bovine serum

albumin. PCR was carried out on a Bio-Rad Mycycler

Thermal Cycler (Bio-Rad Laboratories Hercules, CA,

USA), with an initial denaturation step of 95 °C for

4 min, 35 cycles of denaturation (95 °C for 30 s), anneal-

ing (56 °C for 30 s) and extension (72 °C for 30 s), fol-

lowed by a final extension step of 72 °C for 10 min.

PCR products were treated with 0.75 units of Exonucle-

ase I and 0.5 units of Fast Alkaline Phosphatase (Exo-

FAP; Thermo Fisher Scientific, Waltham, MA, USA) per

7.5 lL of PCR product and incubated at 37 °C for

60 min, followed by deactivation at 85 °C for 10 min.

Purified DNA fragments were sequenced in the

forward direction with fluorescently labelled dideoxy

terminators either on an ABI 3730XL capillary sequen-

cer (Applied Biosystems, Foster City, CA, USA) by the

Advanced Studies of Genomics, Proteomics and Bioin-

formatics (ASGPB) Center at the University of Hawai’i

at M�anoa or an ABI 3130XL Genetic Analyzer (Applied

Biosystems) at the Hawai’i Institute of Marine Biology

EPSCoR Sequencing Facility. Unique sequences and

sequences with ambiguous nucleotide calls were also

sequenced in reverse to confirm sequence identity.

Sequences were edited, aligned and trimmed to a uni-

form size using SEQUENCHER 4.8b (GeneCodes Corpora-

tion, Ann Arbor, MI, USA). The alignment did not

contain any indels or frameshift mutations.

We calculated nucleotide (p) and haplotype diversity

(h) for each sampling site as described in Nei (1987)

using ARLEQUIN 3.5 (Excoffier et al. 2005). To visualize

relationships between individual sequences, we con-

structed a median-joining network (Bandelt et al. 1999)

using NETWORK 4.6.0.0 (http://www.Fluxus-engineering.

com/network_terms.htm). We investigated population

structure using an analysis of molecular variance

(AMOVA) as implemented in ARLEQUIN. We used an ana-

logue of Wright’s FST (ΦST), which incorporates a model

of sequence evolution, for both our complete data set and

pairwise population comparisons (Weir & Cockerham

1984; Excoffier et al. 1992). Using jModelTest2 (Guindon

& Gascuel 2003; Darriba et al. 2012), we determined that

the Tamura & Nei (1993) with a Ti/Tv ratio of 11.2 and

gamma parameter of 2.1 was the most appropriate

model of sequence evolution implemented in ARLEQUIN.

Global ΦST and each pairwise population ΦST were

tested for significance with 100,000 permutations. Due
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to the high heterozygosity in cytochrome c oxidase sub-

unit I gene (COI) in P. interruptus, we also calculated

Dest_Chao as an absolute measure of differentiation

between sites. The magnitude of FST is inversely pro-

portional to heterozygosity (Hedrick 2005; Meirmans

2006; Jost 2008), while Dest_Chao is less susceptible to

biases caused by genetic diversity (Bird et al. 2011). For

mtDNA, Dest_Chao (Jost 2008) was calculated with SPADE

(Chao & Shen 2009). Mantel tests using linearized FST
[FST/(1 � FST)] and the natural log of Euclidean dis-

tance (Rousset 1997) were conducted in GENODIVE 2.0b20

(Meirmans & Van Tienderen 2004) to test for isolation

by distance (IBD) among all sample sites, as well as

subsets of sites across the range (California sites, Mex-

ico sites, all island sites, all mainland/continental sites).

Microsatellite DNA

Seven previously developed microsatellites (A5, A102r,

A110, Pin29L, Pin189, Pin10 and Pin244) (Ben-Horin

et al. 2009) were amplified by PCR in a 10-lL reaction

volume containing 19 GoTaq Reaction Buffer (with

1.5 mM MgCl2 pH 8.5; Promega Corp., Madison, WI,

USA), 2 lM total dNTPs, 0.1 U GoTaq polymerase

(Promega Corp.), 6 lM each of forward and reverse pri-

mer and 20 ng of genomic DNA. PCR was carried out

using a Bio-Rad DNA Engine Dyad Thermal Cycler

with the following conditions: an initial denaturation

step of 95 °C for 3 min, 35 cycles of denaturation (94 °C
for 40 s), annealing at primer-specific annealing temper-

atures (for 40 s; see Table 1 in Ben-Horin et al. 2009)

and extension (72 °C for 40 s) and a final extension step

of 72 °C for 30 min. Forward primers were fluorescent-

ly labelled with WellRed D2, D3 or D4 dye (Beckman

Coulter Inc., Fullerton, CA, USA; see Table 1 in Ben-

Horin et al. 2009 for primer labels). Microsatellite PCR

products were sized on a Beckman Coulter CEQ 8000

capillary sequencer with a 400-bp size standard (Beck-

man Coulter Inc.). Alleles were scored using a CEQ

8000 genetic analysis system (Beckman Coulter Inc.).

Microsatellite quality control [Hardy–Weinberg equi-

librium (HWE), linkage equilibrium, scoring errors] fol-

lowed Selkoe & Toonen (2006) as detailed in Ben-Horin

et al. (2009), but expanded across all sample locations

and loci. Additionally, null allele frequency was re-cal-

culated with ML-Relate (Kalinowski et al. 2006) to enable

significance testing. We calculated observed (Ho) and

expected (He) heterozygosities at each location, as well
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Fig. 1 Map of lobster specimen collection

locations in the Southern California Bight

and Baja California, Mexico. CARP, Car-

pinteria, CA; SMI, San Miguel Island,

CA; SCI, Santa Cruz Island, CA; MLBU,

Malibu, CA; SCAT, Santa Catalina Island,

CA; SNI, San Nicholas Island, CA;

CLEM, San Clemente Island, CA; CRDO,

Islas Coronados, Mx; PTN, Puerto

Nuevo, Mx; PBDA, Punta Banda, Mx;

PBJ, Punta Baja, Mx; IGP, Isla Guada-

lupe, Mx; ODL, Laguna Ojo de Liebre,

Mx; PEU, Punta Eugenia, Mx; BTG, Bahi-

a Tortugas, Mx; ABRE, Punta Abreojos,

Mx; BMG, Bahia Magdalena, Mx. Photo

credit: Patrick W. Robinson.
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as allelic richness (A), rarefied to 25 individuals, using

the Excel Microsatellite Toolkit 3.1.1 (Park 2001) and

FSTAT (Goudet 2001), respectively. We also calculated the

effective number of alleles at each locus in GenoDive.

Overall genetic structure was analysed using an AMOVA

framework (Excoffier et al. 1992) implemented in GENO-

DIVE assuming the infinite allele model, with FST equiva-

lent to Weir & Cockerham’s h (1984). Consistent with

mtDNA (COI), microsatellite allelic diversity was like-

wise high, so we calculated Dest_Chao (Jost 2008) in addi-

tion to FST. GenoDive was used to calculate pairwise

FST and Dest_Chao for all sampling location pairs, and

FST was tested for significance using 100 000 permuta-

tions. Patterns of IBD were investigated for microsatel-

lite data in GenoDive as described above for mtDNA.

The program GESTE 2.0 (Foll & Gaggiotti 2006) was used

to calculate local FST, a site-specific metric of allelic dif-

ferentiation that accounts for the nonindependence

inherent in multiple comparisons (Balding & Nichols

1995; Hudson 1998).

Kinship

In order to further examine the factors driving the

observed FST and Dest_Chao patterns, we calculated kin-

ship coefficients (Loiselle et al. 1995) for each pair of

individuals in GENODIVE. These coefficients are based on

the probability of identity of two alleles for each pair of

homologous genes compared between each pair of

individuals. Kinship was estimated with respect to the

allele frequencies for the full data set, so these coeffi-

cients provide an index of relative relatedness between

each pair of individuals. In order to determine whether

individuals collected at the same location were more

closely related to each other than individuals collected

at different locations, we conducted an AMOVA on the

kinship coefficients. This approach compared the varia-

tion in within-population kinship coefficients with the

variation in among-population kinship coefficients

using the PERMANOVA+ 1.0.2 software add-on as imple-

mented in PRIMER6 (Clarke & Warwick 2001), following

Stat et al. (2011) and Padilla-Gami~no et al. (2012). Specif-

ically, the kinship covariance matrix created in GENODIVE

was loaded into PRIMER6 as a Correlation Resemblance

Matrix. A simple one-way analysis of variance (termed

PERMANOVA in PRIMER6) was conducted with 10 000 unre-

stricted permutations of the raw data and type III sums

of squared differences. Significance is determined by

evaluating a pseudo-F value (Clarke & Warwick 2001)

based on the F-distribution, which is not to be confused

with Wright’s F-statistics.

To investigate site-specific patterns in kinship, we

counted the number of closely related individuals

within each site where the kinship coefficient was

greater than or equal to the equivalent of that expected

for quarter-siblings (0.047). Following Selkoe et al.’s

(2006) and Buston et al.’s (2009) analysis of relatedness

approach, we binned our counts of closely related

Table 1 Summary statistics for Panulirus interruptus listed from northernmost to southernmost collection sites: total number of indi-

viduals sequenced for seven microsatellites (N, nDNA) and mtDNA cytochrome c oxidase subunit I (N, mtDNA)

Collection site (abbreviation)

N

h heff p AR Aeff Ho HenDNA mtDNA

Carpinteria (CARP) 74 57 0.94 16.67 0.011 18.46 15.98 0.83 0.89

San Miguel Island (SMI) 76 60 0.93 14.29 0.007 18.11 14.59 0.81 0.88

Santa Cruz Island (SCI) 54 53 0.92 12.50 0.005 18.48 15.51 0.84 0.89

Malibu (MLBU) 71 68 0.93 14.29 0.018 17.86 15.37 0.87 0.90

Santa Catalina Island (SCAT) 81 56 0.94 16.68 0.008 17.46 14.74 0.83 0.88

San Nicholas Island (SNI) 38 36 0.94 16.67 0.006 16.66 12.22 0.76 0.86

San Clemente Island (CLEM) 25 63 0.92 12.50 0.008 18.14 12.37 0.87 0.89

Islas Coronados (CRDO) 63 61 0.94 16.67 0.012 18.42 15.78 0.84 0.89

Puerto Nuevo (PTN) 57 56 0.91 11.11 0.007 16.83 13.65 0.86 0.88

Punta Banda (PBDA) 47 38 0.94 16.67 0.009 16.19 12.05 0.78 0.88

Punta Baja (PBJ) 94 70 0.88 8.33 0.009 17.85 15.06 0.86 0.88

Isla Guadalupe (IGP) 69 79 0.91 11.11 0.011 17.20 14.02 0.82 0.88

Laguna Ojo de Liebre (ODL) 42 55 0.91 11.11 0.008 18.51 15.34 0.83 0.88

Punta Eugenia (PEU) 45 45 0.93 14.29 0.012 17.36 13.39 0.82 0.89

Bahia Tortugas (BTG) 40 47 0.93 14.29 0.012 16.83 12.66 0.81 0.88

Punta Abreojos (ABRE) 66 42 0.88 8.33 0.009 17.44 14.96 0.84 0.89

Bahia Magdalena (BMG) 47 45 0.95 20.00 0.012 17.92 15.01 0.86 0.88

For mtDNA: haplotype diversity (h), effective number of haplotypes (heff) and nucleotide diversity (p). For nDNA microsatellites: rar-

efied allelic richness (AR), effective number of alleles (Aeff), observed (Ho) and expected (He) heterozygosity.
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lobsters according to specific levels of kinship. We used

the Loiselle et al.’s (1995) coancestry coefficients (full-

sib = 0.25, half-sib = 0.125) to generate the following

bins: ‘nearly identical’, 0.57 > k > 0.375; ‘full-sib’,

0.375 > k > 0.1875; ‘half-sib’, 0.1875 > k > 0.09375; and

‘quarter-sib’, 0.09375 > k > 0.047. These bounds repre-

sent the midpoints between the coancestry coefficients

in Loiselle et al. (1995), and we use quarter-sib as a

short-hand to represent half of the level of coancestry

as half-sibs. The nearly identical bin represents compar-

isons above full-sibs and is based on our kinship coeffi-

cient distribution for comparisons of individuals to

themselves. We tested multiple bin sizes and divisions

and found our results to be robust to these changes. To

test for an overabundance of closely related lobsters

within sites, we implemented a permutation test (10 000

replicates) where the lobsters were randomly assigned

to sites and the observed number of closely related

individuals was compared to the null distribution for

each site. We calculated the maximum-likelihood esti-

mate of relatedness (r) in ML-Relate, following the scale

for the index of relatedness (full-sibs, r = 0.5; half-

sibs = 0.25) to be able to compare our kinship results

with a relatedness index. We also tested the relationship

of the mean pairwise FST, mean pairwise Dest_Chao and

local FST for each site with the proportion of closely

related lobsters at that site (summed across all four sib-

ship categories for the Loiselle et al. (1995) metric and

across half-sibs and full-sibs in ML-Relate).

Upwelling

We identified hotspots of genetic differentiation by cal-

culating mean Dest_Chao for each sampling location. We

interpolated these values beyond the specific sites we

sampled using an inverse weighted distance (IWD)

algorithm in the Spatial Analyst extension in ARCGIS 10.

To test the hypothesis that upwelling is a potential dri-

ver of both increased kinship and, in turn, site-specific

genetic structure for P. interruptus in this region, we

overlaid on this map known areas of consistent upwell-

ing in Baja California, Mexico (as identified by Zaytsev

et al. (2003)). We tested the relationship between the

mean kinship at a site and that site’s closest distance to

an area of persistent upwelling. For sites within the

Southern California Bight (SCB), where there are no

areas of persistent upwelling, either the distance to

Point Conception or to the edge of the northernmost

upwelling area in Baja California, Mexico, was used,

whichever was shorter. The southernmost sites in the

range were measured to an upwelling area just off of

BMG, which was identified by Zaytsev et al. (2003), but

is not included in our figure. Negative distances repre-

sent sites that are located within upwelling regions and

are measured from their location to the nearest edge of

the upwelling zone. Both kinship and upwelling regres-

sion analyses were performed in SPSS 17.0.

Results

Mitochondrial DNA (mtDNA)

We sequenced COI for 931 individuals across 17 sites,

which yielded 238 haplotypes. Haplotype diversity (h)

was high, ranging from 0.88 to 0.95 (8.3–20 effective

haplotypes), with a mean of 0.92 (12.5 effective haplo-

types). In contrast, nucleotide diversity (p) was rela-

tively low, ranging from 0.005 to 0.018, with a mean of

0.010. The number of individuals sequenced (N), haplo-

type diversity (h), effective number of haplotypes (heff)

and nucleotide diversity (p) for each site are listed in

Table 1.

The median-joining network (Fig. 2) reveals two

dominant haplotypes differing by one-nucleotide substi-

tute and present at all sample sites. The most numerous

haplotype was found in 235 individuals (25% of indi-

viduals sequenced), and the second most numerous

92

235

CARP
SMI
SCI
SNI
SCAT
MLBU
CLEM
PTN
CRDO
PBDA
PBJ
BTG
PEU
ABRE
IGP
ODL
BMG

Fig. 2 Median-joining network for Panulirus interruptus

mtDNA, constructed using 454 base pairs of cytochrome c oxi-

dase subunit I (COI) from each of 931 individuals in the pro-

gram NETWORK 4.6.0.0. Each circle is a unique haplotype

proportional in size to the number of individuals with that

haplotype. The two largest circles represent 235 and 95 indi-

viduals. The smallest circle represents two individuals: there

are 131 singletons in the data set, but these have been omitted

for ease of visualization. A full, unedited network is included

in the supplementary material (Fig. S3, Supporting informa-

tion). Colours correspond to one of 17 locations where the indi-

vidual haplotypes were found (see key, Fig. 1, Table 1). Lines

connecting haplotypes represent a single base-pair difference

between haplotypes, with crossing lines representing addi-

tional differences.

© 2013 John Wiley & Sons Ltd
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haplotype was found in 92 individuals (10%). The hap-

lotype network was characterized by a starburst pat-

tern, with the majority of remaining haplotypes

differentiated by one to two base pairs from the domi-

nant haplotypes. Eighty haplotypes were represented in

only two individuals and there were 131 singletons

across all 17 sites; the removal of singletons did not

impact the overall structure of the haplotype network

(Fig. 2), so they were omitted for ease of visualization.

A full, unedited network is included in Fig. S3 (Sup-

porting information).

Global ΦST (0.006) was low, but significant

(P = 0.001). Statistically significant pairwise ΦST values

were 0.01–0.04, and in general, Dest_Chao values were an

order of magnitude higher than ΦST, both for global

Dest_Chao (0.025) and for each of the pairwise compari-

sons, ranging up to 0.300 (Table 2). Among pairwise

ΦST comparisons, 26 of 136 (19%, Table 2) were signifi-

cant at P < 0.05; however, after correcting for the false

discovery rate (Benjamini et al. 2006), no pairwise com-

parisons were significant (P < 0.00035, Table 2). There

was no pattern of IBD (Wright 1943) at any scale in the

data set. This was true whether we examined all sam-

pling locations together, or for any of the specific subre-

gions: all Mexico sampling locations, California

locations (SCB), only islands and only continental sites

(Table S1, Supporting information).

Microsatellite DNA

We scored 989 individuals across 17 sites for seven

nuclear microsatellite loci, with five to 104 alleles per

locus, which translated to between two and 23 effective

alleles per locus (Table S2, Supporting information).

The genotyping error rate, determined by re-genotyping

74 individuals at each locus, ranged from 0.0% to 4.1%,

with an average of 2.3% overall (Table S2, Supporting

information). We identified two pairs of individuals

with identical genotypes and removed one individual

of each pair from the data set in order to eliminate the

possibility that the same individual was sampled two

times. In both cases, identical genotypes were identified

within a sampling site. The expected chances of observ-

ing true identical twins in this study ranged from

1 9 10�42 to 4.39 9 10�26, while our observed rate was

substantially greater, 2 in 989 specimens.

Rarefied allelic richness was similar among sites and

ranged from 16.19 to 18.51, while the effective number

of alleles ranged from 12.05 to 15.98 (Table 1). Expected

heterozygosity (He) was between 0.86 and 0.90, while

observed heterozygosity (Ho) exhibited a slightly wider

range from 0.76 to 0.87 (Table 1). Tests for linkage dis-

equilibrium (LD) were significant in 20 of 349 compari-

sons (~6%) after correcting for multiple tests, and there

were no locus-specific patterns. The three sample sites

with the highest percentage of LD comparisons corre-

spond to the three sites with the highest levels of

kinship, as reported below, suggesting kinship may be

high enough at these sites to produce a signal of LD.

In general, however, LD is a weak test of family struc-

ture, and we found no site-specific patterns across the

rest of the sites in the study. There were significant

deviations from HWE in 46 of 119 (~39%) comparisons

after correcting for multiple comparisons, but again no

sample-specific patterns were observed. MICRO-CHECKER

2.2.3 (Van Oosterhout et al. 2004) found no evidence of

scoring errors due to large allele dropout or stutter;

however, six of seven markers showed patterns consis-

tent with null alleles, which are the likely cause of the

deviations from HWE (see Ben-Horin et al. 2009).

Although the frequencies of these null alleles are low

(1.20–6.63% across loci, Table S2, Supporting informa-

tion), we wanted to be sure they would not affect our

results. To test for the impact of null alleles on our

results, we used FreeNA (Chapuis & Estoup 2007) to

generate alleles for the data set where nulls were

expected, re-analysed the data, and our subsequent

results and conclusions remained the same. Therefore,

we present only analyses with the full original data set.

Significant partitioning of the samples among loca-

tions was detected in the microsatellite loci with both a

global fixation test (FST = 0.004, P < 0.001) and a global

genetic differentiation test (Dest_Chao = 0.03, P < 0.0005).

Global partitioning was also detected in analyses of

individual loci, with a significant global FST (0.002–

0.011, Table S2, Supporting information) and global

Dest_Chao (0.030–0.114) at each individual locus, except

A110.

We ran pairwise FST and Dest_Chao comparisons for

each marker individually, as well as jackknifing across

markers, and found the results were fairly consistent

throughout these comparisons. Significant pairwise FST
comparisons among sampling sites using the microsat-

ellite loci were fairly low, ranging from 0.002 to 0.015,

but 71 of 136 comparisons (52%, Table 2) remained sig-

nificant after correcting for the false discovery rate

(Benjamini et al. 2006). As in our mtDNA results, pair-

wise Dest_Chao comparisons generally were an order of

magnitude higher than each respective pairwise FST
comparison and ranged from �0.021 to 0.128 (Table 2).

The higher magnitude of Dest_Chao compared FST to

matches the expectation when heterozygosity is ~0.9, as
it is in this study (Bird et al. 2011).

The sites with the highest mean pairwise FST and

Dest_Chao values were in the northern and central Baja

California, Mexico region [Puerto Nuevo (PTN), Punta

Banda (PBDA), Punta Baja and Bahia Tortugas (BTG)].

These sites also stood out by having the highest

© 2013 John Wiley & Sons Ltd
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proportion of significant differences when compared to

the other sites. Three of these four sites also had the

highest local FST values (PBDA, BTG and PTN). There

was no pattern of IBD in the data set, whether we

examined all sampling locations together, or for any of

the specific subregions, as described for the mtDNA

results (Table S1, Supporting information).

Kinship

Following the exclusion of lobster specimens with identi-

cal genotypes, as well as self-comparisons, kinship coef-

ficients ranged from �0.155 to 0.57 (Fig. 3). The overall

mean kinship, which is expected to be zero, was

�0.000025 � 0.00008SE. There was a disparity, however,

between the within-site mean kinship (0.003 � 0.0004)

and the among-site mean kinship (�0.0002 � 0.00009)

(Fig. 3). Mean within-site maximum-likelihood estimates

of relatedness (r, from ML-Relate) ranged from 0.034 to

0.057 (Table S3, Supporting information) and were sig-

nificantly correlated with mean kinship values (k) at each

site (Table S3, Supporting information, Pearson’s

r = 0.92, P < 0.0005). Kinship coefficients were signifi-

cantly greater for within-site than for among-site com-

parisons (pseudo-F16,988 = 1.39, P = 0.001). In total, 10 of

17 sites had significantly greater numbers of closely

related pairs of individuals than expected by chance

(P < 0.05) in at least one of four kinship categories: five

sites had an excess of individuals in the ‘nearly identical’

category (0.57 > k > 0.375), five sites had an excess in the

‘full-sib’ group (0.375 > k > 0.1875), five sites had an

excess in the ‘half-sib’ category (0.1875 > k > 0.09375),

and four sites had an excess in the ‘quarter-sib’ bin

(0.09375 > k > 0.047) (Fig. 4, Table S3, Supporting infor-

mation). The proportion of kin in each site was signifi-

cantly related to mean pairwise FST (R2 = 0.669;

F1,16 = 30.333, P < 0.0005) and Dest_Chao (R2 = 0.658;

F1,16 = 28.885, P < 0.0005; Fig. 5) for each site as well as

to local FST (R2 = 0.243; F1,16 = 4.825, P = 0.044; Fig. 5).

These findings are consistent across kinship classes.

When we removed the lowest level of kinship (examin-

ing only kinship levels equivalent to ‘nearly identical’,

‘full-sib’ and ‘half-sib’), the relationship of both FST
(R2 = 0.672; F1,16 = 30.741, P < 0.0005) and Dest_Chao

(R2 = 0.658; F1,16 = 28.887, P < 0.0005) with the propor-

tion of kin stayed approximately the same, while the

relationship of local FST with the proportion of kin

strengthened (R2 = 0.303; F1,16 = 6.526, P = 0.022). The

relationships of mean pairwise FST, Dest_Chao and local

FST with the proportion of related individuals (r, full-

and half-sibs) from ML-Relate were all significant and

stronger than the relationships between these summary

statistics and proportion of kin (Fig. S1, Supporting

information).

Upwelling

Regions containing persistent, strong upwelling

regimes, both across seasons within a year and across

all years from 1996 to 2002, were traced from fig. 14 in

Zaytsev et al. (2003) and are depicted by dotted lines in

Fig. 6a. Three of the four upwelling regions overlap the

geographic range of our study and contain four of our

sampling locations: Islas Coronados, PTN, PBDA and

BTG (Fig. 6a). Three of these four sites (PTN, PBDA

and BTG) contain one of the highest four values for

mean Dest_Chao, mean local FST and mean kinship. The

IWD function applied to this data extrapolates these

site-specific metrics across the entire study area, includ-

ing the unintended extrapolation of Dest_Chao values to

ocean areas where adult lobsters do not live, but

phyllosoma may be present. Along the Baja California

coastal areas containing adult lobsters, all three of the

areas with the highest genetic differentiation (Dest_Chao)

overlap the regions of strong upwelling intensity

(Fig. 6a). The results for mean kinship and local FST
were similar, although not shown. Across the geo-

graphic extent of our study, we see a significant rela-

tionship (R2 = 0.407; F1,16 = 10.296, P = 0.006) between

mean kinship at each site and the closest distance

between each site and the edge of an upwelling zone

[(mean kinship + 1) = �0.005 ln (distance to upwell-

ing + 100 km) + 1.028, Fig. 6b). This relationship holds

for mean relatedness (r) versus distance from upwelling

as well (Fig. S2, Supporting information).

Discussion

There is accumulating evidence from multiple

approaches that larvae rarely reach their full dispersal

potential, resulting in a paradigm shift away from the

perception that most marine populations are genetically

homogenous across broad geographic scales (Jones et al.

1999; Swearer et al. 1999, 2002; Mora & Sale 2002; Gran-

tham et al. 2003; Taylor & Hellberg 2003; Marko 2004;

Cowen et al. 2006; Becker et al. 2007; L�opez-Duarte et al.

2012). However, this evidence has come exclusively

from species with short to modest larval periods

(1–60 days). Even among species with modest PLD,

there are just a few striking examples of broad popula-

tions with no genetic substructure across their full

range. For example, reef fishes Myripristis jacobis in the

Atlantic Ocean (Bowen et al. 2006), Lutjanus kasmira in

the Central Pacific and Eastern Indian Oceans (Gaither

et al. 2010) and Acanthurus nigrofuscus in the Pacific

(Eble et al. 2011) all exhibit genetic homogeneity across

thousands of kilometres (up to 12 000 km). Dispersal

potential is assumed to be great in species with very

long PLDs (>120 days), and population genetic surveys
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of such species to date have revealed little population

structuring across broad geographic scales (Ovenden

et al. 1992; Silberman et al. 1994; Thompson et al. 1996;

Tolley et al. 2005; Garc�ıa-Rodr�ıguez & Perez-Enriquez

2006; Inoue et al. 2007; Horne et al. 2008; Reece et al.

2011). When genetic discontinuities have been observed

in species with long PLD, they have invariably corre-

sponded with known biogeographic barriers, or oceano-

graphic transitions (Palero et al. 2008; Babbucci et al.

2010; Chow et al. 2011).

In contrast to the intuitive expectation that Panulirus

interruptus, with a minimum PLD of 240 days, would

be genetically homogenous across its entire 1400-km

range along the west coast of North America, we found

slight, but significant genetic structuring among several

sampling locations throughout Mexico and Southern

California (Table 2). This finding contrasts with previ-

ous work that did not detect population structure in

P. interruptus throughout Baja California, Mexico, using

mtDNA RFLPs (Garc�ıa-Rodr�ıguez & Perez-Enriquez

2006). Notably, lobsters do not exhibit a genetic break

across Punta Eugenia, a faunal boundary for rocky

intertidal species (Valentine 1966; Blanchette et al. 2008;

Gaines et al. 2009) and a phylogenetic break for a num-

ber of coastal fishes (Bernardi et al. 2003). Nor does the

overall pattern of genetic differentiation in P. interruptus

correspond to the Northern, Central and Southern

regional population subdivision within Baja predicted

by Perez-Enriquez et al. (2001). Rather, genetically dif-

ferentiated sites are nested within a greater area of

undifferentiated sites (Fig. 6a). Specifically, some sites

exhibit no genetic differentiation across the 1400-km

species range, whereas other sites are differentiated

from the majority of sampled sites, and there is no sig-

nal of IBD in either the mtDNA or the nuclear microsat-

ellite markers across multiple spatial scales (Table S1,
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Fig. 3 (a) Line graph depicting the total

number of kinship (k) pairwise compari-

sons for each 0.01 bin of kinship (solid

line, total N = 457,652) and the number

of within-site kinship comparisons

(dashed line, total N = 30,914). (b) Inset

of (a), depicting the total number of kin-

ship comparisons (solid line) and the

number of within-site comparisons

(dashed line) from 0.25 to 0.57 on a sepa-

rate y-axis that ranges from 0 to 140 com-

parisons. The majority of these kinship

comparisons are between individuals

sampled at the same location. (c) Distri-

bution of kinship coefficients divided

into 0.01 bins and coloured by the pro-

portion of within-site (dark grey) versus

among-site (light grey) comparisons

within each 0.01 division. White bars rep-

resent levels of kinship that were not

found in the data set. Bars on the x-axis

represent the divisions between unre-

lated and related individuals and

between each of the four kinship catego-

ries we analysed: ‘quarter-sib’, 0.047 <
k < 0.09375; ‘half-sib’, 0.09375 < k <
0.1875; ‘full-sib’, 0.1875 < k < 0.375; and

‘nearly identical’, 0.375 < k < 0.57.
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Supporting information). Similar patterns of genetic dif-

ferentiation among proximate sites have been shown in

species with shorter larval developmental periods

(reviews by Larson & Julian 1999; Hedgecock et al.

2007; Riginos et al. 2011; Toonen & Grosberg 2011), but

have not been reported for a species with such a long

PLD as this one. Additionally, P. interruptus has equiva-

lent or greater levels of genetic substructure than other

species occurring in this same region (Selkoe et al.

2010), despite a PLD that is an order of magnitude

higher.

The term ‘chaotic genetic patchiness’ was coined

(Johnson & Black 1982, 1984) to describe ephemeral,

finely spatio-temporal patterns of genetic structure gen-

erated by variation in the larval pool, recruitment and

natural selection, which are counteracted in the long-

term by dispersal and gene flow (Toonen & Grosberg

2011). Much of the difficulty in interpreting these unex-

pected patterns in genetic differentiation is due to the

nature of FST as a summary statistic. Significant struc-

ture among populations may be a result of differences

in effective population size (and corresponding genetic

drift), demographic or colonization history, migration

or some combination of these factors, especially for

populations that may not have reached migration–drift

equilibrium. Direct interpretation of summary statistics

(FST, Dest_Chao) in the context of gene flow can be prob-

lematic (reviewed by Lowe & Allendorf 2010; Hart &

Marko 2010; Marko & Hart 2011; Bird et al. 2011; Karl

et al. 2012), especially in species such as P. interruptus,

with highly fecund individuals and a potential for

reproductive skew (Eldon & Wakeley 2009). For the

many marine species with high fecundity and a type III
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survivorship curve, an independent test can help deter-

mine whether gene flow is the primary driver resulting

in the observed population structure (Hart & Marko

2010; Lowe & Allendorf 2010).

Here, kinship (Loiselle et al. 1995) enriches our under-

standing of the drivers underlying significant

differences in FST among sites. The pattern of chaotic

genetic patchiness in P. interruptus evident in the FST
and Dest_Chao analyses seems to be primarily a result of

the nonrandom occurrence of closely related lobsters

within sample sites. Across all sites, lobsters were more

closely related within sites than between sites, and at

the majority of sites, we found significantly greater than

expected levels of kinship between adult lobsters

(Fig. 4). Moreover, the proportion of kin found at each

site accounts for the majority of the variation in the

sites’ genetic differentiation: the most greatly

differentiated sampling sites have the highest propor-

tion of kin (Fig. 5).

One potential scenario that could generate high pro-

portions of kin within sites is recruitment pulses of

related individuals. The simplest explanation for this

phenomenon is that larvae released together stay

together throughout dispersal and recruitment (kin

aggregation). However, this pattern would also result

from extreme differential reproductive success among

individuals, so that a recruiting cohort is entirely made

up of offspring from only a few individuals (sweep-

stakes recruitment, Hedgecock 1986, 1994a,b). Sweep-

stakes recruitment could also generate the star-shaped

pattern of our mtDNA haplotype network (Fig. 2, Fig.

S3, Supporting information), although this pattern could

also be indicative of a recent population expansion. Pre-

vious kinship analyses have detected high levels of

relatedness within cohorts of larval recruits in both

fishes (Planes et al. 2002; Pujolar et al. 2006; Selkoe et al.

2006; Buston et al. 2009; Bernardi et al. 2012) and inver-

tebrates (Veliz et al. 2006), which supports both the

hypothesis of kin aggregation throughout development

and/or the hypothesis of sweepstakes reproduction.

Unfortunately, we could not directly test these alterna-

tives in P. interruptus because we did not have samples

of new recruits. Nevertheless, given the size selectivity

of lobster traps, and the intense fishing pressure for lob-

ster depressing the age range (Iacchei et al. 2005; Kay &

Wilson 2012), it is possible that our samples are largely

made up of single year classes consisting of closely

related individuals recruiting together by one of these

aforementioned mechanisms. To our knowledge, this

study is the first documented case of kin aggregation in

the adult population of a marine species with plank-

tonic larvae, although kin aggregation in recruits has

been reported. Previous studies that have looked at

only kin relationships among adults, rather than among

cohorts of recruits, have found no evidence of kin

aggregation in marine species (Avise & Shapiro 1986;

Kolm et al. 2005; Buston et al. 2007; Palm et al. 2008;

Andrews et al. 2010; Berry et al. 2012). Consequently,

kin aggregation is generally assumed to be a transient

phenomenon limited to newly settled recruits, with lit-

tle detectable signal in adult populations due to multi-

ple source populations of recruits, changes in

reproductive success and differential juvenile mortality

(Kordos & Burton 1993; Moberg & Burton 2000; Flowers

et al. 2002; Planes et al. 2002; Selkoe et al. 2006; Buston

et al. 2009).

High levels of within-site kinship could also be driven

by a temporally stable pattern of self-recruitment, either

through larval retention or through larval dispersal with

subsequent recruitment back to the natal site. The pros-

pect that larvae stay in the plankton for 240–330 days
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and return to settle near their site of release seems unli-

kely at first. However, the site-specific kinship patterns

in our data match theoretical predictions for a species

that has evolved a long PLD to avoid predation during

the larval phase rather than to facilitate broad dispersal

of larvae (Strathmann et al. 2002). The extended PLD

may enable phyllosoma to disperse far offshore, into a

pelagic environment that is favorable for the survival of

unprotected larval-stage individuals (Strathmann et al.

2002). Late-stage lobster larvae (pueruli) are fast swim-

mers (Serfling & Ford 1975) and may utilize strong

upwelling regimes to return and settle near their natal

site after dispersing offshore. If this behaviour is selec-

tively advantageous, we would expect to observe

enhanced local recruitment regardless of PLD. Further-

more, local recruitment should be more pronounced at

sites with strong, persistent upwelling (Fig. 6b).

The four sites with the highest proportion of kin in

Baja California, Mexico, are located in areas of persis-

tent upwelling (Zaytsev et al. 2003; Fig. 6a). Although

upwelling was initially proposed as a mechanism for

advecting recruits away from coastal areas (Roughgar-

den et al. 1988), subsequent studies have questioned

that prediction (e.g. Shanks & Brink 2005; Morgan et al.

2009; Morgan & Fisher 2010; reviewed in Shanks &

Shearman 2009). Genetic studies have proven equivocal

in this regard: some have found reduced genetic sub-

structure between populations in years with greater

cumulative upwelling (e.g. Flowers et al. 2002; Barshis

et al. 2011), and others have found upwelling dynamics

to be insufficient to explain temporal and spatial genetic

patterns (e.g. Toonen & Grosberg 2011). Passive larval

dispersal models indicate that the effects of upwelling

may depend on whether larvae stay near the surface

(upwelling advects larvae offshore) or undergo regular

migrations to depth (upwelling delivers larvae to the

coast) (Byers & Pringle 2006; Marta-Almeida et al. 2006).

Spiny lobsters are known to have relatively large lar-

vae capable of dynamic movement. Both the phylloso-

ma and puerulus stages show evidence of active

movement in the pelagos, with phyllosoma exhibiting

diel vertical migrations as well as horizontal move-

ments (Kittaka 1994; Chiswell & Booth 1999; Phillips

et al. 2006; Butler et al. 2011), and pueruli demonstrating

rapid swimming, navigation towards the coast and hab-

itat settlement preferences (Serfling & Ford 1975; Jeffs

et al. 2005; Phillips et al. 2006). In P. interruptus specifi-

cally, Pringle (1986) found both geographic and depth

stratification of different stages of both phyllosoma and

pueruli collected during yearly larval tows in the Cali-

fornia Current Ecosystem, suggesting active ontogenetic

shifts in larval depth preference. Incorporating such lar-

val behaviours into biophysical models of dispersal in a

congeneric species, Panulirus argus, resulted in a 60% or

greater decrease in the average distance a larva is pre-

dicted to settle from its release site compared with sim-

ulations of larvae that remain on the surface (Butler

et al. 2011). Lobsters in the California Current Ecosys-

tem rely on kelp forest habitat for survival: P. interrup-

tus has much higher relative survival rates in the

presence of kelp than in surrounding areas where kelp

is absent (Mai & Hovel 2007). Given the ephemeral

dynamics of kelp forest habitat (Reed et al. 2006) and

the high variability in ocean conditions in this region,

these lobsters may have evolved similarly complex

behaviours as their congeners to increase successful

local recruitment despite their extremely long PLD

(e.g. Shanks & Eckert 2005).

Conclusion

Here, we present a novel approach to understand

contemporary drivers of population differentiation in

systems with high gene flow. In isolation, the population-

level data present a commonly documented scenario

among marine species: no evidence for any particular

regional separation or isolation-by-distance patterns,

but low and significant pairwise differences among

populations. While the agreement between nuclear and

mitochondrial markers confirms that the results are not

due to statistical artifact, the nature of F-statistics leaves

us without a clear indication of what is driving the pat-

tern of genetic differentiation. The addition of kinship

analyses reveals how alleles are shared between indi-

viduals, rather than just among populations, and pro-

vides an independent test of the hypothesis that

population genetic structure as measured by F-statistics

is a result of population connectivity. In this case, the

majority of locations contained an excess of closely

related individuals. This supports the inference that

either self-recruitment or some form of coordinated lar-

val delivery is driving population-level genetic differ-

ences in a species that would be expected to be broadly

dispersive throughout its range, given its extremely

long PLD. In combination with regional oceanographic

data and larval dispersal behaviour, kinship analyses

provide evidence for a mechanism of differentiation in

an otherwise murky population genetic data set. The

ability to directly test hypotheses about what drives

population genetic substructure in high gene-flow

species by independent means, such as kinship or

coalescent analyses, provides greater confidence in the

underlying causes of population substructure than sum-

mary statistics alone. As the ease of developing greater

numbers of genetic markers increases, individual-based

analyses such as relative kinship indices can provide a

valuable complement for understanding patterns in

traditional population genetics data sets.
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Table S1 Isolation by distance (IBD) results from Mantel tests

conducted in GENODIVE 2.0b20 to examine patterns of genetic

differentiation across multiple spatial scales based on sampling

locations: all sites, only California sites, only Mexico sites, only

continental sites, and only island sites.

Table S2 Locus-specific diversity indices and FST values as cal-

culated in GENODIVE for each of the seven nuclear microsatellite

loci, and null allele frequency for each microsatellite locus as

calculated in ML-Relate.

Table S3 Comparison of ML-Relate calculations of relatedness

(r) and GENODIVE calculations of kinship for each sampling loca-

tion.

Fig. S1 Linear regression of mean pairwise local FST (squares,

dashed line) and Dest_Chao (circles, solid line) at each site on

the combined proportion of full- and half-sibs as determined

in ML-Relate for seven microsatellite loci.

Fig. S2 Log-linear regression of mean relatedness (r) at each

site on the distance (km) to the nearest edge of an area of high

upwelling intensity (from Fig. 6a).

Fig. S3 Median-joining network for Panulirus interruptus

mtDNA, constructed using 454 base pairs of cytochrome c oxi-

dase subunit I (COI) from each of 931 individuals in the pro-

gram NETWORK.
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