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Genetic diversity in cultured and wild marine
cyanomyoviruses reveals phosphorus stress
as a strong selective agent
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Viruses that infect marine cyanobacteria—cyanophages—often carry genes with orthologs in their
cyanobacterial hosts, and the frequency of these genes can vary with habitat. To explore habitat-
influenced genomic diversity more deeply, we used the genomes of 28 cultured cyanomyoviruses as
references to identify phage genes in three ocean habitats. Only about 6-11% of genes were
consistently observed in the wild, revealing high gene-content variability in these populations.
Numerous shared phage/host genes differed in relative frequency between environments, including
genes related to phosphorous acquisition, photorespiration, photosynthesis and the pentose
phosphate pathway, possibly reflecting environmental selection for these genes in cyanomyovirus
genomes. The strongest emergent signal was related to phosphorous availability; a higher fraction
of genomes from relatively low-phosphorus environments-the Sargasso and Mediterranean
Sea—contained host-like phosphorus assimilation genes compared with those from the N. Pacific
Gyre. These genes are known to be upregulated when the host is phosphorous starved, a response
mediated by pho box motifs in phage genomes that bind a host regulatory protein. Eleven
cyanomyoviruses have predicted pho boxes upstream of the phosphate-acquisition genes pstS and
phoA; eight of these have a conserved cyanophage-specific gene (PhCOG173) between the pho box
and pstS. PhCOG173 is also found upstream of other shared phage/host genes, suggesting a unique
regulatory role. Pho boxes are found upstream of high light-inducible (hli) genes in cyanomyo-
viruses, suggesting that this motif may have a broader role than regulating phosphorous-stress
responses in infected hosts or that these hlis are involved in the phosphorous-stress response.
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Introduction

Marine viruses affect the life histories and evolution
of their hosts and are a central component of the
marine food web (Suttle, 2007; Rohwer and Thurber,
2009). Cyanophages, viruses that infect cyanobac-
teria, are abundant and broadly distributed in the
global oceans (Suttle, 2007; Williamson et al., 2008).
Cyanophage genomes carry orthologs of host genes
involved in a variety of host processes, including
phosphate acquisition, carbon metabolism, photo-
synthesis and response to light stress (Lindell et al.,
2004; Mann et al., 2005; Sullivan et al., 2005;
Weigele et al., 2007; Sullivan et al., 2010).
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The abundance, diversity and phylogenies of
shared phage/host genes in numerous sequenced
phage genomes suggest cyanophage are involved in
remodeling and distributing host genes. For exam-
ple, phylogenetic grouping suggests that two photo-
system genes, psbA and psbD, have been transferred
repeatedly from host to phage genomes (Sullivan
et al., 2006). Furthermore, cyanophage copies of
psbA and a high-light inducible (hli) gene are
transcribed and translated during the infection cycle
(Lindell et al., 2005; Clokie et al., 2006; Millard
et al., 2010).

Host metabolic processes with shared compo-
nents in host and phage genomes highlight path-
ways potentially involved in the competition
between cell and phage for metabolic resources.
Although cyanophage carry genes involved in the
light reactions of photosynthesis, thus far, cyanoph-
age genomes lack genes encoding Calvin cycle
enzymes, suggesting that phage do not participate
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in the carbon fixation pathways of their hosts
(Sullivan et al., 2010). In fact, there is evidence that
phage actively direct carbon flux toward the pentose
phosphate pathway (PPP), enabling nucleotide and
nucleic acid synthesis needed for phage replication
(Thompson et al., 2011b).

As a corollary, phage genome replication requires
phosphorous, which can be extremely scarce in the
oligotrophic oceans where Prochlorococcus and its
close relative Synechococcus thrive (Wu et al.,
2000). Thus it is not surprising that the genomes of
all 17 T4-like cyanomyoviruses that infect these
cyanobacteria and were available when this study
was undertaken (Millard et al., 2009; Sullivan et al.,
2010) encode phosphate regulon genes known to be
responsive to phosphorus starvation in cyanobac-
teria (Martiny et al., 2009; Tetu et al., 2009; Sullivan
et al., 2010). Some phage genomes encode PstS, a
periplasmic high-affinity phosphate-binding protein
associated with a phosphate-specific membrane
transporter; some encode a homolog of the putative
alkaline phosphatase gene phoA. This suggests that
there is a selective pressure for phage to retain genes
that could facilitate phosphorus acquisition in
infected host cells.

Multiple lines of evidence indicate that phos-
phorus limitation exerts strong selective pressures
on Prochlorococcus, providing a context for
the patterns in phage. Prochlorococcus primarily
utilizes the sulfolipid sulfoquinovosyldiacylglycerol
in lieu of more common phospholipids for mem-
brane construction (Van Mooy et al., 2006). Further-
more, the prevalence of phosphorus-associated
genes in cultured strains is associated with phos-
phate availability in the habitat of origin rather than
phylogeny (Martiny et al., 2006, 2009; Coleman and
Chisholm, 2010). Similarly, T4-like cyanophage
isolated from relatively low-phosphorus environ-
ments have more host-like phosphate assimilation
genes than those from more phosphorus-replete
environments (Sullivan et al., 2010). Finally, in
phosphate-starved host cells, transcription of phage
versions of both pstS and phoA increases via
regulation by the host phoBR two-component
system (Zeng and Chisholm, 2012).

The availability of new cyanomyovirus genomes
and the observation that the abundance of some
shared phage/host genes in phage is correlated with
variables such as trophic status, nutrient gradients
(for example, phosphate) and salinity (Williamson
et al., 2008) in the oceans, led us to further explore
genome content and evolution in a closely related
set of T4-like cyanomyoviruses. Our analysis does
not include the highly divergent non-T4-like cyano-
myovirus described recently by Sabehi et al. (2012)
as it was not available when we began the work. We
compared the frequencies of genes in cyanomyo-
virus genomes in three marine environments to
identify genes that the environments have in
common and genes that distinguish them. We also
examined features of some of these genes in cultured
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cyanomyovirus genomes—including 11 reported
here for the first time.

Materials and methods

Cyanomyovirus genome collection

Seventeen cyanomyovirus genomes were down-
loaded from Genbank (Benson et al., 2006); 11
additional genomes sequenced and annotated as
described in Henn et al., 2010 are reported here for
the first time (Table 1).

Orthologous gene cluster and shared domain
identification

Gene clusters were generated as described pre-
viously with slight modifications (Kettler et al.,
2007; Kelly et al., 2012). Orthologous genes were
assigned using reciprocal best blastp scores (using
an e-value cutoff <1E-5) where sequence identity
was at least 35% and alignment length was at least
75% of the length of each protein. Clusters of
orthologous genes were built by transitively cluster-
ing orthologs. This procedure was established to
identify complete genes instead of conserved
domains that might represent only a small fraction
of a gene. To identify conserved domains, genes
were run against the Pfam protein families database
version 25.0 (Punta et al., 2012) with HMMER 3.0
(Eddy, 1998) using the CAMERA function predic-
tion workflow with default parameters; hits with an
e-value <0.001 are reported (Sun et al., 2011).

Cyanomyovirus gene identification in metagenomic
data sets
Three data sets from microbial fraction genomic
DNA (retained on 0.22 pwm filters—phage DNA is ‘by
catch’ in these samples) were analyzed (Table 2).
Two pyrosequence data sets were collected from
three depths in the oligotrophic N. Pacific subtropi-
cal gyre (Hawai’i Ocean Time-Series (HOT), cruise
HOT186) and the Sargasso Sea (Bermuda Atlantic
Time Series station (BATS), cruise BATS216) (Frias-
Lopez et al., 2008; Coleman and Chisholm, 2010),
one was from the deep chlorophyll maximum in the
Mediterranean Sea (MedDCM, NCBI Sequence Read
Archive Id: SRP002017) (Ghai et al.,, 2010). The
three depths sampled at HOT (25, 75, 110m) and
BATS (20, 50, 100m) were pooled by site. The
MedDCM site was sampled at a single depth, 50m.
Metagenomic sequences from each sample were
recruited to the custom protein database of cyano-
bacterial and cyanophage orthologous gene clusters
described above. This step distinguishes cyanomyo-
virus genes of interest from (1) cyanobacterial and
(2) podo- and siphoviral genes. Sequences and
annotations are available in the ProPortal database
(Kelly et al., 2012) (http://proportal.mit.edu/) and as
a FASTA file (http://proportal.mit.edu/pubdown-
load/index_V3clusters.html). Reads with best hits
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Table 1 General features of 28 T4-like cyanomyovirus isolates

Strain name Number Isolation location Latitude  Longitude  Host strain used for isolation Reference Accession

of genes

S-SSM2 207 Sargasso Sea 34°24'N 72°03'W Synechococcus WH8102 This paper JF974292
MED4-213 216 HOT ALOHA 22°45'N 158°00'W Prochlorococcus MED4 This paper HQ634174
P-RSM1 212 Red Sea 29°28'N 34°53'E Prochlorococcus 9303 This paper HQ634175
P-RSM3 208 Red Sea 29°28'N 34°53'E Prochlorococcus NATL2A This paper HQ634176
Syn30 209 NE Providence Channel 25°53'N 77°34'W Synechococcus WH7803 This paper HQ634189
Syn2 201 Sargasso Sea 34°06'N 61°01'W Synechococcus WH8012 This paper HQ634190
Syn10 205 Gulf Stream 36°58'N 73°42'W Synechococcus WH8017 This paper HQ634191
P-RSM6 221 Red Sea 29°28'N 34°53'E Prochlorococcus NATL2A This paper HQ634193
S-SSM4 220 Sargasso Sea 34°24'N 72°03'W Synechococcus WH8018 This paper HQ316583
P-SSM3 214 Sargasso Sea 31°48'N 64°16'W Prochlorococcus NATL2A This paper HQ337021
P-SSM5 320 Sargasso Sea 31°48'N 64°16'W Prochlorococcus NATL2A This paper HQ632825
P-HM1 241 HOT ALOHA 22°45'N 158°00'W Prochlorococcus MED4 Sullivan et al. (2010) NC_015280
P-HM2 242 HOT ALOHA 22°45'N 158°00'W Prochlorococcus MED4 Sullivan et al. (2010) NC_015284
P-RSM4 239 Red Sea 29°28'N 34°55'E Prochlorococcus 9303 Sullivan et al. (2010) NC_015283
P-SSM2 334 Sargasso Sea 31°48'N 64°16'W Prochlorococcus NATL1A Sullivan et al. (2005) NC_006883
P-SSM4 221 Sargasso Sea 31°48'N 64°16'W Prochlorococcus NATL2A Sullivan et al. (2005) NC_006884
P-SSM7 237 Sargasso Sea 31°48'N 64°16'W Prochlorococcus NATL1A Sullivan et al. (2010) NC_015290
S-PM2 244 English Channel 50°18'N 4°12'W Synechococcus WH7803 Mann et al. (2005) AJ630128
S-RSM4 237 Red Sea 29°28'N 34°55'E Synechococcus WH7803 Millard et al. (2009) NC_013085
S-SM1 234 Atlantic slope 38°10'N 73°09'W Synechococcus WH6501 Sullivan et al. (2010) NC_015282
S-SM2 267 Atlantic slope 38°10'N 73°09'W Synechococcus WH8017 Sullivan et al. (2010) NC_015279
S-SSM5 225 Sargasso Sea 34°24'N 72°03'W Synechococcus WH8102 Sullivan et al. (2010) NC_015289
S-SSM7 319 Sargasso Sea 34°24'N 72°03'W Synechococcus WH8109 Sullivan et al. (2010) NC_015287
S-ShM2 230 Atlantic shelf 39°60'N 71°48'W Synechococcus WH8102 Sullivan et al. (2010) NC_015281
Syn1 234 Woods Hole 41°31'N 71°40'W Synechococcus WH8101 Sullivan et al. (2010) NC_015288
Syn19 215 Sargasso Sea 34°06'N 61°01'W Synechococcus WH8109 Sullivan et al. (2010) NC_015286
Syn33 227 Gulf Stream 25°51'N 79°26'W Synechococcus WH7803 Sullivan et al. (2010) NC_015285
Syn9 228 Woods Hole 41°31'N 71°40'W Synechococcus WH8012 Weigele et al. (2007) NC_008296

Abbreviations: HOT, Hawai’i Ocean Time-Series; ALOHA, A Long-term Oligotrophic Habitat Assessment.

Table 2 Three environmental metagenomic data sets analyzed for cyanomyovirus gene abundance

Sample Depth (m) Location Total Reads Cyanomyophage Publication

recruited reads
HOT 25, 75, 110 North Pacific 1770399 35669 Coleman and Chisholm (2010)
BATS 20, 50, 100 Sargasso Sea 1348140 7032 Coleman and Chisholm (2010)
MedDCM 50 Mediterranean Sea 1204382 23707 Ghali et al. (2010)

Abbreviations: BATS, Bermuda Atlantic Time Series; HOT, Hawai’i Ocean Time-Series; MedDCM, deep chlorophyll maximum in the
Mediterranean Sea.

to a cyanomyovirus gene (blastx bitscore >50) were  one category of substitution rate, the JTT model of

required to have their top five hits (if available) to
genes in the same cluster. Sequences passing this
filter were compared with the NCBI non-redundant
(nr) database using blastx with a bitscore compar-
ison to ensure there were no better hits to non-phage
protein sequences. The Fisher test (part of the
epitools library) and the Bonferroni multiple com-
parison correction in the R statistical software
package (R Development Core Team, 2009) were
used to determine the statistical significance of gene
cluster abundance when comparing pairs of sites.

Reconstruction of phylogenetic trees

Protein sequences were aligned with MUSCLE v3.6
(Edgar, 2004). Alignments were trimmed such that
each column was covered by >90% of the
sequences. Trees were reconstructed with PhyML
version 2.45 (Guindon et al., 2009) using non-
parametric bootstrap analysis with 100 replicates,

amino-acid substitution and the proportion of
invariable sites fixed. Trees were plotted using iTOL
(Letunic and Bork, 2011).

Identification of core gene sets

We defined two broad sets of core genes: one based
on cultured, completely sequenced cyanomyo-
viruses (‘signature core genes’) and the other based
on the relative abundance of cyanomyovirus genes
in the metagenomic data sets (‘metagenome-defined
core genes’).

Cyanomyovirus signature core genes are, by our
definition, those genes that are single copy and have
orthologs in all of the complete cyanomyovirus
genomes available at the time of this study; 26 genes
fit this definition (Table 3). Note that the signature
core gene set defined here is a subset of the
cyanomyovirus core genes defined in Sullivan
et al. (2010), in which sequence profiling techniques
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Table 3 Cyanomyovirus signature core genes from 28 cyanomyovirus isolates

Gene Cluster Protein Pfam Pfam description ProPortal protein cluster description
name annotation

PhCOG71234 UvsY UvsY
PhCOG71329 Td PF02511 Thymidylate synthase complementing protein Thymidylate synthetase
PhCOG71555 PsbA PF00124 Photosynthetic reaction center protein Photosystem II D1 protein
PhCOG71685 NrdB PF00268 Ribonucleotide reductase, small chain Ribonucleotide reductase
PhCOG72002 Hypothetical protein
PhCOG72091 MazG PF03819 MazG nucleotide pyrophosphohydrolase domain Pyrophosphatase
PhCOG72096 gp43 PF00136/ DNA polymerase family B/DNA polymerase family DNA polymerase

PF03104 B, exonuclease domain
PhCOG72133 gp21 PF03420 Prohead core protein protease Prohead core scaffold and protease
PhCOG71393 RegA PF01818 Bacteriophage translational regulator Endoribonulceases, translational repressor
PhCOG72163 gp6 Base plate wedge
PhCOG72320 gp22 T4-like prohead core scaffold protein
PhCOG72416 gp33 Late promoter transcription accessory protein
PhCOG72419 gp32 PF08804 Single-stranded DNA binding SsDNA-binding protein
PhCOG72560 gp26 PF12322 T4 bacteriophage base plate protein Base plate hub subunit
PhCOG72577 Hypothetical protein
PhCOG72907 gp25 PF04965 Gene 25-like lysozyme Base plate wedge subunit
PhCOG73251 gp55 PF04542 Sigma-70 region 2 Sigma factor for late transcription
PhCOG199 gp61 DNA primase subunit
PhCOG71136 PhoH PF02562 PhoH P-starvation-inducible protein
PhCOG71424 gp19 PF06841 T4-like virus tail tube protein gp19 Tail tube monomer
PhCOG2 NrdA PF03477 ATP-cone Ribonucleotide reductase A subunit
PhCOG71205 gp41 PF03796/ DnaB-like helicase C terminal domain/KaiC DNA primase-helicase

PF06745
PhCOG72128 Hypothetical protein
PhCOG72704 gp15 Proximal tail sheath stabilization
PhCOG73063 gp4 PF08722 TnsA endonuclease N terminal Head completion protein
PhCOG73249 PF11360 Protein of unknown function (DUF3110) Hypothetical protein

Abbreviation: ATP, adenosine phosphate.

and manual curation were used to pull in more
distantly related genes and to group together
clusters to define core gene groups, respectively.
For the purposes of metagenomic recruitment, we
wanted our clusters to (1) reflect complete genes
instead of partial genes or conserved domains, (2) to
be comprised of closely related sequences, and (3) to
be automatically produced to facilitate addition of
new genomes.

As expected (Coleman and Chisholm, 2010), for
the signature core genes there is a linear relationship
between the number of reads detected in metage-
nomic databases and gene length; we use this
relationship to define a range of values that
encompasses the length-normalized abundance of
most signature core genes (Figure 1). The kernel
density estimator function ‘density’ in the stats
library of the R statistical software package was used
to identify the first and the third quartile range for
the length-normalized abundance of signature core
genes in each environment using default bandwidth
selection (R Development Core Team, 2009).

This procedure allowed us to identify genes
belonging to a ‘metagenome-defined core’, which
is the set of phage genes in each metagenomic data
set that, when normalized to gene length, occur at
the same frequency as the signature core genes—that
is, they are likely present in every cyanomyovirus.
In some cases, genes fall in this group in all three
environments, which we refer to as the ‘metagen-
ome-shared core’.
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Identification of pho box motifs in cultured
cyanomyovirus genomes

Previous work used consensus sequences to identify
putative pho boxes upstream of the PhCOG173 gene
in P-SSM7 and upstream of the pstS gene in P-SSM4
(Sullivan et al., 2010). Here, we used 129 pho box
motifs computationally predicted upstream of genes
in four Prochlorococcus and two marine Synecho-
coccus genomes (Su et al., 2007) to generate a
position weight matrix of the pho box motif with the
Bio.Motif module from the Biopython software
package (Cock et al., 2009). The position weight
matrix was used to search upstream intergenic
regions in the cyanomyovirus genomes for putative
binding sites for the response regulator phoB. A log-
odds threshold was used to identify putative motifs,
the threshold was set at: threshold balanced(1000).
Motifs were required to be on the same strand and
within 100 base pairs upstream of a gene.

Results and discussion

Gene frequency in different environments

To explore emergent patterns relating habitat to gene
content in cyanomyovirus populations, we used
predicted protein sequences from 28 cultured
cyanomyovirus genomes to first define genes as
either conserved or flexible and then to recruit
homologous genes from metagenomic databases
from the North Pacific Subtropical Gyre (HOT), the
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Figure 1 Relationship between gene length and reads detected for cyanomyovirus genes observed in metagenomic databases from three
different environments: Sargasso Sea (BATS), N. Pacific (HOT) and Mediterranean Sea (MedDCM). Red circles indicate single copy
signature core genes identified in 28 cultured cyanomyovirus genomes. The linear relationship (adjusted r* values are 0.89, 0.95 and 0.94
for BATS, HOT and MedDCM respectively) between gene length and the number of times a gene is found supports the assertion that these

genes are core in the wild populations of cyanomyoviruses as well.

Sargasso Sea (BATS) and the Mediterranean Sea
(MedDCM) (Table 2).

Cyanomyovirus signature core gene set. Given the
constraints imposed when building orthologous
gene clusters (see Methods), the 11 new cyanomyo-
virus genomes increase the total cyanomyovirus ‘pan
genome’ from approximately 1500 (Sullivan et al.,
2010) to approximately 2000 genes (Supplementary
Figure S1). There is a well-defined set of 26 clusters
of orthologous genes shared by all 28 cyanomyovirus
genomes (Table 3)—defined here as ‘signature core
genes’—that we used to assess the relative abundance
of all other cyanomyovirus genes in each environ-
mental sample. This set includes genes with host
homologs—that is, shared phage/host genes—such as
the pyrophosphatase mazG and the phosphate-
starvation-inducible gene phoH. If these genes are
also single copy core genes in wild phage genomes,
their abundance should be directly proportional to
gene length in each environment (Coleman and
Chisholm, 2010), and indeed it is (Figure 1).

Shared metagenome-defined core gene set.
Twenty-one genes were present within a range of
values defined by the length-normalized abundance
of signature core genes at all three sites. This set,
plus applicable signature core genes, constitutes the
‘metagenome-shared core’ (Table 4). These genes
encode phage structural proteins, hypothetical
genes and shared phage/host genes such as the
UvsW helicase and an endonuclease, indicating that
some shared phage/host genes have become part of
the core cyanomyovirus gene complement in multi-
ple habitats. In most cases, a gene identified as core
in the metagenomes was absent from only one or
two of the 28 genomes of cultured strains, making its
presence in the metagenome-shared core unsurpris-
ing. However, the hypothetical gene PhCOG71299,
observed in only 16 of the 28 genomes, nonethe-

less appears at core frequencies in all three environ-
ments. This gene may be more prevalent in wild
genomes than our cultured set would predict, or
alternatively it may be multi-copy in some wild
phage (Table 4). Notably, only between 6% and 11%
of cyanomyovirus gene clusters are abundant at or
above the boundaries set by the signature core genes
per site, highlighting extremely high diversity at the
level of individual genes in wild cyanomyovirus
genomes (red circles, Supplementary Figure S2).

Genes present at signature core gene frequencies in
one or two environments. Thirty genes were found
at signature core gene frequencies in one or two of
the three environments, most of which were anno-
tated as ‘hypothetical’ (Supplementary Table S1).
Some annotated proteins, such as the phosphate-
binding protein PstS, an iron-dependent oxygenase
and the hli gene cluster hlio4 (all core at BATS) have
homologs in host genomes, while others, such as the
bacterial DNA methylase Dam (core at HOT) do not.
The shared Calvin cycle regulatory gene CP12 is
core at HOT and MedDCM but not at BATS.

Pairwise site by site comparisons. We used pair-
wise comparisons of gene frequencies in different
environments to identify further signals of
environment-specific selective pressures on phage
populations (Figure 2). Seventy-one unique genes
were statistically overrepresented at one or more of
the sites (Tables 5-7). We found some phage
structural genes overrepresented at particular sites.
Phage structural genes can be sequence diverse
(Sullivan et al., 2010), and we hypothesize that the
dominant sequence type for some structural genes
might vary site to site, and this may be the source of
our observation of structural genes that are specific
to particular sites.

Fifteen overrepresented genes have host homo-
logs—that is, are shared phage/host genes with the
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Table 4 Metagenome-shared core genes
Gene cluster ~ Gene Pro/Syn Cyanomyovirus Pfam Pfam domain description ProPortal gene cluster description
domain genes in annotation
homolog? cluster
PhCOG131 gp3 27 Head-proximal tip of tail tube tail
completion + sheath stabilizer protein
PhCOG71175 27 Hypothetical protein
PhCOG71207 Y 27 PF00154 RecA UvsX RecA-like
PhCOG71233 UvsW Y 27 PF04851 Type III restriction enzyme, res RNA-DNA + DNA-DNA helicase
subunit
PhCOG71299 PurM 16 Hypothetical protein
PhCOG71328 30 Hypothetical protein
PhCOG71617 CobS Y 27 PF07728 AAA domain (dynein-related Porphyrin biosynthetic protein
subfamily)
PhCOG71620 gp46 Y 27 PF02463 RecF/RecN/SMC N terminal domain ~ Recombination endonuclease subunit
PhCOG71713 Hsp20 Y 27 PF00011 Hsp20/alpha crystallin family Heat-shock protein
PhCOG71874 26 Exonuclease
PhCOG72064 gp17 Y 26 PF03237 Terminase-like family Terminase DNA packaging enzyme large
subunit
PhCOG72066 Y 27 PF00565 Staphylococcal nuclease homologue  Endonuclease
PhCOG72135 gp20 27 Portal vertex protein of head
PhCOG72256 NrdC Y 37 PF00462 Glutaredoxin Glutaredoxin
PhCOG72398 HIi03 Y 46 High light inducible proteins
PhCOG72740 gp44 27 PF00004 ATPase family associated with various Clamp loader subunit

cellular activities (AAA)

PhCOG72737 gp45 27 Sliding clamp DNA polymerase accessory
protein

PhCOG72834 gp51 20 Base plate hub assembly catalyst

PhCOG72960 27 Hypothetical protein

PhCOG173 40 Hypothetical protein

PhCOG73250 gp47 Y 26 PF00149 Calcineurin-like phosphoesterase Recombination endonuclease subunit

Abbreviation: SMC, structural maintenance of chromosomes.
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Figure 2 Comparisons of cyanomyovirus gene reads detected in three different ocean environments. Circles indicate equally
represented phage genes and purple outlined squares represent genes that are statistically differentially represented in one of the two
environments being compared. Signature core genes are red, genes with abundances similar to signature core genes in all three
environments (‘metagenome-shared core’) are pink. Six phage/host shared genes of particular interest are labeled: phoA and pstS (green)
are phosphate-associated, psbA (yellow) is a photosystem gene, additional HOT-overrepresented genes in the neighborhood of psbA, a
heme oxygenase and a gene of unknown function, are also colored yellow, gnd and zwf (orange) are PPP genes and gcvP is the glycine
cleavage system P-protein. Tables 5—7 include detailed information for each overrepresented gene.

potential to interface with host metabolic pathways
and processes (Millard et al., 2009; Sullivan et al.,
2010; Sharon et al., 2011; Thompson et al., 2011b;
Zeng and Chisholm, 2012). Of particular interest are
those related to phosphorous acquisition, because
this element can be a defining variable in the
structure and function of marine microbial systems
and has a key role in shaping the genome content of
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cyanobacterial hosts (Martiny et al., 2009; Coleman
and Chisholm, 2010).

Features of phosphate-acquisition genes in cultured
and wild phage

Frequency at BATS and MedDCM relative to HOT.
The frequency of phoA and pstS—cyanomyovirus



Table 5 Statistically overrepresented cyanomyovirus genes in a comparison of the North Pacific Gyre (HOT) and the Sargasso Sea
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(BATS)
PhCOG Bonferroni ~ BATS HOT ProPortal description Over- Sig.  In Pfam Pfam description
adjusted represented core? host?  domain
Fisher score at
PhCOG72627 5.30E-26 36 0 PhoA BATS
PhCOG2105 8.08E-23 6 431 Glycine HOT Y PF02347/  Glycine cleavage system
dehydrogenase PF01212  P-protein/Beta-eliminating lyase
PhCOG72964 2.54E-21 27 653 Phage tail fiber-like HOT
protein
PhCOG73281 1.23E-11 8 297 Hypothetical HOT
PhCOGOrphan_1324 3.64E-09 21 6  Hypothetical BATS
PhCOG71200 1.65E-06 57 100 Hypothetical BATS
PhCOGOrphan_1323 1.35E-06 55 94 Hypothetical BATS
PhCOG73152 7.66E-06 47 77  PstS BATS Y PF01547  Bacterial extracellular
solute-binding protein
PhCOG72544 9.22E-05 39 62 20G-Fe(II) oxygenase BATS Y PF03171  20G-Fe(Il) oxygenase
superfamily
PhCOG1447 2.28E-03 28 42  RNaseH BATS
PhCOGOrphan_657 2.94E-04 25 29  Phage tail fiber-like BATS
protein
PhCOG564 2.55E-03 37 397 Phage tail fiber-like HOT
protein
PhCOG72672 3.66E-03 61 148 Tail sheath monomer BATS PF04984  Phage tail sheath protein
PhCOG72704 8.90E-03 118 368 Proximal tail sheath BATS Y
stabilization
PhCOG2 1.18E-04 260 905 Ribonucleotide BATS Y PF02867/  Ribonucleotide reductase,
reductase A subunit PF00317/  barrel domain/Ribonucleotide
PF03477  reductase, all-alpha domain/ATP
cone domain
PhCOG73058 8.99E-03 3 109 T4-like base plate hub HOT
and tail lysozyme
PhCOGOrphan_1479 5.32E-03 21 26  Transketolase central BATS

region-containing
protein

Abbreviation: ATP, adenosine triphosphate.

Table 6 Statistically overrepresented cyanomyovirus genes in a comparison of the Mediterranean Sea (MedDCM) and the Sargasso Sea

(BATS)
PhCOG Bonferroni BATS MedDCM ProPortal Over- Sig.  In Pfam  Pfam domain description
adjusted description represented core? host? domain
Fisher at
score
PhCOG72627 2.92E-10 36 15 PhoA BATS
PhCOGOrphan_1479  2.16E-08 21 3 Transketolase central BATS
region-containing
protein
PhCOG969 2.68E-07 0 89 G6PDH MedDCM Y PF02781/ Glucose-6-phosphate dehydrogenase,
PF00479 C-terminal domain/Glucose-6-phos-
phate dehydrogenase, NAD-binding
domain
PhCOG258 4.76E-06 3 110 Hypothetical MedDCM
PhCOG964 2.30E-05 1 83 6PGDH MedDCM PF03446/ NAD-binding domain of 6-phospho-
PF00393/ gluconate dehydrogenase/6-phospho-
PF03807 gluconate dehydrogenase, C-terminal
domain/NADP oxidoreductase coen-
zyme F420-dependent
PhCOGOrphan 620  3.03E-04 26 19 Hypothetical BATS
PhCOG71555 3.93E-04 100 181 Photosystem II D1 BATS Y Y PF00124 Photosynthetic reaction center protein
protein
PhCOG3728 5.96E-04 40 45 Putative BATS
nucleotidyltransferase
PhCOG4334 7.68E-04 40 46 Nucleotide sugar BATS Y
epimerase
PhCOG2105 1.32E-03 6 108 Glycine MedDCM Y PF02347/ Glycine cleavage system P-protein/
dehydrogenase PF01212 Beta-eliminating lyase
PhCOG71205 8.62E-03 185 431 DNA primase- BATS Y
helicase

Abbreviations: NAD, nicotinamide adenine dinucleotide; NADP, NAD phosphate.
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Pfam domain annotation

at
HOT
HOT
MedDCM
MedDCM

Overrepresented Sig. core? In host? Pfam domain
MedDCM

Phage tail fiber-like

Hypothetical
protein

Hypothetical

1
23

HOT MedDCM ProPortal description
17

0
36
103

Bonferroni
adjusted
Fisher score
2.33E-04
2.74E-04
2.80E-04

Table 7 (Continued)

PhCOG
PhCOG73044

PhCOG72250
PhCOG71068
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genes with host homologs involved in the phosphate
stress response (Martiny et al., 2006; Hsieh and
Wanner, 2010; Zeng and Chisholm, 2012)—was
elevated at BATS and MedDCM relative to HOT
(Tables 5-7, Figure 2, green squares). Notably,
phosphate concentrations in North Atlantic surface
waters are in the nanomolar range—as are those in
the Mediterranean Sea—and at least an order of
magnitude lower than surface levels in the North
Pacific (Wu et al., 2000; Moutin and Raimbault,
2002). In fact, at BATS, phage pstS occurs at
signature core gene frequencies (that is, it is likely
present in all cyanomyoviruses), and it is nearly so
at MedDCM, indicating that it has been incorporated
into the genomes of essentially all cyanomyoviruses
in these environments. Prochlorococcus’ phoA gene
is also overrepresented at BATS vs HOT, while pstS,
a core gene in Prochlorococcus genomes, is not
(Coleman and Chisholm, 2010), indicating that
phage pstS is selected for independently of its
abundance in host genomes. The higher frequency
of these phosphate-acquisition-related phage genes
at BATS and MedDCM relative to HOT suggests that
cyanomyovirus populations retain genes that facil-
itate host functions under the selective pressure of
phosphate limitation.

There are also interfaces between host phosphate
acquisition and viral genomes in eukaryotic
systems—for example, the PHO4 phosphate transpor-
ter superfamily (Pfam ID: PF01384) has been found in
eukaryotic viruses (Monier et al., 2012). Although this
gene is not yet found in Prochlorococcus and is only
in one Synechococcus (Synechococcus WH5701,
protein ID: WH5701_07531), a single metagenomic
read containing both pho4 and a cyanomyovirus gene
was observed, suggesting that cyanophage could also
carry this gene (Monier et al., 2012).

Explorations of the phylogeny of shared phage/
host genes have suggested that cyanophage acquired
pstS from host cells (Martiny et al., 2009; Ignacio-
Espinoza and Sullivan, 2012); however, not all
shared phage host genes have a phylogeny consis-
tent with host origins (Ignacio-Espinoza and
Sullivan, 2012). As more and longer environmen-
tally isolated sequences for these shared genes
become available, we will be better able to define
the flow of genes between phage, host and possibly
other microbes in marine environments.

The metagenomic patterns observed here reflect
the link between phosphate-acquisition genes in
phage and the regulation of phosphate-acquisition
genes in the host by phosphate availability (Zeng
and Chisholm, 2012; and see below). Phosphate
availability controls expression of host pstS and
alkaline phosphatase genes in both marine Syne-
chococcus and Prochlorococcus (Scanlan et al.,
1993; Martiny et al., 2006; Tetu et al., 2009) through
the PhoB/PhoR (PhoBR) two-component regulatory
system (Hsieh and Wanner, 2010) that is widespread
in bacteria, including Prochlorococcus and Syne-
chococcus (Kettler et al., 2007; Scanlan et al., 2009;

SAICAR synthetase

PF01259

Y
Y
Y
Y

HOT
HOT
MedDCM
HOT
MedDCM
MedDCM
MedDCM
HOT
MedDCM
HOT
MedDCM
HOT
HOT
MedDCM
MedDCM
MedDCM

cal
cal

Hypothetical

1
1

1

late wedge
Phosphoribosylaminoi-
midazole-succinocar-
boxamide synthase

late wedge
Hypothetical

Hypothetical

PhoA

hetical
hetical

hetical
Hypothet

Carbamoyltransferase
Hypothetical
Hypothetical
Hypothetical

het
Hypothetical

Hypot!
Base p
Hypothet
Hypot
Hypot
Hypot
Base p

92
31
0
19
16
12
15
15
15
84
24
22
14
3
56
560
32
13

59
7
29
91
0
71
0
0
0
228
4
94
0
38
166
641
11
0

61E-04
82E-04
10E-04
35E-04
81E-04
19E-04
45E-03
45E-03
45E-03
74E-03
90E-03
94E-03
62E-03
59E-03
85E-03
12E-03
20E-03

9.02E-03

3
3
5
5
5
6
1
1
1
1
1
1
3
4
4
5
8

Abbreviations: ATP, adenosine triphosphate; NAD, nicotinamide adenine dinucleotide; NADP, NAD phosphate; SAICAR, phosphoribosylaminoimidazolesuccinocarboxamide.

PhCOGOrphan_620

PhCOG73097
PhCOGOrphan_658
PhCOG2016
PhCOG1098
PhCOG73282
PhCOG456
PhCOG72627
PhCOG739
PhCOG71169
PhCOG72664
PhCOG224
PhCOG1544
PhCOG963
PhCOG4516
PhCOG72163
PhCOG72041
PhCOG529
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Figure 3 Predicted pho boxes immediately upstream of (a) PACOG173 and/or pstS and (b) the hli03 gene cluster in cyanomyovirus
genomes. Phage genome names and the genomic indices of the displayed region are indicated. Putative pho box motifs are shown as
purple arrows. The genomic region in (a) is larger than the region in (b) and the pho box motif and genes are scaled in size accordingly.
Red stars indicate that the host strain on which the phage was isolated contained the PhoBR two-component phosphate sensing system;
white triangles indicate that the host genome is not currently available. The PhACOG173 (cyan), pstS (orange), phoA (blue), hlio3 (dark
green) and other hli genes (light blue) are highlighted with specific colors; all other genes are shown in light green.

Tetu et al., 2009). Genes regulated by PhoBR have
conserved sites (pho boxes) immediately upstream
of their promoters to which the transcriptional
activator PhoB binds (Lamarche et al., 2008). The
presence of pho boxes in cyanomyovirus genomes
(Sullivan et al., 2010) and recent evidence that they
are involved in sensing and responding to host
phosphate-starvation status during infection in one
phage/host pair (Zeng and Chisholm 2012) led us to
explore this motif more deeply.

Pho box motifs in cultured cyanomyovirus genomes.
To improve on analyses in our previous work
(Sullivan et al., 2010)—while recognizing that
computational predictions ultimately require
experimental confirmation—we used a position
weight matrix based on predicted Prochlorococcus
and Synechococcus pho box motifs (Su et al., 2007),
tailoring our search to capture host-like pho boxes.
In the 28 genomes we found 186 genes from 112
orthologous gene clusters with intergenic upstream
pho boxes within 100bp of the gene’s start site
(Supplementary Table S2).

Pho boxes upstream of phage pstS/PhCOG173. As
reported in Sullivan et al. (2010), and Zeng and
Chisholm (2012), pho boxes near pstS are often
accompanied by a gene between the pho box and
pstS, referred to as DUF680 in the former and
PhCOG173 in the latter. Phage lacking PhCOG173
upstream of pstS have pho boxes directly upstream
of pstS. In 11 out of 16 phages containing pstS/
PhCOG173, pho boxes were found <100bp
upstream of these genes (Figure 3a) and slightly
further (121bp) in a twelfth phage (S-SSM7)

The ISME Journal

(Supplementary Table S3). In the three phages
(P-SSM3, P-SSM2 and P-SSM7), there were multiple
tandem pho boxes upstream of these genes. The
phage PhCOG173 gene family is conserved (see
below), and its expression is upregulated in cyano-
myoviruses infecting host cells that are P-stressed
(Zeng and Chisholm, 2012). Notably, PhCOG173 has
no detectable orthologs in host genomes and pho
boxes are found directly upstream of it in eight
cyanomyovirus genomes. Therefore, we postulate
that the positioning of pho boxes in front of
numerous copies of PhCOG173 is a result
of selection rather than chance and that this gene
may have a role in either phosphate acquisition or in
a more general phosphate-stress response.
Although not all Prochlorococcus contain the
PhoBR system (Kettler et al., 2007), those hosts with
sequenced genomes on which cyanomyoviruses
containing pho boxes were isolated do contain
PhoBR (Figure 3a, Supplementary Materials and
Methods). Notably, phage Syn19, Syn2, S-SSM5 and
P-RSM1, isolated on PhoBR-containing Synechococ-
cus hosts WH8102, WH8012 and WH8109 and
Prochlorococcus host MIT9303, respectively, do
not have identifiable pho boxes directly upstream
of PhCOG173. They do, however, have pho boxes
elsewhere in this genomic region: Syn19 has a pho
box upstream of the hypothetical protein
Syn19_155, three genes upstream of PhCOG173/
pstS, and its ortholog in Syn2, CPTG_00065, also
has an upstream pho box. S-SSM5 and P-RSM1
contain pho boxes 142 and 135bp upstream of
the heat-shock protein Hsp20, respectively,
which lies immediately upstream of PhCOG173
(Supplementary Table S3). It is therefore possible



that additional genes in this region are responsive to
regulatory signals from the host PhoBR system.

Pho boxes upstream of phage hli genes. There are
46 hlio3 genes in the cyanomyovirus genomes—18
genomes have multiple copies and 10 have a single
copy. The hli03 genes are closely spaced in genomes
with multiple copies and frequently found with
other hli gene family members. In 13 out of 14 cases,
there is a pho box upstream of the first hli03 copy in
the genome (Figure 3b), raising the intriguing
possibility that the host PhoBR system might also
regulate the expression of phage hli03. PhoB can
regulate non-phosphate-related genes in bacteria,
such as virulence genes in Vibrio cholerae (Pratt
et al., 2010), antibiotic-regulating genes in Strepto-
myces (Santos-Beneit et al.,, 2011) and acid-stress
genes in Escherichia coli (Suziedeliene et al., 1999).
Although there is no direct evidence that PhoBR
regulates other genes in cyanophage hosts, some
predicted that pho boxes in marine Synechococcus
(Su et al., 2007) are upstream of hli genes. There is
no such evidence for Prochlorococcus thus far.

HIi genes are similar in sequence to chlorophyll
a/b-binding proteins that are often upregulated
under changes in light intensity in cyanobacteria
(Dolganov et al., 1995; Funk and Vermaas, 1999;
Bhaya et al., 2002; Steglich et al., 2006). There are
numerous hlis in Prochlorococcus genomes
(Coleman and Chisholm, 2007). Although their
location and binding partners in the cell remains
unclear (Storm et al., 2008; Muramatsu and Hihara,
2012), hlis display different expression patterns over
the diel cycle (Zinser et al., 2009) and generally fall
into two categories (Bhaya et al., 2002): (1) Single
copy core hlis and (2) multi-copy non-core hlis.
Multi-copy hlis have orthologs, such as hli03, in
phage (Lindell et al., 2004). Genes in this category
are often found in hyper-variable regions in host
genomes and are upregulated in response to changes
in light (Steglich et al., 2006), iron (Thompson et al.,
2011a) and nitrogen (Tolonen et al., 2006) in host
cells, as well as stress imposed by phage infection
(Lindell et al., 2004, 2007). In the case of nitrogen,
binding sites for the global nitrogen regulator NtcA
were found upstream of hlis with differential
transcription under changing nitrogen conditions
(Tolonen et al., 2006). Interestingly, hlis do not
appear to be upregulated in response to phosphate
stress in Prochlorococcus (Martiny et al., 2006),
although in Synechococcus sp. WH8102 a possible
hli (SYNW2180) was upregulated in a PtrA protein
transcriptional response gene mutant during phos-
phate stress relative to the wild-type strain
(Ostrowski et al., 2010). This hli has no homologs
in phage.

PhCOG173, a conserved, cyanophage-specific gene
neighboring multiple shared phage-host genes.
PhCOG173 is found in all 28 cyanomyoviruses
(Figure 4, genes with dark gray bars) and is multi-
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hpg)

copy in 12 genomes. Eight of these have one copy of
the gene upstream of pstS and another upstream of
glutaredoxin (called nrdC in phage genomes and
grxC in host genomes), a single copy core gene in
Prochlorococcus and Synechococcus. Glutaredoxin
is found in all 28 cyanomyovirus genomes and is
multi-copy in 10 genomes. Glutaredoxins help
regulate cellular redox state (Lillig et al., 2008),
suggesting that PhCOG173 is not only involved in
influencing phosphate acquisition in host cells but
may also alter cellular redox state. Phage may use an
altered redox state to direct host metabolism toward
nucleotide production (Thompson et al., 2011b).
Alternatively, phage glutaredoxin could manipulate
stress responses in host cells brought on by changes
in redox state.

Among sequenced podovirus isolates, six also
contain the PhCOG173 gene. The association
between PhCOG173 and shared phage/host genes
extends to five cyanopodoviruses (Figure 4, genes
with light gray bars; Labrie et al., 2013). In four out
of these five instances, the gene was found upstream
of a shared phage/host gene of unknown function
(PhCOG73321), and in one instance, it was upstream
of the photosystem gene psbD.

PhCOG173 proteins form phylogenetic groups that
are linked to their downstream gene—for example,
glutaredoxin and pstS—when that gene is host-like,
suggesting differing functional roles related to that
gene (Figure 4). In genomes where two copies of
PhCOG173 are located next to each other, the genes
cluster separately phylogenetically (see PSSM2_246
and PSSM2 247 and SSM2 217 and SSM2_218, set
in bold in Figure 4), suggesting that they were not a
recent gene duplication and supporting the possibi-
lity of differing functional roles.

Thus, the cyanophage-specific PhCOG173 gene is
associated with multiple shared phage/host genes
with very different functions related to cellular
stressors and metabolism, such as phosphate acqui-
sition, light harvesting and cellular redox state. Its
conservation across multiple phage morphotypes
highlights the importance of this functionally
uncharacterized gene and strongly suggests that
phage utilize genes not observed in host genomes
to affect host metabolic processes.

Differential abundance in metagenomic databases of
shared phage/host genes related to photorespiration,
photosynthesis and the PPP
Although the phosphate-acquisition-related genes
and their associated regulatory features were a
strong emergent signal from this data set, there are
other  phage/host-shared genes differentially
retained by phage in environmental comparisons
(Figure 2; Tables 5-7) presumably reflecting selec-
tion by as yet unidentified environmental factors.
We mention a few intriguing genes here.

The phage gene encoding the glycine cleavage
system P-protein (gcvP, PhCOG2105), a large gene

1837
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Figure 4 Phylogeny of PACOG173, a conserved phage gene cluster adjacent to shared phage/host genes. The PhCOG173 cluster, present
in both cyanopodovirus and cyanomyovirus genomes (light gray and dark gray bars, respectively) but not host genomes, is found
upstream of numerous shared phage/host genes, and phylogenetic groups are associated with different downstream host genes (colored
bars). White bars indicate that the downstream gene is not shared with any sequenced host genome. Genes in bold indicate genomes
where two copies of PhCOG173 are located next to each other, that is, in the P-SSM2 genome, PhCOG173 gene PSSM2_246 is
immediately upstream of the PACOG173 gene PSSM2 247. The tree is rooted with cyanopodovirus gene PROG_00012. Gray circles
indicate > 0.8 branch support. The scale bar represents 0.1 substitutions per site.

(>900aa) that is core in Prochlorococcus and
Synechococcus genomes (CyCOG4223), was over-
represented in phage at HOT relative to both BATS
and MedDCM and was overrepresented at MedDCM
in comparison to BATS, where it is almost com-
pletely absent (Tables 5-7; Figure 2, blue squares).
This gene is part of a photorespiratory pathway in
cyanobacteria and involved in the reversible inter-
conversion of serine and glycine (Hasse et al., 2007;
Eisenhut et al.,, 2008; Muramatsu and Hihara,
2012).

In some cases, we observed habitat-specific over-
abundance of neighborhoods containing multiple
gene sets. For example, the photosystem-associated
phage gene psbA (PhCOG71555) is overrepresented
at HOT in comparison to MedDCM. Two neighbor-
ing genes, a small, hypothetical cyanophage
gene (PhCOG71750) and a shared phage/host
heme oxygenase (Hoil, PhCOG71159), were also
overrepresented at HOT in comparison to MedDCM
(Figure 2, yellow squares). Heme oxygenase is
transcribed during infection of Prochlorococcus
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strain NATL1A (Dammeyer et al., 2008), and its
expression is upregulated under iron starvation in
some cyanobacteria (Cornejo et al., 1998) but not in
Prochlorococcus (Thompson et al., 2011a). Heme
oxygenase overabundance at HOT could be related
to relatively low iron availability in the Pacific,
known to limit Prochlorococcus growth (Mann and
Chisholm, 2000).

In a second example, phage glucose-6-phosphate
dehydrogenase (zwf, PhCOG969) and phosphoglu-
conate dehydrogenase (gnd, PhCOG964), core PPP
genes in host genomes, were overrepresented at
MedDCM in comparison to both HOT and BATS
(Figure 2, orange squares); an additional shared
phage/host Calvin cycle regulatory gene, CP12
(PhCOG71523), was found at signature core gene
frequencies at MedDCM and HOT. The gnd/zwf
region is variable in cyanophage genomes (Millard
et al., 2009), and our previous work indicates
that some phage are designed to redirect host
metabolism away from carbon fixation and towards
nucleotide synthesis via the PPP (Thompson et al.,



2011b). Why this would be more necessary in one
environment than another remains unknown.

Other genes from this region are also overrepre-
sented in the MedDCM sample, including the
shared phage/host plastocyanin gene petE, part of
the electron transport chain, and two small,
functionally unannotated phage-specific genes,
PhCOG71460, and PhCOG1139. The unannotated
phage genes may have roles in the PPP, alternatively
they may be phage genes selected to flank host-like
genes for an unknown purpose.

Conclusions

We demonstrate that environment-specific selection
pressures can dictate the frequency of occurrence of
some shared phage/host genes in wild cyanophage,
highlighting gene flow between cyanobacterial and
cyanophage genomes in the marine environment.
Notably, the core status of a gene in host genomes
(such as the PPP genes discussed above and pstS)
does not necessarily reflect its abundance in phage.
Furthermore, regulatory motifs for shared phage/host
genes are not always acquired with the
host gene but appear to be selected for independently
in phage genomes as demonstrated by the presence of
motifs associated with host phosphate sensing found
upstream of the phage-specific gene PhCOG173.

The ecological origins of the considerably greater
numbers of differentially abundant genes in the
comparison between the HOT and MedDCM sites
are not clear. We speculate that as additional
metagenomic data sets and associated metadata for
environmental samples become available, we will be
able to tease apart in more detail the environmental
drivers of differences in phage populations between
environments.

The ability to identify core-like genes in environ-
mental samples, independent of the prevalence of
those genes in sequenced genomes, provides a
means to derive an environmentally relevant core
genome for these genetically diverse organisms.
Finally, our work illustrates the power of metage-
nomics-based approaches for revealing some of the
interplay between phage and host genomes in
marine environments, and we anticipate the ana-
lyses described here will also be relevant to
elucidating the genetic and metabolic ties between
phage and host in other systems.
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