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Background: Tumour heterogeneity is documented for many characters, including the production of growth factors, one
of the hallmarks of cancer. What maintains heterogeneity remains an open question that has implications for diagnosis and
treatment, as drugs that target growth factors are susceptible to the evolution of resistance.

Methods: I use evolutionary game theory to model collective interactions between cancer cells, to analyse the dynamics of the
production of growth factors and the effect of therapies that reduce their amount.

Results: Five types of dynamics are possible, including the coexistence of producer and non-producer cells, depending on the
production cost of the growth factor, on its diffusion range and on the degree of synergy of the benefit it confers to the cells.
Perturbations of the equilibrium mimicking therapies that target growth factors are effective in reducing the amount of growth
factor in the long term only if the reduction is extremely efficient and immediate.

Conclusion: Collective interactions within the tumour can maintain heterogeneity for the production of growth factors and explain
why therapies like anti-angiogenic drugs and RNA interference that reduce the amount of available growth factors are effective
in the short term but often lead to relapse. Alternative strategies for evolutionarily stable treatments are discussed.

Self-sufficiency of growth factor production is one of the hallmarks
of cancer (Hanahan and Weinberg, 2000) and, like for other
characters, there is evidence of intra-tumour heterogeneity in the
ability of cells to produce growth factors (Achilles et al, 2001;
Marusyk and Polyak, 2010). Jouanneau et al (1994) have shown
that tumour cells cooperate for the production of FGF, that is, cells
that do not produce the growth factor can benefit from the
products of their neighbours. As they are diffusible molecules, it
stands to reason that this is the case for other growth factors as well
(Axelrod et al, 2006). What maintains heterogeneity? Given that
cancer progression is a process of clonal selection (Cairns, 1975;
Nowell, 1976; Crespi and Summers, 2005; Merlo et al, 2006;
Greaves and Maley, 2012) in which cells compete for resources,
space and nutrients, how can more than one clone stably coexist in
a neoplasm? Current explanations include the possibility that
different clones are evolutionarily neutral (Iwasa and Michor,
2011), specialise on different niches (Nagy, 2004; Gatenby and
Gillies, 2008) or are not in equilibrium (Gonzalez-Garcia et al,

2002); which, if any, of these mechanisms are at work in neoplasms
remains an open question (Merlo et al, 2006).

Heterogeneity has also implications for disease progression
(Maley et al, 2006), diagnosis and therapy (Dexter and Leith,
1986). As diagnostic biopsies sample only a small region of the
tumour, treatments based upon such samples might not be
effective against all tumour cells. Understanding the origin, extent
and dynamics of tumour heterogeneity, therefore, is essential for
the development of successful anticancer therapies. It has been
suggested that treatments that attack growth factors may be less
susceptible than traditional drugs to the evolution of resistance
(Pepper, 2012; Aktipis and Nesse, 2013). Current drugs that target
growth factors, however, like the anti-angiogenic drug Avastin,
extend overall survival by only a few months (Amit et al, 2013),
as resistance often arises.

We develop a model of growth factor production in the
framework of evolutionary game theory and show how the
evolutionary dynamics of the system can explain the maintenance
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of stable heterogeneity, how this affects the development of
resistance to anticancer therapies that target growth factors, and
show the implications for the development of stable therapies.

A fundamental analytical method in evolutionary biology, game
theory has often been mentioned (for example, Gatenby and Maini,
2003; Axelrod et al, 2006; Merlo et al, 2006; Basanta and Deutsch,
2008; Lambert et al, 2011) as a promising avenue for cancer
research, but only a few papers actually develop game theoretical
models of cancer. Tomlinson (1997) and Tomlinson and Bodmer
(1997) developed a mathematical model of a population consisting
of two types of cells, with one type producing a factor that confers a
proliferative advantage to both cells. Subsequent papers have
extended this model up to four types of cells (Dingli et al, 2009;
Basanta et al, 2008a,b, 2011; 2012; Gerstung et al, 2011) and
allowed stochastic and spatial effects (Bach et al, 2003). These
models, however, describe interactions between pairs of cells,
whereas interactions among cancer cells are not normally pairwise
and should be described by public goods games (PGGs) with
collective interactions. It is known that results from the theory of
two-player games cannot be extended to multiplayer PGGs and
that this can actually lead to fundamental misunderstandings
(Archetti and Scheuring, 2012).

Models of PGGs in evolutionary game theory, on the other hand
(reviewed by Archetti and Scheuring (2012)) assume that the
benefit of the public good is a linear function of the number of
contributors (the N-person Prisoner’s Dilemma: NPD) or a step
function with a fixed threshold (Archetti, 2009a,b). As the effect
of enzyme production is generally a saturating function of its
concentration (Hemker and Hemker, 1969; Ricard and Noat, 1986;
Mendes, 1997; Eungdamrong and Iyengar, 2004), however, the
public good produced by growth factors is likely to be a sigmoid
function of the number of producer cells. We must therefore resort
to a model with sigmoid benefits, which has been so far beyond the
reach of evolutionary game theory (Archetti and Scheuring, 2011,
2012). As the dynamics of the NPD and that of threshold PGGs is
radically different, it is not clear a priori, what the dynamics of
PGGs with sigmoid benefits could be.

The model we use here, therefore, goes beyond current game
theory models of cancer in that it is a multiplayer, collective action
(public goods) game, rather than a game with two players; and it
goes beyond standard models in evolutionary biology in that it
assumes nonlinear, sigmoid benefits, and investigates the effect of
therapies that affect the dynamics. To make the analysis possible,
we must assume that cells maintain a large and constant
population size, which may describe cancer cell populations that
have reached a carrying capacity, due, for example, to resource
limitation or immune response. The model is relevant for insulin-
like growth factor (IGF) and other growth factors that confer direct
benefits by inducing a growth advantage or by protecting against
apoptosis. Other growth factors like vascular endothelial growth
factor (VEGF) whose benefits are less direct will have more
complicated dynamics.

MATERIALS AND METHODS

We consider the case in which cells can be either producers of the
growth factor (cooperators; C) or non-producers (defectors; D);
producers pay a cost of production c40 and the benefit b(j) for a
cell is an increasing function of the number of contributors j
among the other cells in the group (of size n) defined by the
diffusion range of the growth factor, that is, Dbj¼ b(jþ 1)�
b(j)40 for j¼ 0, y, n� 1. More specifically, we assume that the
benefit function has a sigmoid shape (for a given j*, jpj*)Dbjþ 1

XDbj, jXj*)Dbjþ 1pDbj). We use the simplest and most natural
sigmoid function, the logistic function b(j)¼ 1/[1þ es(k� j)], where

k is the inflection point at which the function has steepness s (with
0okpn and s40). A normalised version of the logistic function,
given by bN(j)¼ [b(j)� b(0)]/[b(n)� b(0)], delivers the case of a
fixed threshold (a benefit is produced if and only if at least k
producers are present; s-N) and of a linear function (s-0) as
limit cases. In a large population with no assortment, we can
approximate the analysis by assuming an infinite, well-mixed
population, and the fitness of producers and non-producers is
given as follows:

pCðxÞ ¼
Xn�1

j¼0

n�1
j

� �
xjð1�xÞn�1�j � bðjþ1Þ�c

pDðxÞ ¼
Xn�1

j¼0

n�1
j

� �
xjð1�xÞn�1�j � bðjÞ

where 0pxp1 is the fraction of producers in the population, as
a producer pays a cost c that a non-producer does not pay, but its
group has one more contributor (itself).

In a clonal population, the replicator dynamics (Hofbauer and
Sigmund, 1998) of this game is given by

x0 ¼ xð1�xÞ � ½bðxÞ�c� ð1Þ

where the fitness difference pC(x)� pD(x) is written in the form
b(x)� c, and

bðxÞ ¼
Xn�1

j¼0

n�1
j

� �
xjð1�xÞn�1�j � Dbj ð2Þ

The dynamics (1) has two trivial rest points x¼ 0 and x¼ 1;
further possible, interior rest points are given by the roots of the
equations

bðxÞ�c ¼ 0 ð3Þ

For the logistic function (or any other sigmoid function), an
exact analytical solution is not possible. As b(x) is a polynomial in
Bernstein form, we can resort to the properties of Bernstein
polynomials (Lorentz, 1953; Philips, 2003) to characterise the
dynamics and find an approximate solution.

The benefit for having a fraction x of producer cells is b(x)¼ 1/
[1þ ens(h� x)], the extension of b(j/n) to all xA[0,1], with h¼ k/n. As
b(x) is a Bernstein polynomial (Bernstein, 1912; Lorentz, 1953;
Philips, 2003) of the coefficient Dbj¼ b((jþ 1)/n)� b(j/n), by
Bernstein theorem (Bernstein, 1912) we know that b(x) converges
uniformly to Dbj in [0,1]. Furthermore, because Dbj is the forward
difference of the benefit function with spacing 1/n, for large enough n
we can approximate DbjE(1/n)b0(j/n). For any x, j/n converges in
probability to x as n-N; therefore, by Bernstein theorem b(x)
converges to (1/n)b0(x), and equation (3) can be approximated by

ð1=nÞb0 ðxÞ�c ¼ 0 ð4Þ

We can obtain an analogous solution using equation (4) for the
normalised benefit function bN(x), and actually for any sigmoid
function.

Because of the variation-diminishing property of Bernstein
polynomials, we also know that the number of internal equilibria of
b is less than the number of sign changes of Db by an even amount;
because of our assumption of sigmoid benefits, we know that b(x)
has a unique maximiser x* in (0,1); finally, because of the end point
values property of Bernstein polynomials, we know that b(0)¼Db0

and b(1)¼Dbn� 1.
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RESULTS

It follows that x¼ 0 is a stable rest point of (1) if and only if
Db0oc, and that x¼ 1 is a stable rest point of (1) if and only
if Dbn� 1Xc. In addition, any interior stable rest point xs must
satisfy equation (3) and b0(xs)o0. It follows that there is at most
one interior stable rest point xs and that, if such a rest point exists,
it satisfies x*oxso1. These conclusions define, for any sigmoid

benefit function, the following five types of dynamics (Figure 1),
where we simplify notation by defining b*¼ b(x*):

� If c4b*, then b(x)oc 8x, and x¼ 0 is the only stable
equilibrium.

� If comin[Db0, Dbn� 1], then b(x)4c 8x, and x¼ 1 is the only
stable equilibrium.

� If min[Db0,Dbn� 1]ocomax[Db0,Dbn� 1], and Db0oDbn� 1,
then b(x)4c for x4xu and b(x)oc for xoxu; therefore, the
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Figure 1. The five types of dynamics of growth factor production. The evolutionary dynamics of growth factor production depends on how the
benefit of the growth factor changes as a function of the fraction of producer cells. The equilibria are found where b(x)� c¼ 0, that is, where b(x)
intersects the constant line c (the cost of producing the growth factor; dashed line); the fraction of producers increases if b(x)4c and decreases if
b(x)oc; the arrows show the direction of the change. There are five possible types of dynamics: (A) only x¼ 0 is stable; s¼0.5, h¼ 0.3, c¼0.12.
(B) Only x¼ xs is stable; s¼ 0.5, h¼0.7, c¼ 0.02. (C) Both x¼ 0 and x¼ xs are stable; s¼0.5, h¼ 0.3, c¼0.1. (D) Both x¼0 and x¼1 are stable;
s¼0.5, h¼0.3, c¼ 0.02. (E) Only x¼1 is stable; s¼0.1, h¼0.3, c¼ 0.02. n¼20.
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unique interior unstable equilibrium xu divides the basin of
attraction of the two stable equilibria x¼ 1 and x¼ 0.

� If min[Db0,Dbn� 1]ocomax[Db0, Dbn� 1], and Db04Dbn� 1,
then b(x)4c for xoxs and b(x)oc for x4xs; therefore, the
unique interior stable equilibrium xs divides the basin of
attraction of the two unstable equilibria x¼ 1 and x¼ 0.

� If max[Db0, Dbn� 1]ocob*, then b(x)4c for xuoxoxs,
whereas b(x)oc for xoxu and for x4xs; therefore, the interior
unstable equilibrium xu divides the basins of attraction of the
two stable equilibria x¼ 0 and x¼ xs.

The internal equilibria for the normalised logistic function are
given by (from equation (4))

x� ¼ h� s

n
log

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4cs � B
p

2cs � B �1

� �
ð5Þ

with xs¼ x� for the stable equilibrium and xu¼ xþ for the
unstable equilibrium, where B¼ b(1)� b(0).

The results described so far reveal that stable heterogeneity can
arise simply as a consequence of the fact that growth factors are
diffusible public goods. Stable heterogeneity is more likely to occur
for low levels of h (that is, when few producer cells are enough to
confer a benefit to the whole group; Figure 2).

To conclude the comparative statics of the system, we note that
(Figure 3) the equilibrium frequency of producers is always
a decreasing function of c and n (the number of cells within the
diffusion range of the growth factor); the effect of s (the steepness
of the benefit function) is more complex because the equilibrium
can be a monotonic or a single-peaked function of s depending on
the other parameters (it is clear, however, that stable heterogeneity
is possible only if s is not too low); finally, the equi-
librium frequency of producers is an increasing function of
h (the inflection of the benefit function). This has a implications
for the dynamics of anticancer therapies that target growth factors
and for the evolution of resistance against such therapies.

An anticancer drug that acts by impairing growth factors will
increase the amount of growth factors that the cells must produce
to achieve a certain benefit, that is, it will increase h. If the
threshold is high, producers can go to fixation, whereas they
remain at a mixed equilibrium if the threshold is lower (compare,
for example, Figures 1B and D). Specifically, an anticancer drug
that acts by reducing the amount of circulating growth factor may
lead to the opposite of the desired effect: although the immediate
effect is, of course, a sudden reduction in tumour growth (because
there are not enough circulating growth factors), the amount of
growth factors that must be produced to achieve the same benefit
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Figure 2. Types of evolutionary dynamics as a function of the parameters. Each plot is drawn for different values of s (the steepness of the benefit
function) and h (the threshold of the benefit function), that is, for different types of benefit of the growth factor (a function of the fraction of
producers, represented by the small panels on the top right; see Figure 1), and shows the type of dynamics as a function of c (the cost of
producing the growth factor) and n (group size). There are five types of dynamics (see Figure 1). (A) Only x¼ 0 is stable. (B) Only x¼ xs is stable.
(C) Both x¼ 0 and x¼ xs are stable. (D) Both x¼0 and x¼1 are stable. (E) Only x¼ 1 is stable. Colours show the values of the stable (xs) or
unstable (xu) equilibria.
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Figure 3. Effect of the parameters on the equilibrium fraction of producers. The fraction of producers is plotted over time for different values of c
(the cost of production), n (the number of cells within the diffusion range of the growth factor), h (the inflection of the benefit function) and s (the
steepness of the benefit function), starting from the same initial frequencies.
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Figure 4. Evolution of resistance to anticancer treatments that target growth factors. A population reaches an equilibrium (after about 200
generations) in which producers and non-producers of growth factors coexist. When, at generation 1000, a drug is introduced that increases the
threshold h from 0.1 to 0.98 (i.e., it impairs almost completely the growth factor produced by the tumour), fitness immediately declines and
remains low for a few generations; if the transition to the new dynamics is fast enough (20 generations), producers go extinct. If the transition is
slower, however, (50 generations) the frequency of producers increases, and after a few generations fitness reaches levels comparable to the pre-
drug treatment, as the fraction of producers approaches a new equilibrium. n¼ 50; c¼0.01; s¼0.2.
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(h) is now increased, which leads to an increase in frequency of the
C cells, which eventually leads to a new equilibrium (Figure 4).
In case of bistability, the final outcome will depend on the initial
frequency of producers.

Even if a drug induces an almost complete annihilation of
available growth factors, the speed of the transition from the
original to the new threshold is essential for the success of the
therapy. Although a fast transition to the new threshold can lead to
a successful, stable therapy, a slower delivery of the anti-growth
factor drug, or inefficient RNA interference (RNAi) delivery
systems that require multiple treatments over an extended period
of time, can make the system evolve back to relapse, even if the
treatment itself is extremely efficient at impairing the growth factor
(Figure 5A). Even therapies that are almost immediately effective
will fail if the reduction in circulating growth factor is not large
enough (Figure 5B).

CONCLUSION

Analysing the production of growth factors as a nonlinear PGG
reveals that tumour heterogeneity can be maintained by the
frequency-dependent selection that arises as a natural consequence
of the fact that growth factors are diffusible, and therefore public
goods, with no need to invoke neutral mutations (Iwasa and
Michor, 2011), niche specialisation (Nagy, 2004; Gatenby and
Gillies, 2008) or non-equilibrium (Gonzalez-Garcia et al, 2002).
Five types of dynamics are possible, including the coexistence of
producers and non-producers at a stable equilibrium. This
diversity of dynamics was not captured by previous game theory
models based on pairwise interactions or by previous models of
public goods in evolutionary game theory.

Tumour heterogeneity has important implications for diagnosis
and treatment. The results help us understand anticancer therapies
that attack growth factors, either directly (using drugs like avastin
that target the growth factors) or indirectly (using RNAi).
Although it was suggested that attacking growth factors may be
less susceptible to the evolution of resistance (Pepper, 2012; Aktipis

and Nesse, 2013), the results shown here suggest that the issue is
not so simple. In fact, it is clear that, in spite of the initial
enthusiasm, anti-angiogenic drugs, one of the most prominent
examples of therapies based on the disruption of growth factors,
have been disappointing. A drug like Avastin, which was the best
selling drug for Roche (Basel, Switzerland) in the past few years,
only extend overall survival of patients with certain types of cancer
by a few months, which are followed by relapse (Amit et al, 2013).

The rationale of the analysis is that when one reduces the
amount of a growth factor, the immediate result is a sudden
reduction in tumour growth, because the threshold necessary to
achieve the original benefit is not reached; as a consequence, the
growth rate of the tumour immediately declines. At the same time,
however, the amount of growth factors necessary for the
population to grow increases (because part of them are disrupted
by the therapy), which changes the dynamics of the system;
unfortunately, it changes in the wrong direction: by increasing the
threshold, one increases the frequency of producers at equilibrium,
which explains relapse simply as the new equilibrium reached by
the system under the new conditions. Analysing anti-growth factor
drugs as methods that increase the threshold of a PGG reveals that
the initial expectations of stability for these therapies were based on
faulty evolutionary predictions. Although it is too early to evaluate
the efficacy of RNAi treatments, it seems reasonable that even
silencing the gene for a growth factor should incur a similar
problem and be susceptible to the evolution of resistance. As
pointed out by Pepper (2012), therapies that target growth factors
are certainly a more evolutionary robust approach than conven-
tional drugs that target cells directly. As we have shown, however,
an anti-growth factor drug must be evolutionarily stable in order to
be effective. Besides efficacy, latency was also shown here to be
fundamental for the success of such therapies.

In order to have quantitative results that may help design
proper therapies, the methods used here should be extended to take
into account more realistic features of cancer development,
including, for example, spatial structure, as cells will form clusters
of producers and non-producers with their own dynamics.
It is known, however, that assortment in spatially structured
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Figure 5. Designing evolutionarily stable anti-growth factor treatments. At generation 1000, a drug is introduced that increases the threshold h
from 0.1 to h*, in t generations. n¼50; c¼ 0.01; s¼0.2. (A) h*¼ 0.9; variable t, from 5 to 100 generations. If the transition is not fast enough,
producers reach a new equilibrium (here, the transition must occur in 20 generations or less). (B) t¼20; variable h*, from 0.3 to 0.98. If the
treatment does not reduce enough the available amount of growth factor, producers reach a new equilibrium (here, the reduction must be strong
enough to change the threshold from 0.1 to at least 0.9).
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populations does not change the dynamics qualitatively if benefits
are sigmoid (which is our case; Archetti and Scheuring, 2012; Perc
et al, 2013).

Drugs that target growth factors may be used in combination
with other therapies, such as chemotherapy. As chemotherapy is
more effective against rapidly dividing cells, it will affect
preferentially non-producing cells (which grow faster), and
therefore confer a benefit to producer cells, which would not help
the treatment. An evolutionarily stable therapy should modify the
dynamics to lead to the extinction of the producer cells. As we have
seen, extinction of the producer cells is possible, depending on the
shape of the benefit function, if the cost/benefit ratio of producing
the growth factor is high enough, group size is large enough and if
the initial amount of non-producer cells is above a critical
threshold. The cost/benefit ratio could be changed by varying the
amount of exogenous growth factor; group size could be changed
by varying the diffusion range of the factor; the critical amount of
non-producer cells can be achieved by autologous cell therapy,
using cancer cells collected from the patient, in which genes coding
for growth factors have been knocked out. Such therapy would be
stable against the evolution of resistance because mutants that
produce growth factors, having a higher cost, would not invade.
The very reason why most current therapies fail in the long term,
the evolutionary response of the tumour, in this case would lead
to the desired effect: the extinction of the producer cells and the
long-term stability of the treatment.
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