
Peroxiredoxin-3 is overexpressed in prostate
cancer and promotes cancer cell survival
by protecting cells from oxidative stress
H C Whitaker*,1, D Patel1, W J Howat2, A Y Warren3, J D Kay1, T Sangan3, J C Marioni4,5, J Mitchell2,
S Aldridge6,7, H J Luxton1,8, C Massie1,4, A G Lynch4 and D E Neal1

1Uro-Oncology Research Group, Cambridge CB2 0RE, UK; 2Histopathology and In Situ Hybridisation Core Facility, Cambridge
CB2 0RE, UK; 3Department of Pathology, Addenbrookes Hospital, Cambridge CB2 2QQ, UK; 4Statistics and Computational
Biology Group, Cambridge CB2 0RE, UK; 5European Bioinformatics Institute Wellcome Trust Genome Campus, Hinxton,
Cambridge CB10 1SD, UK; 6Genomics Core Facility, Cambridge CB2 0RE, UK; 7Genomic and Regulatory Variation Laboratory,
Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK and 8Cancer Research
UK Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK

Objective: We have previously identified peroxiredoxin-3 (PRDX-3) as a cell-surface protein that is androgen regulated in the
LNCaP prostate cancer (PCa) cell line. PRDX-3 is a member of the peroxiredoxin family that are responsible for neutralising
reactive oxygen species.

Experimental design: PRDX-3 expression was examined in tissue from 32 patients using immunohistochemistry. Subcellular
distribution was determined using confocal microscopy. PRDX-3 expression was determined in antiandrogen-resistant cell lines by
western blotting and quantitative RT–PCR. The pathways of PRDX-3 overexpression and knockdown on apoptosis and response to
oxidative stress were investigated using protein arrays.

Results: PRDX-3 is upregulated in a number of endocrine-regulated tumours; in particular in PCa and prostatic intraepithelial
neoplasia. Although the majority of PRDX-3 is localised to the mitochondria, we have confirmed that PRDX-3 at the cell membrane
is androgen regulated. In antiandrogen-resistant LNCaP cell lines, PRDX-3 is upregulated at the protein but not RNA level.
Resistant cells also possess an upregulation of the tricarboxylic acid (TCA) pathway and resistance to H2O2-induced apoptosis
through a failure to activate pro-apoptotic pathways. Knockdown of PRDX-3 restored H2O2 sensitivity.

Conclusion: Our results suggest that PRDX-3 has an essential role in regulating oxidation-induced apoptosis in antiandrogen-
resistant cells. PRDX-3 may have potential as a therapeutic target in castrate-independent PCa.

The mammalian peroxiredoxins (PRDXs) are a highly conserved
family of thiol-containing peroxidises that has six members
(PRDX1–6) (Leyens et al, 2003; Hall et al, 2009). The PRDX
proteins catalyse the reduction of molecules that cause oxidative
stress such as reactive oxygen species (ROS), for example,
peroxides that are essential metabolic intermediates and regulators
of growth factor signalling but are often produced as a result of
cellular stress (Wood et al, 2003; Giorgio et al, 2007; Cox et al, 2009;

Lenaz, 2012; Miki and Funato, 2012; Ray et al, 2012). If left
unchecked, ROS can damage DNA and induce tumourigenesis
(Trachootham et al, 2008; Ruckenstuhl et al, 2009). Alternatively,
the induction of ROS formation by chemotherapy and ionising
radiation can be used therapeutically to cause DNA damage-
induced cell death (Lee et al, 2011). Catalysis of ROS leads to
oxidised SO2 and SO3 forms of the PRDX proteins which can
be reduced, and therefore reactivated, via a thioredoxin and
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ATP-dependent mechanism (Fujii and Ikeda, 2002; Aran et al,
2009; Hanschmann et al, 2010). The PRDX protein family have
previously been linked to cancer development (Shen and Nathan,
2002). All of the PRDX proteins that have been linked to the
development or progression of tumourigenesis as summarised in
Table 1. PRDX-1, 2, 5 and 6 have also been linked to resistance to
chemotherapy, in particular cisplatin, and ionising radiation, in a
variety of tumours including ovarian, oesophageal and hepato-
cellular (Kikuta et al, 2010; Dittmann et al, 2011; Gao et al, 2011;
Lee et al, 2011; Pak et al, 2011; Cho et al, 2012; Zhiyu et al, 2012).
Increased PRDX-2 is thought to induce resistance by preventing
DNA damage-induced apoptosis (Lee et al, 2011).

Prostate cancer (PCa) is the most prevalent male cancer in the
Western world and it requires androgens such as testosterone or
dihydrotestosterone (DHT) for continued growth and develop-
ment (Friedlander and Ryan, 2012). Treatment for PCa targets this
reliance on androgens by blocking androgen production or the
androgen receptor (Kuil and Mulder, 1994). However, prostate
cells eventually escape this androgen blockade and continue to
grow, becoming resistant to therapy, despite continued antiandro-
gen treatment. The mechanisms involved in the progression to
castrate-independent disease remains poorly understood, but may
include androgen receptor mutation or amplification, receptor
activation by alternative ligands such as oestrogen, changes in
cofactor expression or alterations in growth factor signalling
(Bevan, 2005). Second line chemotherapy with docetaxel is only
effective in 30–50% of patients (Tannock et al, 2004). PRDX-1 is
known to interact with the androgen receptor, enhancing ligand
binding and regulating transactivation of androgen-regulated genes
(Park et al, 2007; Chhipa et al, 2009; Shiota et al, 2011; Miki and
Funato, 2012; Ray et al, 2012).

PRDX-3 is a known c-myc, miR-383 and miR-23b target gene
required for mitochondrial homoeostasis and neoplastic transfor-
mation (Wonsey et al, 2002; Vivas-Mejia et al, 2009; He et al, 2012;
Li et al, 2012). A high level of expression is found in the breast,
cervical, hepatocellular and prostate carcinomas (Noh et al, 2001;
Choi et al, 2002; Wonsey et al, 2002; Karihtala et al, 2003; Lin et al,
2007; Kim et al, 2009; Basu et al, 2011). In PCa, the expression of
PRDX-3 has been negatively correlated with TMPRSS–ERG fusion
status and overexpression has been shown to increase cellular
proliferation regardless of the hormone dependency of the cell line
(Ummanni et al, 2012). The subcellular localisation of the different
PRDX proteins is diverse (Fujii and Ikeda, 2002). The majority of
PRDX-3 has been localised to the mitochondria with a small

proportion also reported at the cell surface, similar to reports of
membrane-associated PRDX-6 (Araki et al, 1999; Liu et al, 2005;
Whitaker et al, 2007; Ambruso et al, 2012). PRDX-3 expression is
induced by oxidants in the cardiovascular system (Araki et al,
1999; Kumar et al, 2009) and is particularly sensitive to oxidative
stress following treatment with pro-apoptotic drugs, such as
auranofin, isothiocyanates and arsenic trioxide (Brown et al, 2008;
Cox et al, 2008a; Vivas-Mejia et al, 2009).

Using immunohistochemistry (IHC), we have shown upregula-
tion of PRDX-3 in endocrine-regulated tumours and in particular
prostatic intraepithelial neoplasia (PIN) and PCa. PRDX-3 protein,
but not mRNA, is significantly upregulated in antiandrogen-
resistant PCa cell lines, resulting in increased resistance to
oxidative stress and failure to activate pro-apoptotic pathways.
Conversely, knockdown of PRDX-3 leads to raised susceptibility
to oxidative stress. These results suggest that PRDX-3 may
be essential for the development of PCa and the development of
resistance to treatment.

MATERIALS AND METHODS

Patient cohorts. Prostate tissue from radical prostatectomies
performed at Addenbrookes Hospital, Cambridge, UK between
2001 and 2005 was used to make tissue microarrays (TMAs) using
duplicate 0.6-mm cores taken from paraffin-embedded tissue
and a Beecher Manual TMA Arrayer. Details of this array have
previously been published (Whitaker et al, 2010). In total, the
tissue from 32 different patients was used to generate the TMA.
Regions of benign or normal prostate (n¼ 4), PIN (n¼ 4) and
malignancy (n¼ 2–6) were identified by a specialist uro-patho-
logist (AYW) for each patient (Whitaker et al, 2010). Malignant
tissue was obtained from at least one and, where possible, up to
three different tumour foci from each patient. Stage and Gleason
grade was confirmed by a specialist uro-pathologist (AYW) before
scoring any IHC staining. Full ethical approval was obtained before
beginning this study.

IHC and image analysis. A TMA containing one matched
normal and one tumour core from a variety of different organs
(Stretton Scientific, Stretton, UK) or the prostate TMA outlined
above was probed with anti-PRDX-3 antibody (1 : 1000, Abcam,
Cambridge, UK) using a Bondmax Autostainer. PRDX-3 staining
was visualised using Alexafluor 488 (green) (Molecular Probes,

Table 1. Members of the PRDX family are differentially expressed in a number of different tumour types

Peroxiredoxin
Up/down
regulated Tissue References

PRDX-1 Up Breast, bladder, mesothelioma, lung,
ovarian, oesophageal, endometrial and
glioblastoma

(Kinnula et al, 2002; Karihtala et al, 2003; Lehtonen et al, 2004; Park et al,
2006; Quan et al, 2006; Kim et al, 2008; Cha et al, 2009; Hoskins et al, 2011;
Karihtala et al, 2011; Maxwell et al, 2011; Svendsen et al, 2011; Woolston et al,
2011; Zhang et al, 2011; Zhang et al, 2012)

PRDX-2 Up Breast, mesothelioma, lung, cervical,
ovarian, oesophageal and prostate

(Kinnula et al, 2002; Karihtala et al, 2003; Park et al, 2006; Kim et al, 2009;
Pylvas et al, 2010; Zhang et al, 2012)

PRDX-3 Up Breast, mesothelioma, lung, cervical,
prostate and hepatocellular

(Noh et al, 2001; Choi et al, 2002; Kinnula et al, 2002; Karihtala et al, 2003;
Lehtonen et al, 2004; Lin et al, 2007; Kim et al, 2009; Chua et al, 2010;
Basu et al, 2011; Ummanni et al, 2012)

PRDX-4 Up/down* Breast, lung, leukaemia*, prostate and oral
cavity

(Karihtala et al, 2003; Park et al, 2006; Basu et al, 2011; Chang et al, 2011;
Palande et al, 2011)

PRDX-5 Up Breast, mesothelioma and multiple
myeloma

(Kinnula et al, 2002; Karihtala et al, 2003; Ren et al, 2011; Woolston et al, 2011)

PRDX-6 Up Breast, bladder, mesothelioma, lung,
ovarian, oesophageal, thyroid and pancreas

(Kinnula et al, 2002; Park et al, 2006; Quan et al, 2006; Chang et al, 2007;
Pylvas et al, 2010; Park et al, 2011; Thongwatchara et al, 2011; Sofiadis et al,
2012; Zhang et al, 2012)
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Paisley, UK) and counterstained with DAPI (blue) to visualise
nuclei. The PRDX-3-stained prostate TMAs were scanned and
quantified using the Ariol system (Applied Imaging, New Milton,
UK). Cores containing mixed pathology or only stroma were
excluded from the analysis. A threshold intensity of 75 was applied
to all images to remove pixel densities caused by non-specific
staining. After cores were mapped, total pixel count for each core
was calculated using the following equation: total pixel intensity�
total pixel area/1000. Data were grouped according to pathology,
for example, benign, PIN or PCa or subdivided by Gleason grade.
N numbers indicate the number of cores analysed. P-values were
calculated using a Kruskal–Wallis test.

Cell culture. COS Cells derived from Monkey kidney and human
prostate PC3 and parental LNCaP cells were purchased from the
Cancer Research UK cell bank. Primary benign prostatic
hyperplasia fibroblasts were a kind gift from Dr Michael Brown
(The Genito-Urinary Cancer Research Group, Cancer Research
UK Paterson Institute for Cancer Research). COS cells were
routinely cultured in DMEM supplemented with 10% foetal bovine
serum (Labtech, Uckfield, UK). All other cells lines were routinely
cultured in RPMI media (Gibco, Paisley, UK) with 10% foetal
bovine serum. Antiandrogen-resistant LNCaP cells have previously
been characterised (Hobisch et al, 2006; Vias et al, 2006) and were
grown in media supplemented with either 1mM hydroxyflutamide
alone (LNCaP-OHF), 1mM OHF and 10 pM R1881 (a non-
hydrolysable DHT analogue) (LNCaP-OHF/R1881), 1 mM alone
(LNCaP-BIC), 1mM BIC and 10 pM R1881 (LNCaP-BIC/R1881).
Short-term antiandrogen treatment was performed using parental
LNCaP cells grown in the presence of 0 mM, 1 mM or 10 mM

bicalutamide. PRDX-3 knockdown was performed on six-well
plates of parental LNCaP cells using 0 mM, 50 mM or 100 mM Accell
SMARTpool siRNA (Dharmacon, Loughborough, UK) according
to the manufacturer’s guidelines. Cells were harvested or used for
additional experiments 72 h after transfection.

Western blotting. Cells were washed in PBS, pelleted and protein
lysate was made as before (Whitaker et al, 2008). Twenty
micrograms of total protein, as determined using Bradford assay,
were compared using the SDS–PAGE and western blot analysis.
The following antibodies were used for the detection of proteins:
mouse anti-PRDX-3 antibody (1 : 3000), rabbit anti-PRDX-SO2/SO3

(1 : 3000) and rabbit anti-COX IV (1 : 5000) (all from Abcam).
Mouse anti-actin (1 : 5000, Abcam) was used as a loading
control. Proteins were visualised using anti-mouse or anti-rabbit
HRP-conjugated secondary antibodies (1 : 1000, Dako Cytomation,
Ely, UK) and ECL-Plus (GE Healthcare, Amersham, UK).
If the signal detected was beyond the dynamic range of film,
diaminobenzidine (Vector Laboratories, Peterborough, UK) was
used for the detection.

Synthesis of cDNA and quantitative real-time PCR. For RNA,
cells were harvested in 1 ml Trizol. From each condition, 5 mg of
total RNA was reverse transcribed using the SuperScript III First-
Strand synthesis system (Invitrogen, Paisley, UK) with random
hexamer primers according to manufacturer’s recommendations.
For RT–PCR, primers were designed to recognise PRDX-3;
forward 50-GCCGCTCTGTGGATGAGACT-30, reverse 50-CCAG
CTGGGCACACTTCC-30. Real-time PCR was performed in
triplicate in 10-ml reactions containing 5 ml of SYBR Green PCR
Master Mix (Applied Biosystems), 2 pmol of primers and 1.5 ml of
cDNA as template. The cycling conditions for the ABI PRISM
7900HT Sequence Detection System (Applied Biosystems) were
50 1C for 2 min, 95 1C for 10 min, 40 cycles of 95 1C for 15 s and
60 1C for 1 min. Real-time efficiencies were calculated from the
slopes in the standard dilution curves. Relative expression levels
were calculated on the basis of the difference in Ct values between
the test samples and the control using the following formula: 10

mean-Y intercept/slope. Results were normalised with the expres-
sion of GAPDH results expressed relative to vehicle-treated cells.

Gene expression experiments. Gene expression data were
generated as part of a previously published study (Massie et al,
2011). Briefly, gene expression analysis was carried out on Illumina
Human HT12 version 4 arrays. All analyses were carried out on
R using Bioconductor packages (Gentleman, 2004). Raw intensity
data were processed using the BASH and HULK algorithms
as implemented in the beadarray package (Cairns, 2008;
Dunning, 2007). Log2 transformation and quantile normalisation
of the data were performed across all sample groups. The
differential expression analysis was carried out using the limma
package (Smyth, 2005). Points were calculated to represent log-
expression relative to the 0 time point. The probability of seeing
that if there were not a trend was calculated from 1 000 000
permutations to give the P-value for the hypothesis that there is no
change after androgen treatment.

Confocal microscopy. Immunofluorescence was performed as
previously described (Whitaker et al, 2007). LNCaP cells were
probed for PRDX-3 (1 : 400) in 10% whole-goat serum (Zymed,
Paisley, UK) in PBS. For colocalisation, experiments COX IV
(1 : 400) and E-cadherin (1 : 400, Abcam) were used. Proteins were
visualised using AlexaFluor 488 or 594-conjugated secondary
antibodies (Molecular Probes) and visualised using a Nikon Eclipse
confocal microscope using a � 100 objective. All scale bars
represent 10 mM.

Citrate synthase assay. Parental LNCaP cells and antiandrogen-
resistant cell lines were washed in ice-cold PBS and lysed on ice
using CellLytic MT Cell Lysis Reagent (Sigma, St Louis, MO, USA).
Ten micrograms total protein was assayed immediately for citrate
synthase activity using a Citrate Synthase Assay Kit (Sigma) in
accordance with the manufacturer’s instructions. Citrate synthase
activity was measured by a change in OD at 412 nm every 10 s for a
total of 100 s using a Lucy II spectrophotometer. After plotting
A412 against time, the linear range of the plot was used to calculate
the citrate synthase activity in mmole ml� 1 min� 1. P-values were
determined using a two-way ANOVA test.

Cell viability assays. Parental LNCaP and resistant LNCaP-BIC
cells were grown in six-well dishes to 60% confluence, washed
twice in PBS and incubated with serum-free RPMI for 24 h before
treatment. Duplicate wells were dosed with 0–0.001% H2O2 for
24 h and cells harvested by scraping into the existing media,
centrifuged at 3000 r.p.m. and the media removed. Cells were
gently but thoroughly resuspended in ice-cold PBS and cell
viability was measured using a ViCell automated cell stainer/
counter. Duplicate cells dosed with 0.00033% H2O2 for 24 h were
harvested and lysed as for western blotting. Human apoptosis
proteome profiler antibody arrays (R&D Systems, Abingdon, UK)
were performed in accordance with the manufacturer’s instructions
using 200 mg total protein. Following siRNA knockdown for 72 h,
LNCaP cells were washed twice in PBS and incubated with serum-
free RPMI for 24 h before 0.00033% H2O2 treatment for 24 h.
Duplicate cells were scraped, resuspended and cell viability
measured as before. All results were calculated as relative to the
no treatment controls. P-values were determined using a two-tailed
Student’s t-test.

RESULTS

Using a matched tumour and normal TMA containing tissue cores
from a variety of organs, we investigated the expression of PRDX-3
using immunofluorescent staining (Figure 1A and Table 2). In this
single TMA, PRDX-3 was overexpressed in numerous endocrine

Upregulation of PRDX-3 by antiandrogens BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2013.396 985

http://www.bjcancer.com


tumours such as the thyroid and ovary and highly expressed in
both normal and tumourigenic breast. PRDX-3 was also down-
regulated in many non-endocrine tissues such as the kidney and
lung although upregulated in the liver and cervix. Using a prostate
TMA, we found a highly significant increase in PRDX-3 in PIN
and prostate tumours relative to benign prostate (Figures 1B and C)
(Po0.0001). Consistent with previous reports, we found no link
between PRDX-3 expression in prostate tumours and Gleason
grade (Figure 1D) (P¼ 0.5321) (Basu et al, 2011).

There was no obvious difference in PRDX-3 subcellular
distribution between benign and tumourigenic tissue samples
(Figure 1B). Tissue staining for PRDX-3 was punctate, consistent
with the previously reported mitochondrial localisation (Araki
et al, 1999). To confirm that the majority of PRDX-3 was localised
to the mitochondria, PRDX-3 was colocalised with COX IV,
a known mitochondrial marker, in LNCaP cells (Figure 2A). PRDX-3
has also been localised to the cell surface in a PCa cell line, and we
investigated whether it colocalised with E-cadherin, a known
plasma membrane protein, using high-power confocal microscopy
(Whitaker et al, 2007) (Figure 2B). A proportion of PRDX-3 was

seen localised to the cellular membrane alongside E-cadherin.
This colocalisation was only visible in vehicle-treated cells and lost
in the presence of R1881, confirming the androgen regulation of
cell surface PRDX-3 previously reported (Whitaker et al, 2007).
Androgen regulation was confirmed using previously published
gene expression data, which supported the weak downregulation of
PRDX-3 in response to androgen treatment (Figure 2C) (Massie
et al, 2011).

To investigate how the expression changed following treatment
with antiandrogens, PRDX-3 expression was studied in a number
of prostate cell lines including the antiandrogen-resistant cells
(LNCaP-BIC and LNCaP-OHF) and LNCaP-BIC-R1881 and
LNCaP-OHF-R1881 cells cultured with the antiandrogens plus
10 pM of synthetic DHT, R1881 (Hobisch et al, 2006; Vias et al,
2006). Consistent with previous data, total PRDX-3 was down-
regulated following R1881 treatment of LNCaP cells (Figure 3A)
(Whitaker et al, 2007; Massie et al, 2011). Lower expression was
also seen in benign fibroblasts and the AR-negative PC3 cells
which is consistent with low the PRDX-3 expression in androgen-
independent cell lines seen previously (Basu et al, 2011). All of the
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Figure 1. PRDX-3 expression in tissue. A TMA containing matched normal/tumour cores from a variety of different organs was probed with
anti-PRDX-3 antibody and visualised using Alexafluor 488 (green). Nuclei were counterstained with DAPI (blue). Examples of different paired
normal and tumour tissue are shown (A). A prostate tissue TMA was also stained in an identical manner. Examples from a single patient are shown
(B). PRDX-3-stained prostate TMAs were scanned and quantified. Total pixel count for each core was calculated using the following equation: total
pixel intensity� total pixel area/1000. Data were grouped according to pathology, for example, benign, prostatic intraepithelial neoplasia (PIN)
or prostate cancer (PCa) (C) or subdivided by Gleason grade (D). N numbers indicate the number of cores analysed. P-values were calculated
using a Kruskal–Wallis test.
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antiandrogen-resistant cell lines exhibited the upregulation of
PRDX-3, compared with vehicle only treated wtLNCaP cells.
When PRDX-3 mRNA levels were investigated using qRT–PCR
there was a reciprocal correlation with the protein expression
with PRDX-3 mRNA increasing with androgen treatment and
decreasing in the antiandrogen-resistant cell lines (Figure 3B).
To determine whether the changes in PRDX-3 expression had any
causal effect in antiandrogen resistance or whether they resulted
from antiandrogen resistance, we treated LNCaP cells for 3 days
with vehicle, 1 mM or 10 mM bicalutamide. Cells treated with
bicalutamide quickly became etiolated and showed a more
neuroendocrine phenotype consistent with cell stress and the
development of resistance (Figure 3D, upper panels) (Vias et al,
2006). PRDX-3 was upregulated in response to bicalutamide in a
dose-dependent manner (Figure 3D, lower panel). An antibody
that detects the oxidised forms (SO2 and SO3) of PRDX-3
demonstrated a marked upregulation in response to bicalutamide
treatment indicating an increase in mitochondrial oxidative stress
and PRDX-3 activity.

To determine whether PRDX-3 is upregulated in antiandrogen-
resistant cells or whether there was an increase in overall
mitochondrial number or activity, we probed cell lysates for
COX IV, a key enzyme in the mitochondrial electron transport
chain that is an effective mitochondrial loading control (Figure 2A).
COX IV was markedly overexpressed in all of the antiandrogen-
resistant cell lines compared with wtLNCaP cells, consistent with
the PRDX-3 results and suggestive of increased mitochondrial
number. To determine whether this resulted in an increase in the
mitochondrial function, we measured the activity of citrate
synthase, a key enzyme of the mitochondrial tricarboxylic acid
(TCA) cycle (Figure 4A). Citrate synthase activity was increased by
R1881 treatment of wtLNCaP cells, whereas the antiandrogen-
resistant cells exhibited three- to five-fold greater citrate synthase
activity than the androgen-dependent wtLNCaP cells. Thus, long-
term antiandrogen-treated cells have more mitochondria and are
much more metabolically active than untreated cells (P¼ 0.0032)
resulting in an increase in mitochondrial enzymes, including
PRDX-3.

As PRDX-3 protein increases following antiandrogen treatment,
we aimed to establish whether this conferred any survival
advantage upon cells that might suggest that PRDX-3 expression
might be clinically significant. To induce oxidative stress, both
wtLNCaP- and bicalutamide-resistant cells were treated with

0–0.001% H2O2 for 24 h and assayed for cell viability (Figure 4B).
Long-term antiandrogen-treated LNCaP-BIC cells with raised
PRDX-3 levels showed increased resistance to H2O2-induced
oxidative stress, particularly at lower concentrations (0–0.0005%).
Cell lysates from wtLNCaP and LNCaP-BIC treated with and
without 0.00033% H2O2 were used on an apoptosis focused
antibody array to determine the difference in response to oxidative
stress (Figure 4C). In these arrays, wtLNCaP and LNCaP-BIC cells
with knocked down PRDX-3 (siPRDX3) showed upregulation of a
number of pro-apoptotic markers including p21, Fas ligand and
cleaved caspase-3, but not Bad. We did not observe any change in
the expression of pro-apoptotic proteins in the LNCaP-BIC cells,
consistent with the survival advantage seen in Figure 4b.
Trail receptor 2 which protects cells against apoptosis was also
upregulated in wtLNCaP and LNCaP-BIC siPRDX3 cells but not
LNCaP-BIC cells, suggesting deregulation of both pro- and anti-
apoptotic pathways. When PRDX-3 was knocked down in
wtLNCaP and LNCaP-BIC cells using siRNA, the knocked-down
cells were hyper sensitive to treatment with H2O2 compared with a
scrambled control (P¼ 0.005 (wtLNCaP), P¼ 0.009 (LNCaP-BIC))
(Figure 4D).

DISCUSSION

Although the PRDX proteins all share peroxidase activity, their
expression, particularly in tumours, is diverse (Table 1). Previously
PRDX-3 has been shown to be upregulated in a variety of tumour
tissues (Noh et al, 2001; Choi et al, 2002; Kinnula et al, 2002;
Karihtala et al, 2003; Lehtonen et al, 2004; Lin et al, 2007; Kim
et al, 2009; Chua et al, 2010; Basu et al, 2011; Ummanni et al,
2012). Using a matched normal/tumour TMA, we have shown that
PRDX-3 upregulation in tumours is most pronounced in
endocrine-regulated tissues such as the breast, thyroid and prostate
(Figure 1A and Table 2) supporting the previous association made
between PRDX-3 upregulation and the presence of hormone
receptors in the breast tissue (Karihtala et al, 2003). In PCa, PRDX-3
has been shown to be upregulated in needle-core biopsies and a
commercial TMA, where the patient treatment and surgical
technique could not be determined (Lin et al, 2007; Basu et al,
2011). Our data, gathered from 32 radical prostatectomy samples,
confirms upregulation of PRDX-3 in tumours compared with
benign and also shows the upregulation of PRDX-3 in PIN,
suggesting that its overexpression may be an early event in
tumourigenesis. Previous studies have suggested that 33% of
adjacent normal prostate tissue may demonstrate some raised
expression of PRDX-3, consistent with a field effect seen in other
solid tumours (Basu et al, 2011). Although the benign on our TMA
was taken from the same patient, whenever possible, it was not
taken directly from the adjacent tumour. Any field effect is likely to
raise expression in the benign cohort, making any differences in
expression between benign and tumour even more significant.
Our results are also consistent with a previous study showing
a negative correlation between PRDX-3 overexpression and
TMPRSS–ERG fusion status in PCa (Ummanni et al, 2012).

The localisation and of the PRDX proteins is varied with PRDX-3
predominantly localised to the mitochondria and, to a lesser
extent, the cell surface (Araki et al, 1999; Liu et al, 2005; Whitaker
et al, 2007) (Figure 2). The localisation of the mitochondrial
proteins with mitochondria and the cellular membrane has
previously been reported for p32 gC1qR, a protein with no defined
function, this is, thought to act as a generic chaperone (Fogal et al,
2008). Our group has previously reported downregulation of cell
surface and total cellular PRDX-3 in response to androgen
treatment (Whitaker et al, 2007). We have confirmed this
androgen regulation of PRDX-3 using gene expression data

Table 2. PRDX-3 IHC was performed on a multitumour/normal TMA.
Results are shown as no staining (� ), weak (þ ), moderate (þ þ ) or
strong (þ þ þ )

Tissue Cancer type
Normal

tissue score
Tumour

tissue score

Brain Glioblastoma multiforme þ þ

Oesophagus Squamous cell carcinoma þ þ

Liver Hepatocellular carcinoma þ þ þ þ þ

Thyroid Papillary carcinoma þ þ þ þ

Skin Squamous cell carcinoma � �

Lung Squamous cell carcinoma þ þ þ

Colon Adenocarcinoma þ þ þ þ

Stomach Adenocarcinoma þ þ þ

Kidney Renal cell carcinoma þ þ þ þ

Ovary Yolk sac tumour � þ

Cervix Squamous cell carcinoma þ þ þ

Breast Ductal cell carcinoma þ þ þ þ þ þ
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showing a decrease in the PRDX-3 RNA expression in response
to R1881 treatment (Figure 2C). This reduction in PRDX-3
corresponds to a loss of cell surface PRDX-3, consistent with our
previous results (Figure 2B) (Whitaker et al, 2007). The localisation
of the mitochondrial proteins with mitochondria and the cellular
membrane has previously been reported for p32 gC1qR, a protein
of unknown function that is being studied for potential
therapeutic utility.

The protective role of PRDX-3 in oxidative stress has previously
been shown in the cardiovascular system (Araki et al, 1999) and in
response to pro-apoptotic drugs, such as auranofin and isothio-
cyanates in tumour cells (Brown et al, 2008; Cox et al, 2008a).
We report that PRDX-3 down regulated by R1881 treatment
despite reports that androgen treatment increases fatty-acid

synthesis and ROS production (Lin et al, 2010). PRDX-3 is highly
upregulated in the antiandrogen-resistant cell lines, indicating that
it may have an antiapoptotic function in these cells and promote
their survival (Figure 3A). Interestingly, upregulation occurs at the
protein but not the mRNA level, suggesting that regulation of
PRDX-3 occurs at the translation or protein level and this is
consistent with an increase in the oxidised form of PRDX-3 seen
after antiandrogen treatment (Figures 3A, B and 4A). Our data
suggest that the stabilisation of PRDX-3 via oxidation and its
subsequent, slower, recycling back to the reduced and active form
may be an additional layer of regulation of peroxiredoxin
expression levels in prostate cells. Upregulation of PRDX-3 was
relatively rapid, occurring after only 3 days bicalutamide treatment,
suggesting that raised PRDX-3 may be part of the mechanism
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leading to antiandrogen resistance rather than an increase
occurring as a result of resistance (Figure 4A). The accompanying
increase in oxidised PRDX-3 supports the hypothesis that higher

levels of oxidative stress exist in cells treated with antiandrogen.
Although PRDX-3 oxidation has been linked to apoptosis via Bax/
Bak, it may also represent the mechanism by which PRDX-3 can be
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stabilized and recycled by thioredoxin-2 in resistant cells (Wood
et al, 2003; Cox et al, 2008a).

PRDX-3 is known to catalyse the reduction of ROS, including
H2O2, which are produced as a result of cellular metabolism, for
example, ATP synthesis. A major site of ROS production is the
mitochondria, organelles which can also regulate apoptosis (Rustin
and Kroemer, 2007). Bicalutamide-resistant cells that contain
higher levels of PRDX-3 also overexpress COX IV and possessed

four- to six-fold higher citrate synthase activity (Figure 4A). Citrate
synthase is the rate limiting first enzyme in the TCA cycle and
represents the metabolic activity via mitochondrial oxidative
phosphorylation occurring within a cell. We hypothesise that a
subset of prostate cells with greater mitochondrial number can
overcome the oxidative stress and pro-apoptotic signals caused by
antiandrogen treatment due to higher metabolic capacity and an
increased resistance to oxidative stress due to increased PRDX-3
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levels. Consistent with this, others have shown that mutations in
mitochondrial DNA are essential for conferring androgen
independence in the LNCaP derivative cell lines C4-2 (Higuchi
et al, 2006).

Concomitant with the raised levels of PRDX-3, antiandrogen-
resistant cells show an increased resistance to H2O2, particularly at
low concentrations, where PRDX proteins are known to be
most efficient (Lee et al, 2007; Cox et al, 2009). Treatment
of bicalutamide-resistant cells with H2O2 failed to induce the
pro-apoptotic signals seen in the parental cell lines (Figure 4C).
This effect was reversed by knocking down PRDX-3 in LNCaP-BIC
cells. Conversely knocking down PRDX-3 in parental LNCaP cells
makes them more susceptible to H2O2-mediated apoptosis as
previously noted following TNF-a treatment (Cox et al, 2008b).
This confirms a previous report that PRDX-3 is responsible for
increased resistance to H2O2, and suggests that PRDX-3 over-
expression may have a role in antiandrogen resistance (Chen et al,
2008). We suggest that metabolic adaptation and increase in the
mitochondrial number in prostate cells may result in resistance to
the oxidative stress and pro-apoptotic signals initiated by hormone
therapy, as seen in neuronal cells and breast cancer xenografts
(Besada et al, 2006; Busija et al, 2008; De Simoni et al, 2008). ROS
regulation is a novel mechanism leading to anti-androgen
resistance which could be exploited for as therapeutic targets for
small-molecule inhibitors or radiotherapy (Trachootham et al,
2009; Zhang et al, 2009).
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