
Impact of Analysis Methods on the Reproducibility
and Reliability of Resting-State Networks

Alexandre R. Franco,1–4 Maggie V. Mannell,5 Vince D. Calhoun,6,7 and Andrew R. Mayer6,8

Abstract

Though previous examinations of intrinsic resting-state networks (RSNs) in healthy populations have consis-
tently identified several RSNs that represent connectivity patterns evoked by cognitive and sensory tasks, the ef-
fects of different analytic approaches on the reliability and reproducibility of these RSNs have yet to be fully
explored. Thus, the primary aim of the current study was to investigate the effect of method (independent compo-
nent analyses [ICA] vs. seed-based analyses) on RSN reproducibility (independent datasets) for ICA and reliability
(independent time points) in both methods using functional magnetic resonance imaging. Good to excellent repro-
ducibility was observed in 9 out of 10 commonly identified RSNs, indicating the robustness of these intrinsic fluc-
tuations at the group level. Reliability analyses showed that results were dependent on three main methodological
factors: (1) group versus subject-level analyses (group > subject); (2) whether data from different visits were ana-
lyzed separately or jointly with ICA (combined > separate ICA); and (3) whether ICA output was used to directly
assess reliability or to inform seed-based analyses (seed-based > ICA). These results suggest that variations in the
analytic technique have a significant impact on individual reliability measurements, but do not significantly affect
the reproducibility or reliability of RSNs at the group level. Further investigation into the effect of the analytic tech-
nique on RSN quantification is warranted to increase the utility of RSN analyses in clinical studies.
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Introduction

Since Biswal’s first manuscript on resting-state func-
tional connectivity (Biswal et al., 1995), a number of re-

cent investigations have used this method to study the
human brain. Currently, seed-based correlation and indepen-
dent component analyses (ICA) are the two most commonly
applied techniques to examine resting-state networks [RSNs;
(Snyder and Raichle, 2012; Margulies et al., 2010)] during
periods of extended rest. With seed-based correlation, the re-
searcher can identify areas of the brain that are functioning to-
gether with a pre-defined cortical location; while with the use
of ICA, the researcher can identify multiple independent,
functionally connected cortical networks. The majority of
earlier studies use low-order ICA (Beckmann et al., 2005;
Calhoun et al., 2008a; Damoiseaux and Greicius, 2009; De

Luca et al., 2006; van de Ven et al., 2004; van den Heuvel
et al., 2009) and find *10 RSNs. However, the number of
RSNs naturally increases with model order of the ICA (Biswal
et al., 2010; Kiviniemi et al., 2009). The 10 reliably observed
RSNs can be broadly classified into two distinct categories
based on whether the correlated network activity is centered
in primary and secondary sensory-motor cortical areas (here-
after referred to as sensory-motor RSN) or in association cor-
tices (hereafter referred to as association RSN). Although a
number of recent studies have examined the reproducibility
and reliability of these networks (Damoiseaux et al., 2006;
Guo et al., 2012; Honey et al., 2009; Shehzad et al., 2009;
van de Ven et al., 2004; Van Dijk et al., 2010; Zuo et al.,
2010a) specific to a method, to date, there has been no direct
comparison of the potential impact of two most commonly
used analytic approaches (ICA and seed-based analysis) on
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the reproducibility and reliability of the 10 most commonly
observed RSNs.

The four identified sensory-motor RSNs include (1) pri-
mary and (2) secondary visual cortical areas, (3) auditory cor-
tical areas, and (4) primary and secondary somatomotor
areas. Commonly identified association RSNs include the de-
fault mode network (DMN) (Raichle et al., 2001), which can
further be subdivided into three subnetworks: (1) anterior
(aDMN), (2) posterior cingulate (pcDMN; Broyd et al., 2009;
Kim et al., 2009; Mannell et al., 2010; Uddin et al., 2009),
and (3) posterior precuneus (ppDMN) networks (Zuo et al.,
2010b). Additional association networks consist of the (4)
left and (5) right lateral frontoparietal networks, which in-
clude areas in the middle temporal gyrus (BA 21), posterior
cingulate (BA 23/31), superior parietal (BA 7,40), and the
middle and orbital frontal (BA 6,9,10; Damoiseaux et al.,
2006). Although the frontoparietal networks are involved in
a multitude of cognitions, the left is putatively more involved
in production processes; whereas the right is more involved
in monitoring processes (Cabeza et al., 2003). Finally, an asso-
ciation network that includes the medial (supplementary
motor area), superior frontal, and anterior cingulate gyri
has been referred to as the (6) executive control network (See-
ley et al., 2007).

The few studies that have examined the statistical proper-
ties (i.e., reproducibility and reliability both within and be-
tween subjects) of these RSNs (Biswal et al., 2010;
Damoiseaux et al., 2006; Guo et al., 2012; Honey et al., 2009;
Shehzad et al., 2009; van de Ven et al., 2004; Van Dijk et al.,
2010; Zuo et al., 2010b) have reported mixed results. These
mixed results are likely influenced by how RSNs were identi-
fied (e.g., ICA or seed-based analyses), the methods used to
quantify reproducibility and reliability, and whether reliabil-
ity was assessed at the individual subject or group level
(Biswal et al., 2010). Shehzad and colleagues (2009) used
three different sets of seed regions from previously published
work to assess the intra- (1 h apart), inter- ( > 5 months apart),
and multi-scan (all three time points) reliability of resting-
state functional connectivity analyses. Findings indicated a
wide range of test–retest reliability between pairs of regions
during rest, which was dependent on the statistical signifi-
cance of relationships between regions. Guo and colleagues
(2012) directly compared their results with Shehzad’s publi-
cation. In their study, the reliability of the salience and
DMN’s within a variety of metrics was calculated. Using a
healthy elderly population (age > 60), each subject performed
a resting state scan twice, roughly a year apart. Findings
show that the use of graph theoretical methods and group
ICA yielded the highest reliability within the two networks
analyzed. They also observed that motion has a major nega-
tive impact on reliability, especially on methods dependent
on correlation between regions of interest. Van de Ven and
colleagues (2004) used spatial ICA to examine both inter-sub-
ject reproducibility and intra-subject reliability of RSNs and
reported a high degree of consistency across subjects and
moderate reliability of eight RSNs (four sensory-motor and
four association) within subjects (Pearson’s r [0.45–0.79]).
Van Dijk and colleagues (2010) reported good within-subject
(n = 48) reliability in two association networks (Pearson’s
r = 0.63 and 0.67); while Honey and colleagues (2009), using
seed-based correlations derived from high- and low-resolution
brain parcellation, reported low to moderate individual reli-

ability (Pearson’s r [0.38–0.69]) within and between scanning
sessions for five subjects.

Previous work directly comparing seed-based analysis and
ICA suggests that they yield similar maps for the primary
DMN network, although results were more variable for sec-
ondary sub-networks (i.e., medial-temporal lobes) and in
comparisons of healthy and clinical populations (Mannell
et al., 2010). Though Van Dijk and colleagues (2010) reported
a high degree of consistency between methods in the identifi-
cation of four RSNs, a quantification of these similarities was
not provided. For exploratory investigations into the nature
and structure of the human brain at rest, seed-based analyses
are at a disadvantage, as they require some form of a priori
knowledge. In addition, placing the seed in slightly different
regions can result in very different outcomes (Cole et al.,
2010). Conversely, though ICA has the benefit of being a
data-driven technique, it is known that iterative ICA algo-
rithms produce a slightly different solution set (i.e., compo-
nents) for each iteration (Himberg et al., 2004). Another
technique that is gaining strength to study RSNs consists of
a spatiotemporal regression method, also known as dual re-
gression (Filippini et al., 2009; Zuo et al., 2010b). This method
consists of using pre-defined brain networks to estimate the
subject-specific network map, and can be considered a hybrid
method between seed-based correlation and ICA.

A critical methodological consideration when utilizing ICA
to characterize reliability is how to treat within-subject data-
sets from multiple time points. Traditional reliability analyses
treat data from each time point separately (i.e., indepen-
dently); however, clinical studies using ICA to investigate
between-group differences often combine the group datasets
into a single group ICA (e.g., healthy controls and patients
with schizophrenia (Calhoun et al., 2008b; Kim et al., 2009),
which has also been implemented in a probabilistic inde-
pendent component analysis reliability framework in a sam-
ple of healthy participants (Damoiseaux et al., 2006). The
combination of datasets across sessions or subject groups fa-
cilitates ICA analyses by guaranteeing that matching compo-
nents are generated for both time points/groups, which likely
increases the reliability of findings. However, to date, no
studies have specifically examined the effects of single-versus
multiple-session ICA approaches on the metrics of reliability
and reproducibility.

Given the wide range of reproducibility and reliability es-
timates reported in the literature, the current study had two
primary aims. The first aim was to examine the reproducibil-
ity of sensory-motor and association RSNs across two inde-
pendent samples collected from the same scanner and using
identical imaging parameters while using ICA. The second
aim was to determine the reliability of RSNs within the
same sample across time (3–5 months apart) using two differ-
ent ICA approaches for the initial identification of RSNs, and
comparing these approaches with a seed-based technique.
Finally, we examined the effects of conducting separate
(data from time 1 and time 2 treated independently) or com-
bined (data combined across visits) ICAs on RSN reliability.

Materials and Methods

Participants

A total of 50 healthy participants were enrolled in two sep-
arate studies investigating RSNs. Study 1 (hereafter referred
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to as model dataset) comprised 30 adult volunteers (21 men;
mean age = 31.83 – 10.72 [standard deviation, SD]) and per-
formed one resting-state scan. Study 2 (hereafter referred to
as the testing dataset) included a different pool of 20 adult
volunteers who were recruited to perform two separate func-
tional magnetic resonance imaging (fMRI) scans. One partic-
ipant from the test dataset was identified as an outlier (3 SD)
on several movement parameters during the resting-state run
and was excluded from all further analyses (Mayer et al.,
2007). In addition, no statistically significant difference in
frame-wise displacement (Wylie et al., 2013) was found be-
tween visits one and two in the test dataset. All the remaining
19 subjects (10 men; mean age = 28.95 – 10.02) returned for a
second visit to perform an FMRI scan (average number of
days post visit 1 = 114.47 – 12.19). None of the participants
from either study were taking psychoactive medications or
had a history of neurological, psychiatric, or recent substance
abuse disorders. Informed consent was obtained from all sub-
jects according to institutional guidelines at the University of
New Mexico.

Image acquisition and task

Identical imaging parameters were used in both datasets
(model and test). High-resolution T1 anatomic images
were collected on a 3 T Siemens Trio scanner with a 5-echo
multi-echo MPRAGE sequence (echo time [TE] = 1.64, 3.5,
5.36, 7.22, 9.08 msec, repetition time [TR] = 2.53 sec, inversion
time = 1.2 sec, 7� flip angle, number of excitations = 1, slice
thickness = 1 mm, field of view [FOV] = 256 · 256 mm, voxel
resolution = 1 ·1 · 1 mm]. A single 5 min resting-state run
was completed by each participant, and 150 echo-planar im-
ages were collected using a single-shot, gradient-echo echopla-
nar pulse sequence [TR = 2000 msec; TE = 29 msec; flip
angle = 75�; FOV = 240 mm; matrix size = 64 · 64]. Thirty-three
contiguous, axial 4.55-mm thick slices were selected to provide
whole-brain coverage (voxel size: 3.75 · 3.75 · 4.55 mm). In ad-
dition to two dummy scans, the first image of each run was
also eliminated to account for T1 equilibrium effects, leaving
a total of 149 images for the final analyses.

Subjects passively stared at a foveally presented fixation
cross (visual angle = 1.02�) and were requested to keep their
eyes open to diminish the likelihood of falling asleep and to
avoid the electrophysiological spectrum changes (i.e., in-
creased alpha waves) associated with closed eyes (Laufs
et al., 2003). Subjects were also instructed to keep head move-
ment to a minimum throughout the duration of the scan.

Image processing

Functional images were generated and processed using a
mixture of freeware and commercial packages, including
the Analysis of Functional NeuroImages (Cox, 1996), Group
ICA of FMRI Toolbox [GIFT, (Calhoun et al., 2001), http://
icatb.sourceforge.net], MATLAB (Mathworks, Inc., Sherborn,
MA), and FMRI of the Brain Software Library (Smith et al.,
2004). For the ICA and seed-based analysis, time series
images were temporally interpolated to correct for slice-
time acquisition differences, motion-corrected in both two-
and three-dimensional space, spatially blurred using a
6 mm Gaussian full-width half-maximum kernel, and then
normalized to a 3 mm3 standard stereotaxic coordinate
space (Talairach and Tournoux, 1988).

For the seed-based analysis, individual subject’s anatomi-
cal images (i.e., T1) were segmented into maps of white mat-
ter, gray matter, and cerebral spinal fluid (CSF), with the
resultant CSF and white matter masks used to obtain an av-
erage time series for these tissues. The six movement param-
eters and averaged time series for white matter and CSF were
then entered into a linear regression against the extended
resting-state time series to remove the variance associated
with each of these variables [for review see Fox et al.
(2005)]. Global temporal values were not used as a regressor,
as it has been shown that they artificially create a negative
correlation between brain regions (Murphy et al., 2009).

RSN selection: model dataset

ICA, using the Infomax algorithm (Bell and Sejnowski,
1997), was conducted to generate 36 components from the
resting-state run in the model dataset based on minimum de-
scription length criteria (Li et al., 2007). Data were intensity
normalized (removing the mean and setting the standard de-
viation equal to zero for each voxel), and individual subject
components were back reconstructed from the group compo-
nents using the group ICA-3 (GICA3) method (Erhardt et al.,
2010). This back-reconstruction method uses information
retained in the principal component analysis step to estimate
the subject-specific component spatial map and time course,
where the group component is exactly the sum of the
subject-level components. In comparison, spatiotemporal re-
gression (Biswal et al., 2010; Filippini et al., 2009) uses only
the spatial map from the group ICA to estimate the subject-
specific component. The resultant 36 components were then
independently inspected by two raters (A.R.F. and A.R.M.),
with each selecting the 10 sensory-motor and association
RSNs of interest with 100% inter-rater reliability (Fig. 1A).
These network maps are referred to as ICA-based template
map. Cluster quality index (iq; ICASSO; 20 iterations) were
used to provide an index of the statistical reliability of the in-
dependent components across different iterations using ini-
tial random conditions (Himberg et al., 2004).

Seed-based analyses for functional connectivity (Biswal
et al., 1995; Fox et al., 2005) were performed based on the
10 RSN selected by the raters of the ICA of the model dataset.
Specifically, each network seed was derived by thresholding
the group ICA results from the model dataset for voxels
exhibiting a p-value < 10�12. Location and shape of seeds
can be seen in yellow in the model dataset maps of Figures
2 and 3, while coordinates and volumes are described in
Supplementary Table S1 (Supplementary Data are available
online at www.liebertpub.com/brain). With the 30 subjects
of the model dataset, a reference time course was generated
based on the average time course of these voxels, which
was then correlated with all voxels for each subject. The r-
values for each voxel were then r-to-z transformed using
Fisher’s method. The resultant maps were averaged across
subjects to generate the seed-based template map.

Group ICA of testing datasets

Two different ICA approaches were employed to calculate
the group-independent components for the testing dataset
(Fig. 1B). In the first approach, a separate group ICA was per-
formed for each time point (i.e., visit 1 and visit 2). In the sec-
ond approach, a single group ICA was performed on data
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from both time points (i.e., combining visit 1 and visit 2 data).
Both ICA approaches were restricted to 36 components to
maximize consistency with the model dataset and to permit
a direct comparison of the reliability of resultant components.
For both approaches, a spatial template matching procedure
was performed. This consisted of creating a vector with all
the brain voxels from each spatial component map; whereas
a correlation matrix was then constructed from these vectors.
The cells of the correlation matrix were calculated by correlat-
ing the group component vectors from the testing dataset
with the selected component vectors (RSNs) from the model
dataset. Due to the preprocessing of these data before ICA
(pre-whitening), the directionality of the component is lost;
therefore, the component with the highest positive or nega-
tive (absolute) correlation value from the testing dataset
was selected as the best match for each RSN from the
model dataset. The magnitude of the spatial template match-
ing (correlation) between the model and testing datasets was
used as an estimate of reproducibility.

Intraclass correlation coefficients (ICCs) were calculated at
the group level for the separate ICA only, as the combined
ICA provided only a single group component. To determine
the reliability of these group RSN components, a 10 · 2
(RSN · visit) matrix was created to calculate the ICCs using
standard equations (Shrout and Fleiss, 1979) (model 1,1):

ICC(1, 1) =
BMS�WMS

BMSþ (k� 1)WMS
:

where the between-component mean square (BMS) and the
within-component mean square (WMS) were calculated for

each correlation, and the number of visits (k) was defined as
2. For the purposes of discussion, we adopted a set of nominal
values (poor = [�1.0 to 0.20], fair = [0.21–0.40], moderate =
[0.41–0.60], good = [0.61–0.80], and excellent = [0.81–1.00])
for both the ICC and template matching (i.e., spatial correla-
tion) that are similar to those utilized for the kappa statistic
(Landis and Koch, 2011).

For all group ICA analyses (model and testing datasets),
voxel-wise t-tests were performed on the subject’s back-
reconstructed component maps. Voxels were thresholded at
a high p-value ( p < 10�8, with an additional spatial threshold
of six voxels in the acquired space) to facilitate communica-
tion of results (e.g., Figs. 2 and 3).

Reliability analyses for individual subject data

A similar analysis was conducted to determine the reliabil-
ity of individual subject RSNs. Specifically, each subject’s
back-reconstructed component (derived with GIFT GICA-3)
from each RSN of the test datasets were spatially template
matched with the ICA-based template map for each RSN.
Correlations were then r-to-z transformed using Fisher’s
method. For the separate and combined ICA approaches,
ICCs for visits 1 and 2 were calculated for each RSN using
the method described earlier, where subjects were rows
(n = 19) and time was the two columns in the matrix.

Seed-based analyses for the test dataset were performed to
further investigate reliability at the individual subject level.
Seeds used to perform the functional connectivity analysis
were based on the 10 seeds defined from the model dataset
(Figs. 2 and 3). Functional connectivity maps were generated

FIG. 1. Pictorial representation of the analyses performed on the model (A) and testing (B) datasets. Template maps from 10
resting-state networks (RSNs) of the model dataset were used to assess both the reproducibility and reliability of the testing data-
set at two time points. (B) Exhibits the reliability and reproducibility tests conducted. Independent component analyses (ICA)
were performed separately (S) for visit one (V1 S-ICA) and visit two (V2 S-ICA), or were combined across both time points
(V1 and V2 C-ICA). Connectivity maps (S-V1, S-V2, C-V1, and C-V2) were constructed either from seed-based analysis (SBA)
or using individual back-reconstruction (BR) using GICA3. All reliability estimates (voxel-wise and template matching) were cal-
culated using intraclass correlations coefficients (ICCs). Tables in which results are quantified are indicated in the figure.
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for each subject in both visits, and the r-values for each voxel
were then r-to-z transformed using Fisher’s method. The re-
sultant maps were spatially correlated with the seed-based
template map, then r-to-z transformed, and then, the ICC
was calculated for each RSN based on these values.

Voxel-wise analyses of testing dataset

For every brain voxel, ICCs were also calculated for each of
the 10 RSNs (testing dataset) for each of the three different
methods described earlier (i.e., separate and combined ICA
approach, or seed-based analyses). Voxel-wise ICCs were
then multiplied by respective RSN masks (thresholded at

p < 10�8) from the model dataset, and histograms were con-
structed for voxels both within and outside of the RSN, nor-
malizing the total number of voxels in the respective masks.
For example, voxel-wise estimates for the sensory-motor
RSN (testing dataset) were multiplied by a binary mask of
the sensory-motor RSN (model dataset) and its inverse,
resulting in separate reliability histograms for voxels within
the sensory-motor RSN and outside of the sensory-motor
RSN. Next, the median reliability values for each histogram
were estimated and compared across the three methods by
using two paired t-tests (Separate ICA vs. Combined ICA
and Combined ICA vs. Seed) for values within and outside
the RSN.

FIG. 2. Presents the four sensory-motor RSNs identified in the model dataset (left panel) along with the corresponding RSNs
from combining both visits (V1 and V2) from the testing dataset (right panel). Red indicates areas within the RSNs with a
p-value between 10�12 < p < 10�8, while yellow indicates a p < 10�12. All x, y, and z coordinates are given according to the Talair-
ach atlas.
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FIG. 3. Depicts the six association RSNs identified in the model (left panel) and testing (right panel; combined ICA) datasets.
Color representations are identical to those presented in Figure 2. All x, y, and z coordinates are given according to the Talair-
ach atlas.
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Results

RSNs from model dataset

ICA of resting-state functional connectivity from the model
dataset revealed four sensory-motor and six association RSNs
that were identified by two raters with 100% inter-rater agree-
ment. The sensory-motor RSNs are shown in Figure 2, and in-
cluded the bilateral somatomotor network, bilateral primary
visual cortex, bilateral secondary visual cortex, and bilateral
auditory cortex.

The association RSNs are presented in Figure 3. The aDMN
was associated with large volumes of coherent connectivity in
the midline anterior cingulate cortex and dorsomedial pre-
frontal cortex, with relatively smaller clusters of connectivity
in the posterior cingulate cortex. This pattern of connectivity
was reversed for the pcDMN, with relatively large clusters of
activation within the posterior midline coupled with smaller
anterior midline clusters and clusters within the parahippo-
campal gyrus. A large cluster that contains the posterior cin-
gulate, precuneus, and cuneus is shown for the ppDMN.
Other association RSNs included the executive control (me-
dial and lateral prefrontal cortex), and the right and left
fronto-parietal networks. A detailed description of the indi-
vidual regions comprising each of the networks is reported
in Supplementary Table S1. Supplementary Figures S1–S16
exhibit all component maps generated from the model and
testing datasets.

Reproducibility of RSNs of group ICA results

The test dataset produced sensory-motor (Fig. 2) and asso-
ciation (Fig. 3) RSNs that exhibited moderate to excellent spa-
tial correlations with the RSNs derived from the model
dataset using both separate (visit one, all r within [0.41–
0.90]; visit 2, all r within [0.70–0.97]) and combined (all r
within [0.67–0.97]) ICA approaches. Table 1 provides the
maximal and second highest absolute spatial correlation for

each RSN. There was a negative relationship between the
maximal correlation and the second highest correlation for
visit 1 (Spearman’s rho =�0.79, p < 0.05) and visit 2 (Spear-
man’s rho =�0.86, p < 0.05) and the combined (Spearman’s
rho =�0.90, p < 0.05) data, suggesting that the more reproduc-
ible RSNs had more spatially distinct patterns of connectivity
among all of the components compared with less reproduc-
ible RSNs.

Stability and reliability analyses of group ICA results

ICASSO results (Table 2) indicated that all RSN compo-
nents displayed a high iq regardless of whether the ICA was
done separately for visit 1 (iq ranging from 0.85 to 0.98) and
visit 2 (iq range from 0.97 to 0.98), or combined across both
time points (iq = 0.97–0.98). Although the ICC comparing the
spatial correlation between the ICA-based template maps
and testing RSNs (i.e., group components) from visits one
and two (separate ICA only) was only fair (ICC = 0.37), the
spatial correlation of the pDMN appeared to be an outlier
(data more then 3 SD from the mean). Once this component
was excluded, the ICC value became excellent (ICC = 0.81).

Reliability analyses of individual subject RSNs

In contrast to the group results, reliability among individ-
ual subjects was found to be much less robust for both tem-
plate matching and voxel-wise results. In terms of template
matching (i.e., spatial correlation between back-reconstructed
individual subject RSN and ICA-based template maps), the
results of the separate and combined ICA were similar only
for the somatomotor component (separate ICA: ICC = 0.34,
combined ICA: ICC = 0.38), indicating only fair reliability
(Table 2). Reliability of the primary (ICC = 0.22) and second-
ary (ICC = 0.21) visual RSN was only fair when the group
ICA was combined across time points. Both methods resulted
in ICCs below 0.14 for the remainder of RSNs, although

Table 1. Reproducibility of Independent Component Analyses Shown

by Template Matching (Correlation Values)

ICA—visit 1 only ICA—visit 2 only ICA—visit 1 and visit 2

RSN
Maximum
correlation

Second highest
correlation

Maximum
correlation

Second highest
correlation

Maximum
correlation

Second highest
correlation

Sensory-motor RSN
Somatomotor 0.856 0.172 0.791 0.317 0.822 0.302
Primary visual 0.817a 0.577 0.966 0.120 0.969 0.132
Secondary visual 0.902 0.158 0.923 0.191 0.940 0.166
Auditory 0.640 0.575 0.697 0.514 0.683 0.538

Association RSN
Anterior DMN 0.723 0.606 0.798 0.478 0.670 0.621
Posterior cingulate DMN 0.416a 0.383 0.852 0.191 0.882 0.149
Posterior precuneus DMN 0.851 0.234 0.888 0.160 0.896 0.211
Right frontoparietal 0.850 0.252 0.910 0.113 0.910 0.181
Left frontoparietal 0.831 0.247 0.769 0.278 0.827 0.335
Executive control 0.691 0.610 0.756 0.414 0.742 0.542

Mean 0.758 0.381 0.835 0.278 0.834 0.318

Correlation values of the two components from the testing dataset (visit 1, visit 2 and combining visits 1 and 2) that exhibit the highest cor-
relation with the selected RSNs from the model dataset are shown.

aIn the visit 1 testing dataset, the same component had the highest spatial correlation with the primary visual and posterior cingulate DMN
networks of the model dataset.

ICA, independent component analyses; RSNs, resting state networks; DMN, default mode network.
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reliability for the separate ICA approach was notably poorer.
Average template matching scores for each network are
reported in Supplementary Table S2. No significant correla-
tion was observed between template matching scores and
frame-wise displacement for each visit and each RSN.

When seed-based analyses were utilized for identifying in-
dividual subject RSNs (Table 2), template-matching reliability
with the seed-based template map was good for the executive
control (ICC = 0.71) and moderate for the right frontoparietal
(ICC = 0.51). Reliability was fair for the posterior cingulate
DMN (ICC–0.24). The ICCs of the remaining seven RSNs
were below 0.20 (poor). Similar to ICA, no significant correla-
tion was observed between motion parameters and template
matching scores.

Voxel-wise reliability analyses of individual subject RSNs

Two sets of paired t-tests were performed (Separate ICA
vs. Combined ICA and Combined ICA vs. Seed) to compare
the within-mask median histogram values (Figs. 4 and 5;
Table 3) across the 10 RSNs. Results indicated that the reliabil-
ity was significantly higher (t9 =�3.51, p < 0.01) for the com-
bined ICA (mean = 0.40 – 0.06) approach compared with the
separated ICA (mean = 0.04 – 0.35). However, there were no
significant differences between the seed-based approach
(mean = 0.41 – 0.09) and the combined ICA method.

Identical t-tests were also conducted to assess reliability of
brain voxels outside the RSNs (Table 3). Results again indi-
cated that the reliability was significantly higher (t9 =�4.69,
p < 0.005) for the combined ICA (mean = 0.15 – 0.03) approach
compared with the separate ICA approach (mean = 0.00 –
0.09). In addition, when comparing the reliability of methods,
the seed-based approach (mean = 0.27 – 0.09) was significantly
higher (t9 =�4.22, p < 0.005) than the combined ICA method.

Discussion

Although considerable research has been devoted to the
identification of intrinsic functional networks (RSNs) in

healthy and clinical populations (Damoiseaux et al., 2006;
Greicius, 2008; van den Heuvel et al., 2009), current results
suggest that the analytic pathway can affect RSN quantifica-
tion. At the group level, results indicated that the majority
of RSNs demonstrated good to excellent reproducibility
(r within 0.66–0.97) in an independent cohort of subjects
(i.e., testing dataset) as determined by template matching.
The exception was the pcDMN, which exhibited spatial

FIG. 4. Histograms representing the reliability values for
each method within the four sensory-motor RSNs (dashed
black line = seed-based combined ICA, gray line = separate
ICA, and solid black line = combined ICA). Voxel-wise ICCs
are presented along the x-axis, whereas the y-axis represents
the percentage of voxels within each RSN with the specific
ICC value.

Table 2. Intraclass Correlations Following Template Matching with Model Dataset

and ICASSO Measurements for Each Resting-State Network

Separate ICA Combined ICA

RSN ICC ICASSO iq (visit 1) ICASSO iq (visit 2) ICC ICASSO iq

Seed-based
ICC

Sensory motor
Somatomotor 0.344 0.978 0.978 0.379 0.979 0.080
Primary visual �0.779 0.974 0.976 0.223 0.976 0.104
Secondary visual �0.006 0.974 0.980 0.217 0.977 0.179
Auditory �0.430 0.865 0.976 �0.057 0.972 �0.316

Association
Anterior DMN �0.367 0.972 0.977 �0.091 0.973 0.115
Posterior cingulate DMN 0.974 �0.174 0.975 0.238
Posterior precuneus DMN �0.133 0.975 0.977 0.075 0.975 �0.191
Right frontoparietal �0.496 0.846 0.980 �0.208 0.9821 0.510
Left frontoparietal �0.856 0.922 0.982 �0.118 0.984 0.022
Executive control �0.943 0.971 0.971 0.136 0.972 0.705

Mean �0.407 0.942 0.977 0.038 0.977 0.145

ICC template matching reliability (ICA-based template map) and iq results are displayed for the separate (visit 1 and visit 2) and combined
ICA approaches. ICC template matching reliability (seed-based template map) results of seed-based analyses with model dataset for each RSN
are shown in the last column.

For visit 1, the posterior cingulate DMN component was not identified.
ICC, intraclass correlation coefficients.
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correlations at 0.417 for the first visit as a result of being com-
bined with the primary visual component (see Supplemen-
tary Fig. S6, component 12). As discussed next, higher-order
ICA approaches may reduce the combination of RSNs fur-
ther. Repetitions of the ICA algorithm on the testing dataset
(as implemented in ICASSO) suggested that the ICA solution
was highly stable across both visits (iq > 0.85). Finally, the re-
producibility and stability estimates for the group RSNs were
very similar regardless of whether data from visits one and
two were analyzed separately or combined into a single ICA.

In concordance with the reproducibility results, the reli-
ability of the spatial correlation between model and testing
RSNs at visits 1 and 2 was excellent when examined at a
group level after the removal of a single outlier (ICC =
0.805). Therefore, current results indicate the robustness and
stable nature of spontaneous neuronal fluctuations when
data are collapsed across groups of subjects. Moreover, a re-
cent analysis reported that the large-scale cortical networks
identified at rest are similar to those observed across a variety
of cognitive and sensory tasks (Smith et al., 2009) derived via
a meta-analysis of approximately 30,000 datasets, suggesting

that intrinsic BOLD fluctuations mirror patterns of evoked ac-
tivity. The high degree of reproducibility across different
groups of subjects suggests that spontaneous fluctuations
in BOLD signal may be representative of an intrinsic self-
organization of the brain that is functionally similar across
individuals. The exact role of these covarying spontaneous
fluctuations within RSNs is not clear, but they may serve as
a record of previous task-dependent usage, may coordinate
neuronal activity between regions that are traditionally co-
activated, or may represent a dynamic prediction of future
use (Fox and Raichle, 2007).

In contrast to the group reliability data, estimates were
much lower at the individual subject level for both the voxel-
wise and template matching approaches. In addition, current
results indicated that individual subject reliability estimates
were highly influenced by the RSN estimation method, with
the poorest results obtained when data were analyzed with
separate ICAs for visits one and two. Specifically, the majority
of RSNs had negative ICCs (greater within than between-
subject variance), with only the somatomotor RSN exhibiting
fair reliability when separate ICAs were applied to the data.

FIG. 5. Histograms repre-
senting the reliability values
for each method within the
six association RSNs. Line
representations and axes are
identical to those presented in
Figure 4.

Table 3. For Each Method, Median Histogram Intraclass Correlation Values

for Voxels In and Outside the Resting-State Network Templates

ICA

RSN Separate Combined Seed-based

Sensory motor In Out In Out In Out
Somatomotor 0.320 0.049 0.407 0.115 0.548 0.332
Primary visual 0.176 0.051 0.484 0.120 0.482 0.243
Secondary visual 0.361 0.071 0.440 0.137 0.514 0.226
Auditory �0.578 �0.083 0.325 0.136 0.453 0.327

Association
Anterior DMN 0.263 0.070 0.337 0.147 0.420 0.238
Posterior cingulate DMN �0.234 �0.085 0.43 0.189 0.336 0.240
Posterior precuneus DMN 0.317 0.078 0.417 0.138 0.298 0.216
Right frontoparietal 0.387 0.071 0.482 0.175 0.467 0.284
Left frontoparietal �0.133 �0.070 0.413 0.205 0.472 0.225
Executive control �0.440 �0.149 0.300 0.143 0.419 0.380

Mean 0.044 0.000 0.404 0.151 0.416 0.271
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A seed-based analysis derived from the single-session
group ICA results improved reliability for both the voxel-
wise and template matching analyses, with eight out of
10 RSNs exhibiting a higher ICC when compared with the
separate ICAs, one of which was considered good. How-
ever, combining data from both visits into a single group
ICA clearly improved the reliability of spatial correla-
tions compared with the separate analyses, with the seed-
based approach yielding the highest voxel-wise reliability
coefficients.

There are several potential explanations for the differences
in reliability estimates observed across the three different an-
alytic approaches. First, a combined ICA approach forces
the group components (RSNs) to share increased spatial
similarity across the two sessions (Calhoun et al., 2001),
thereby reducing variability in the individual subject back-
reconstructed components. However, this occurs at the cost
of independent treatment of the data for each of the two visits
as is traditionally done in reliability analyses. Second, ICA ap-
proaches require several different data processing steps that
are not present in the seed-based approach. For example, as
a result of random component ordering following group
ICA, back reconstruction should be used to determine indi-
vidual subject components, which may result in some infor-
mation loss and decrease reliability. Third, seed-based
analyses involve an explicit step in which putative noise sour-
ces (i.e., motion) are directly removed from the time-series
data through regression. An analogous step is inherent to
the ICA process (i.e., separation of noise components from
components of interest), but likely varies based on dimen-
sionality estimates (Kiviniemi et al., 2009; Smith et al., 2009)
and the presence of subject-specific noise sources.

It should be noted that the method producing the highest
reliability estimates on an individual subject level still
resulted in a wide range of reliability values across all 10
RSNs. Factors that did not appear to contribute to the vari-
ability in reliability among RSNs included the type (i.e., sen-
sory-motor or association) and size of the network (single or
multiple clusters), as well as whether analyses were con-
ducted at a network (i.e., template matching) or voxel-wise
level. However, a relatively consistent relationship existed
between inter-subject reproducibility at the group level and
reliability at the intra-subject level. Specifically, in the seed
analysis, RSNs (somatomotor, auditory, anterior DMN, and
left frontoparietal) that exhibited lower spatial correlations
(i.e., reproducibility) with the model dataset at the group
level tended to be less reliable than RSNs (right frontoparie-
tal, posterior cingulate DMN, and secondary visual) exhibit-
ing higher spatial correlations. However, this effect was not
observed in the primary visual, posterior precuneus DMN,
and executive control RSNs. In addition, reliability estima-
tes for the use of the sensory-motor networks are greater
for the combined ICA compared with the seed-based
method. With the exception of the posterior precuneus
DMN, the opposite is true for the association networks,
Other work suggests that RSN reliability is also influ-
enced by factors such as degree of anatomical connectivity
(Honey et al., 2009), valence of connectivity (Skudlarski
et al., 2008), and strength of functional connectivity estima-
tes (Shehzad et al., 2009). Finally, there is evidence that reli-
ability can vary widely among the different nodes of RSNs
(Damoiseaux et al., 2006).

Another often debated issue with regard to ICA is the se-
lection (dimensionality estimate) of the number of initial com-
ponents (Calhoun et al., 2001; Kiviniemi et al., 2009; van de
Ven et al., 2004), which can influence the spatial properties
of individual RSNs, and may, in turn, impact the reliability
of these networks. For this study, we have chosen to use 36
components based on the minimum description length crite-
ria (Li et al., 2007) defined with the model dataset. This is a
typical procedure used to define the number of components
to be generated. A study by (Smith et al., 2009) demonstrated
that increasing the dimensionality of ICA (i.e., from 20 to 70
components) effectively separated more spatially extensive
(i.e., larger) functional networks into smaller, increasingly
better defined subnetworks that shared higher temporal cor-
relations with one another than with subdivisions of other
large-scale networks. Thus, optimally increasing the number
of components (essentially reducing each network to sets of
independent nodes) could potentially increase reliability.
Current data support this hypothesis, as RSNs that were
less spatially distinct from the remainder of other compo-
nents (Table 1) tended to have lower reproducibility and reli-
ability estimates. However, increasing the dimensionality
increases the likelihood of splitting functionally connected re-
gions into separate (e.g., a node rather than network analysis)
components (Abou-Elseoud et al., 2010; Smith et al., 2009).

Many other variables still need to be addressed to further
assess the reliability and reproducibility of RSNs. With the
proposed methodology of calculating reliability and repro-
ducibility, scan time has not been evaluated for all networks.
Specifically, would single-subject reliability increase if scan
time increased from 5 to 10 min? Another question to be
addressed is how seeds are defined. Even though on average
the reliability of the seed-based methods is greater, the tem-
plate matching scores for the ICA methods are far superior
(Supplementary Table S2). Possible reasons for this to occur
can be due to (1) sensitivity of seed placement (Cole et al.,
2010), (2) subject motion, and (3) how seeds are defined.
Even though we did not observe any significant statistical dif-
ference in motion between visits and their relationship to tem-
plate matching scores, there is a potential for it to be a diver of
reliability of the RSNs (Dijk et al., 2012). In this article, we
have chosen to define the seeds based on the ICA results of
the model dataset in order to attempt to maintain consistency
across both methods (ICA and Seed). Therefore, our results
might be underestimating the reliability of the seed-based
analysis. Finally, ICC is a reproducibility and reliability esti-
mate that can be highly skewed by outliers. This is directly
exhibited in the reproducibility estimate when removing the
posterior cingulate DMN from the ICC. Henceforth, our esti-
mates of reliability can also be altered by data of only a few
subjects.

In summary, current and previous work suggests a wide
range of reliability coefficients at the individual level
(Honey et al., 2009; Shehzad et al., 2009; Van de Ven et al.,
2004), which greatly improve when data are combined across
subjects (Chen et al., 2008; Shehzad et al., 2009; Zuo et al.,
2010b). Collectively, this work demonstrates that good to ex-
cellent reproducibility and stability of RSNs at the group level
does not explicitly translate into the same level of reliability at
the individual subject level. Reduced individual subject RSN
reliability (poor to moderate range) may be a result of the in-
herent statistical properties of RSNs (e.g., low signal to noise)
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and data processing techniques (e.g., noise separation). In ad-
dition, it has been suggested that covariations in BOLD signal
may result from both unconstrained mental activity (i.e.,
reviewing previous episodic events) and spontaneous fluctu-
ations in neuronal activity (Fox and Raichle, 2007). Although
the contribution of unconstrained mental activity is likely to
be minimal, future experiments should examine whether
these two different signal sources might differentially affect
individual subject reliability estimates, as unconstrained
mental activity is likely to be more variable on a daily basis
(e.g., days in which subject daydreams more or less) and
may be affected by confounds such as recent nicotine or caf-
feine use (Rack-Gomer et al., 2009).

This article tests two methods of maximizing reliability in
normal controls, without directly addressing longitudinal
studies in which there is an expected change (e.g., in the
case of an intervention). Though combining two or more
scans in a single ICA can potentially generate group compo-
nents that are heavily biased toward one scanning session,
there is evidence that group analyses do reveal differences
which are representative of individual variations (Allen
et al., 2012).

Finally, variations in the analytic technique (i.e., single
vs. combined ICA and ICA vs. seed-based analyses) had a
significant impact on individual reliability measurements,
but did not greatly affect the reproducibility, reliability, or
stability of RSNs at the multi-subject level. Current results
suggest that individual-subject RSNs reliability coefficients
can be maximized by combining time points into a single
ICA and utilizing the resulting output (with a high thresh-
old) to inform a seed-based analysis. Although seed-
based analyses produced on average the highest reliability
coefficients at the individual subject level, they are inher-
ently dependent on a priori anatomical or functional con-
nectivity information. Therefore, a hybrid approach that
utilizes ICA to identify RSNs and seeds to quantify changes
as a function of time may maximize the strength of both
techniques.
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