Skip to main content
. 2013 Apr 1;3(2):e25103. doi: 10.4161/biom.25103

Table 2. Classification of the methods used to produce spherical CaP particles according to the types of reagents, the dispersion media, the dispersion tools, the consolidation methods, the resulting diameters, and the final compositions.

Reagents Dispersion media Dispersion tool Consolidation Method name Diameter Composition
Solution
No dispersion
-
Precipitation
Precipitation47-50,56,102,103,110-115,118,125,127,129,131,156-161
0.01–1000 μm
DCPD 50
 
 
 
 
OCP 102 , 129 , 131 , 156 , 159
 
 
 
 
ACP 47 , 49 , 103 , 112 - 114 , 125
 
 
 
 
β-TCP 56
 
 
 
 
HA 47 , 48 , 102 , 110 - 115 , 125 , 127 , 156 - 158 , 160 , 161
Gas
(Aerosol)
Nozzle (high energy)
Pyrolysing and drying
Flame-synthesis57-60,162-165
( = spray pyrolysis)
0.01–6 μm
MCPM 59
 
 
 
 
DCP 59
 
 
 
 
ACP 59 , 162
 
 
 
 
β-TCP 57
 
 
 
 
HA 57 - 60 , 163 - 165
Nozzle (high energy)
Drying
Spray-drying52
0.1–5 μm
HA 52
 
 
Electrospraying166
1–7 µm
β-TCP 166
Liquid
(Emulsion)
Propeller
Precipitation
Precipitation-emulsification50,51,61,148
0.02–20 μm
DCPD 50
 
 
 
 
 
ACP 51 , 61
 
 
 
 
 
HA 51 , 61 , 148
Slurry
Plasma
Nozzle (high energy)
Freezing
Suspension Plasma-spraying ( = atomization)86-88
0.01–100 μm
HA 86 - 88
Gas
(Aerosol)
Nozzle (high energy)
Drying
Spray-drying75,96,105,107,117,126,132,147,167-171
0.4–240 μm
DCP 167
β-TCP 105 , 171
HA 75 , 96 , 107 , 117 , 126 , 132 , 147 , 168 - 171
Gas + liquid
Nozzle (high energy)
Freezing
Freeze granulation104
0.4–240 μm
HA 104
Nozzle (low energy)
Gelling62,65-69,172
Drip casting62-71
( = Droplet extrusion)
100–4000 μm
BCP 70 , 71
Freezing63,70,173
 
 
HA 62 , 64 - 68 , 172
Drying64
 
 
β-TCP 173
Liquid
Propeller
Precipitation73,75,79-82,106, 174
Emulsification72-82,106,108, 174176
50–6000 μm
DCPD 73 , 106
 
 
Gelling72,74,76-78,175
 
 
BCP 82
 
 
 
 
 
HA 72 , 74 , 75 , 77 - 81 , 108 , 174 176
 
 
 
 
 
Fluoroapatite 175
Liquid + liquid
Nozzle (low energy)
Gelling
Hydro-casting83
> 1000 μm
α-TCP 83
Solid
Template or mold
Drying
Lost wax84,85,121
300–3000 μm
BCP 121
 
 
 
 
 
HA 84 , 85
Paste
Gas
Propeller
Drying
Spray-granulation89,90
(high-shear mixing)
100–8000 μm
DCPD 89
 
 
 
 
HA 90
Sieve
Drying
Extrusion-spheronization89,91
500–2000 μm
DCPD 89
 
 
 
 
HA 91
Sieve
Drying
Sieve-shaking92
> 500 μm
HA 92
Powder
Plasma
Nozzle
Freezing
Plasma melting45,46,94-97
5–125 μm
HA 94 - 97
        ( = Combustion flame spraying = Flame spherodization)   TetCP 45 , 46

The column entitled “method name” contains one or several names used to call the production method. The production methods are either based on solutions, slurries, pastes, or powders. Here, a difference is made between slurries (low-viscosity, free-flowing) and pastes (high viscosity). Formation of spherical particles occurs either in a plasma, a gas, a liquid or a solid using nozzles, propellers, sieves, or templates. A “high energy” dispersion is used to describe a highly turbulent dispersion regime, in contrast with a “low energy” dispersion regime occurring in laminar flow conditions. The consolidation steps may involve precipitation, drying, pyrolysis, gelling, or freezing. The diameter may range between 0.01μm and a few millimeters. Finally, all types of CaP phases can be produced, but not all methods can be used to produce one particular CaP phase. This table is only considering published methods used to produce CaP particles. Many other methods have been proposed, in particular with pelletizers154,155 and bottom-up approaches98 such as 3DP.99,100