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Abstract
Purpose—To assess the clinical relevance of a semiautomatic CT-based ensemble segmentation
method, by comparing it to pathology and to CT/PET manual delineations by five independent
radiation oncologists in non-small cell lung cancer (NSCLC).

Materials and Methods—For twenty NSCLC patients (stage Ib – IIIb) the primary tumor was
delineated manually on CT/PET scans by five independent radiation oncologists and segmented
using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and
semiautomatic-segmented volumes were compared. All measurements were correlated with the
maximal diameter on macroscopic examination of the surgical specimen. Imaging data is available
on www.cancerdata.org.

Results—High overlap fractions were observed between the semi-automatically segmented
volumes and the intersection (92.5 ± 9.0, mean ± SD) and union (94.2 ± 6.8) of the manual
delineations. No statistically significant differences in tumor volume were observed between the
semiautomatic segmentation (71.4 ± 83.2 cm3, mean ± SD) and manual delineations (81.9 ± 94.1
cm3; p = 0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated
strongly with the macroscopic diameter of the primary tumor (r = 0.96).

Conclusion—Semiautomatic segmentation of the primary tumor on CT demonstrated high
agreement with CT/PET manual delineations and strongly correlated with the macroscopic
diameter considered the “gold standard”. This method may be used routinely in clinical practice
and could be employed as a starting point for treatment planning, target definition in multi-center
clinical trials or for high throughput data mining research. This method is particularly suitable for
peripherally located tumors.
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I. INTRODUCTION
Lung cancer is the deadliest type of cancer worldwide [1]. About 80 % of the lung cancer
patients present advanced-stage disease (stage III and IV) and are considered inoperable due
to loco-regional tumor extension, extra thoracic spread or poor physical condition at the time
of diagnosis [2]. For these patients, external beam radiotherapy (RT) often combined with
chemotherapy is the primary treatment modality [3].

The success of radiotherapy depends upon a good target definition and dose coverage of the
target volume while limiting the radiation dose to highly radiosensitive surrounding organs.
A consistent and accurate target definition is of utmost importance for accurate radiotherapy
treatment planning and for treatment response evaluation. Multiple studies have reported the
uncertainties and high – intra and inter – observer variability associated with target
delineation in lung cancers [4–10]. Efforts have been made to reduce the observer variation
for target definition, including standardized delineation protocols on CT scans and the
addition of fused FDG-PET-CT information on the delineation process [11–14]. The later
has diminished the inter-observer variability [15], however differences among observers are
still observed for visual delineations [16]. Various PET-based methods have been developed
for semiautomatic tumor delineations, ranging from simple fixed (absolute and relative)
threshold based segmentations, to the more complex signal-to-background ratio and
watershed clustering methods [17,18]. A few studies have compared FDG PET based
automatic segmentation tools with pathological examinations [19, 20] and demonstrated
their utility in reducing inter-observer variability [16, 21]. To our knowledge, no CT-based
semiautomatic delineation method has been compared with both oncologists’ manual
delineations and with pathological examination. In practice, target volume and organs at risk
are generally defined on a planning CT scan [22], which remains as the reference imaging
modality in the treatment planning of non-small cell lung cancer (NSCLC). Given the
observed variability, complexity and time required for target definition, a semi-automated
method to accurately segment lung tumors on a CT scan would be of clinical value by
providing a consistent initial target definition and would optimize the daily workflow. In this
study we present a CT-based region growing method to semi-automatically segment lung
tumors, that incorporates expert knowledge and it is based on the cognition network
technology [23]. Our aim is to evaluate the potential clinical usefulness of a CT-based
semiautomatic-segmentation method, by comparing it with CT-PET manual delineations of
five independent radiation oncologists and with pathological examination of the surgical
specimen.

II. Materials and methods
a. CT-PET scans

This study was approved by the local Medical Ethics Committee according to the Dutch law,
and all patients provided written informed consent. Twenty consecutive patients with
histologically proven non-small cell lung cancer, stage Ib – IIIb, were included in this
retrospective study. All patients had undergone a diagnostic whole body PET-CT scan
(Biograph, SOMATOM Sensation 16 with an ECAT ACCEL PET scanner; Siemens,
Erlangen, Germany). Patients were instructed to fast at least six hours before the intravenous
administration of 18F-fluoro-2-deoxy-glucose (FDG) (MDS Nordion, Liège, Belgium),
followed by physiologic saline (10 mL). The total injected activity of FDG was dependent
on the patient weight expressed in kg: (weight * 4) + 20 Mbq. After a period of 45 minutes,
during which the patient was encouraged to rest, free-breathing PET and CT images were
acquired. The CT scan was a spiral CT scan of the whole thorax with intravenous contrast.
The PET images were acquired in 5-min bed positions. The CT data set was used for
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attenuation correction of PET images. The complete data set was then reconstructed
iteratively with a reconstruction increment of 5 mm.

b. Click and grow auto-segmentation algorithm
Pre-processing—The algorithm was developed using the Cognition Network Language
(CNL) running on Definiens Developer XD with the LuTA extension [24]. CNL is, an
object-based procedural computer language designed to allow automated implementation of
complex, context-dependant image analysis tasks. This algorithm was designed to enable an
accurate and efficient analysis of lung lesions guided by an operator. The implementation
here used the original algorithm previously described [23], and was extended with a multi-
seed point segmentation routine. In a first step the LuTA pre-processing was used to classify
context objects like body, background, lungs and bones. They were segmented based on
intensity and object size without user interaction. In a second optional step, LuTA allows an
optional three-dimensional semi-automated correction of the lung boundary. The algorithm
workflow is summarized in the figure 1S.

Click and grow—The third step involved the identification and segmentation of the lung
lesion. The user indentified the tumor, within the segmented lung and placed a seed-point at
the perceived center of the lesion. From this starting seed-point an initial seed object was
automatically segmented using the LuTA region growing [23].

To improve the lesion segmentation and to reduce sensitivity towards the location of the
initial seed-point, the original click-and-grow algorithm was further extended with a single
click ensemble segmentation algorithm (SCES) [25]. SCES used the previously defined
region, within which multiple seed points were automatically generated. Briefly, the initially
segmented tumor was divided into eight regions using three perpendicular planes (xy, yz and
zx), within each sub-region a seed-point was placed. Two additional seed-points were
placed, one at the center of mass of the segmented tumor and one more randomly. Each
seed-point was grown into a new candidate tumor region using the same LuTA region
growing algorithm (multiple runs using same segmentation technique but different initial
seed-point). Finally the candidate regions were merged into one consensus tumor region
using a voting strategy: a voxel is classified as tumor voxel if more than half of the voxels in
its 3×3×3 neighborhood window were labeled as tumor voxels in at least half of the
segmented candidate tumor regions. This approach reduced inter-observer variability and
operator interactions compared to the original algorithm [25].

c. GTV manual delineations
For comparison with the CT-based semiautomatic-segmentation, five observers
independently carried out manual GTV delineations based on fused PET-CT images using a
standard clinical delineation protocol. Briefly, the protocol included fixed window-level
settings of both CT (lung W 1,700; L −300, mediastinum W 600; L 40) and PET scan (W
30,000; L 15,000) to be used for delineation [16, 26, 27]. All observers were blinded to each
other delineations. The primary gross tumor volume (GTV) was defined for each patient
based on combined CT and PET information. Observers were given transversal, coronal,
sagittal and 3D views simultaneously. Delineations were performed on a treatment planning
system (XiO; Computer Medical System, Inc., St. Louis, MO).

d. Pathology
The surgical specimen was examined according to national guidelines [28]. All patients
underwent a surgical resection of their lung tumor and a standardized routine pathology
examination was performed directly on the fresh specimen maintained on ice within 30
minutes after resection. Before slicing, the maximal diameter of the primary tumor was
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measured by macroscopic examination. The interval time between the CT scan and the
surgery or biopsy was in average 39 days (range: 7 – 112).

e. Statistical analysis
In a similarity analysis, an intersection volume (agreement between all observers) and a
union volume (merging of all regions delineated by all observers) were defined and used for
comparison with the semi automatically-segmented volume (Fig. 1). The overlap fraction
was used to estimate the agreement between the various volumes and was defined as the
volume of overlap divided by the smallest volume [29, 30]:

where A is the semi automatically-segmented tumor and B is either the observers
intersection volume or the observers union volume depending on the comparison. An
overlap fraction equal to 100 indicates two perfectly matched volumes while an overlap
fraction equal to zero indicates two disjoined volumes. The first overlap fraction value
indicates whether the semiautomatic-segmentation method covers the common agreement
(intersection volume) of the manual delineations while the second overlap fraction value
indicates whether the algorithm falls within the inter-observer variability (union volume).

A volume comparison was conducted with the raw volumes expressed in cm3. Results are
summarized as the mean and standard deviation. Groups were compared with a paired
Student t-test. Differences were considered to be significant when the p-value was lower
than 0.05. Pearson’s correlation coefficient was used to compare the maximal diameter
estimates from pathology with the maximal diameter of the semi automatically-segmented
volumes.

Additionally, we used the Bland-Altman analysis to evaluate the agreement between the
various measurements. The Bland-Altman plot is a scatter plot that shows in the vertical axis
the difference between two measures(Y − X), against their average on the horizontal axis

. Horizontal lines are superimposed in the scatter plot indicating the mean difference
between the measurements and the 95% limits of agreement. If the tumor size measurements
are comparable with the “gold standard”, the differences in the Bland-Altman plot should be
small and close to zero. A negative value means that the semi-automatic segmentation
overestimates the macroscopic tumor diameter, while a positive value indicates that the
semi-automatic segmentation underestimates the gold standard.

All data are expressed as mean ± SD. All the analyses were performed in Matlab 2010b (The
MathWorks Inc, Natick, MA, USA).

III. Results
To evaluate clinical validity, semiautomatic-segmentation of the primary tumor on CT was
compared with CT/PET manual delineations of five independent observers.

A similarity analysis was performed and the overlap fraction was calculated to estimate the
agreement between the manually contoured and SCES volumes. The overlap fractions
between the semi automatically-segmented volumes and the observers union and
intersection are shown in figure 2. High overlap fractions were obtained with the observers’
intersection (92.5 ± 9.0) and the observers union (94.2 ± 6.8).
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The raw semi automatically-segmented and manual volumes are reported in Table 1, mean
and standard deviation of the manual volumes are shown as well. No statistical differences
were observed in tumor volume between the SCES volumes (71.4 ± 83.2 cm3) and manual
delineations (81.9 ± 94.1 cm3; p = 0.57). In the majority of the cases the semi automatically-
segmented volumes fell within the observers’ variability, i.e. 75% of the cases were included
in the mean ± 1 SD range of the manually delineated volumes. Three cases fell off the
observers’ variability, two of which were centrally located tumors and one peripherally
located. For visual comparison, representative examples of both the semi-automatically
segmented volumes and manual delineations are shown in figure 3.

To further evaluate its usability, the click and grow semiautomatic-segmentation algorithm
was compared with macroscopic examination of the surgical specimen. A strong correlation
was found between the maximal diameter of the SCES volumes and the macroscopic
diameter of the primary tumors (Pearson correlation coefficient, 0.96) (Fig 4). The
correlation of maximal diameters on manual CT/PET delineations with the pathology
examination ranged from 0.88 to 0.96 (0.93 ± 0.02) for different observers.

Tumor diameters ranged from 1.8 to 9.0 cm on pathological examination (4.2 ± 1.9), from
1.7 to 9.8 (5.1 ± 1.7) on manual CT/PET delineations and from 2.0 to 9.1 (4.9 ± 2.2) on CT
semi automatically-segmented tumors.

Comparative Bland-Altman plots are shown in figure 5, the CT semiautomatic-segmentation
algorithm slightly overestimated the maximal tumor diameter found at macroscopic
examination, indicated by a mean difference of −0.46 cm, (95 % CI, −1.64 – 0.70 cm).
However, for manual CT/PET delineations, the differences were slightly larger (mean
difference −0.80 cm; 95% CI, −2.42 – 0.82 cm) compared to semi automatically-segmented
volumes. For the majority of the patients, the difference between the macroscopic diameter
and the diameters on the semi automatically-segmented volumes was within 1 cm.

IV. Discussion
Target definition remains highly dependent on human interpretation of visual imaging
information, making it error prone and subjective. Uncertainties associated with target
definition have been largely reported, and especially for lung cancer, high intra- and inter-
observer variability have been observed [4–10]. In practice, human interaction, regarding
CT/PET visual interpretation of imaging information and tuning of parameters in complex
auto-segmentation algorithms still remains as the largest source of uncertainty for target
definition [5, 7].

To our knowledge, this is the first study that compares a semi automated method to segment
lung tumors on CT images, with multiple manual delineations used routinely in the clinic
and furthermore compared to pathology. CT-Based semiautomatic ensemble segmentation
of lung tumors showed high agreement with radiation oncologist’s manual CT/PET
delineations and correlated with pathological tumor measurements (Pearson’s correlation,
0.96).

Multiple methods have been developed aiming to improve target definition [17–20]. For
example, in the case of PET imaging, the simplest method uses an absolute threshold of the
standardized uptake value. Single threshold methods are subject to considerable variation
due to heterogeneities in tumor size and FDG-uptake and lack of standardization in PET
acquisition settings [31]. More sophisticated segmentation algorithms such as the
individualized threshold based on the source-to-background ratio [16, 32], the gradient
based delineation or the watershed clustering have been proposed, and are generally
preferred over single threshold methods [18, 20, 33]. These studies showed the large
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differences on the resulting volumes depending on the delineation method. Recently, Wanet
et al. compared different automatic delineation methods, including the gradient based
method, the source-to-background based method and fixed thresholds at 40% and 50% of
the SUVmax, with manually delineated contours on the macroscopic specimen and on CT
images [20]. Although this method was compared with a three-dimensional reconstruction
of the macroscopic specimen, only ten patients were evaluated in the study. Despite these
efforts, a consensus over the most reliable method for automatic delineation of the GTV
based on PET is lacking.

CT remains as the reference imaging modality for the treatment planning in NSCLC [22], it
is widely available and the image acquisition protocols are better standardized across
institutions compared to PET. Thus, we believe a CT based semiautomatic method to
segment lung tumors that limits user interaction has clinical value.

In this regard, automatic methods to interpret chest CT images have largely focused on the
early detection of lung nodules [34, 35], on the differential diagnosis of malignant versus
benign nodules [36] and in the measurement of nodule or tumor size as treatment response
criteria [37, 38]. This study however, concentrates on the definition of locally advanced
stage primary tumors, with the exception of two stage Ib patients, which tend to be large,
irregular masses often adjacent to other anatomical structures, with the minimal user
guidance. Other studies have used supervised approaches using different machine learning
techniques to classify lung tissues [39, 40], however these techniques are trained with
manually delineated regions of interest, rather than performing automatic detection and were
not adequately validated. A general disadvantage of the supervised approach is that it
requires beforehand labeled samples used for training of the algorithm.

Kaker et al. proposed an automatic method to classify lung lesions and healthy tissue on CT
images, being able to classify the tissue in twelve different categories, differing mainly
based on location (i. e. left lung upper, left lung lower) rather than on tissue type [41].
Although fairly accurate classification values were reported they failed to validate their
approach since the segmentations were not adequately compared with a ground truth
estimation. Furthermore, they artificially generated 500 samples by under or over sampling
the original data to develop and evaluate their method, which questions the validity of the
testing data.

Our study allowed the possibility of comparing our results with examination of the surgical
specimen, by including surgical patients. However, this can also bias the algorithm
performance towards peripherally located tumors. In fact, in 75% of the cases, of which 40%
were centrally located, semiautomatic-segmentation of tumors on CT images proved to be
adequate and could probably be further extended to late stage, inoperable patients treated
with radiotherapy. However, in 25% of the cases, the algorithm showed reduced overlap
with the observer’s delineation. Two of the cases were centrally located tumors, these cases
had large central cavities that were covered by the observer’s delineation (shown in Figure
4), but that the algorithm judges as not being part of the tumor. This largely explains the
apparent mismatch between the observer’s delineations and the semi auto-segmented
volumes. Furthermore, the centrally located tumors also displayed larger observer’s
variability. In other tumors with central location, the algorithm showed overlap fractions of
approx. 95%.

An additional case with lower overlap fractions was a small isolated tumor in the upper lobe
of the left lung. In this case the algorithm overestimated the tumor extension, presumably by
extending the tumor voxels to an adjacent bronchiole. In these situations, supervision is
warranted.
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Our results showed a high correlation with the maximal diameter of the surgical specimen
measured on macroscopic examination. However, there are limitations intrinsic to the
method employed to determine the pathological tumor diameter that should be addressed. To
date only a few studies have validated auto-delineation methods with the gold standard of
pathology [16, 20, 42]. Daisne et al. and Stroom et al. have proposed techniques to obtain a
three-dimensional digital reconstruction of the pathological specimen, by fixating, slicing
and photographing the surgical specimen under controlled conditions [42, 43]. In our study,
the maximal diameter on pathology was determined with a ruler in one dimension, a fairly
simple measurement prone to tumor shrinkage and deformation. Measurements were
performed before fixation which reduces the influence of tumor shrinkage. In future work,
three-dimensional assessment of the pathological specimen is warranted. Of importance is
the time interval between the imaging study and the date of surgery or biopsy, which was in
average 39 days (range: 7–112 days). This time interval could impact the results in case of
tumor growth. This relatively large time span could not be avoided as those were the
treatment schedules. However, if large changes in tumor growth occurred between the day
of the imaging study and the day of the surgical intervention, these would have been
observed in the Bland-Altman analysis. This analysis showed that the difference between the
macroscopic diameter and the diameters on the semi automatically-segmented volumes was
within 1 cm in 85 % of the cases. We believe this has clinical value in terms that the semi-
auto segmented volumes fairly compare to those delineated by the clinical experts and the
proposed method agrees with the gold standard at least as good as the medical experts as
demonstrated by the Bland-Altman plot.

Because of the retrospective nature of this study, we lacked thin-slice reconstruction CT
images; slice thickness in our data was 5 mm. Thin-slice CT images could enhance the
ability to accurately determine the tumor volume.

Besides reducing inter-observer variability, semi-automated segmentation of tumors has
proven useful to reduce the target delineation time in other tumor sites [44–46]. The time
needed to manually delineate the tumors was not recorded, however, in a multi-centric study
Steenbakkers reported a mean delineation time of 16 min (SD 10 min) on CT scans and of
12 min (SD 8 min) on CT/PET scans [15]. The time needed to segment the lung tumor with
the semiautomatic software, including importing and loading the CT data, pre-processing,
initial seed-point definition and ensemble segmentation was in average 12.02 min (SD 0.4
min). Finally, this method could be relevant for adaptive radiotherapy, where treatment
plans are modified under restricted time slots, and in the first instance could be used as a
pre-delineated structure that the clinical expert could modify. Since this algorithm fairly
compared with the standardized delineations that are the current clinical practice, we view
this algorithm as an approximation of the target volume that could facilitate the target
definition step in radiotherapy treatment planning, but not as a replacement of the medical
experts.

To conclude, this method could be employed for target definition routinely on clinical
practice, as an approximation that can be refined by the medical experts, and in high-
throughput data mining research, based on the overlap with manual delineations and its
correlation with the pathological examination, in particular for peripherally located tumors.
Further validation will require a multi-center investigation.
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Figure 1.
The image in the left side shows the variability observed for CT/PET manual delineations.
To summarize inter-observer variability the observers intersection (common agreement) and
observers union (sum of all delineated areas) were defined and compared with the CT semi
auto-segmentation method (yellow color wash) in the right panel. These images correspond
to patient 12.
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Figure 2.
Overlap fractions between the semi auto-segmented volumes and observers’ intersection
(agreement between all observers) and union (merging of all regions delineated by all
observers) volumes. An overlap fraction equal to 100 indicates two perfectly matched
volumes while an overlap fraction equal to zero indicates two disjoined volumes.
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Figure 3.
Representative CT images of NSCLC patients. Lung tumors were segmented using a click
and grow ensemble segmentation algorithm (yellow solid color wash) and manually
delineated by five independent observers (color dotted lines).
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Figure 4.
Maximal diameter of the primary tumor determined by the CT semi auto-segmentation
algorithm compared with the tumor maximal diameter on macroscopic examination of the
surgical specimen. Pearson correlation coefficient was 0.96.
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Figure 5.
Bland Altman plots showing the discrepancies of CT/PET manual delineations (A) and CT
semi auto-segmentations (B) with the ‘golden truth’ maximal diameter on pathology. The
dotted lines represent the confidence intervals around the mean difference (solid line).
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