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Abstract
Our experience of the world seems to divide naturally into discrete, temporally extended events,
yet the mechanisms underlying the learning and identification of events are poorly understood.
Research on event perception has focused on transient elevations in predictive uncertainty or
surprise as the primary signal driving event segmentation. We present human behavioral and
functional magnetic resonance imaging (fMRI) evidence in favor of a different account, in which
event representations coalesce around clusters or ‘communities’ of mutually predicting stimuli.
Through parsing behavior, fMRI adaptation and multivoxel pattern analysis, we demonstrate the
emergence of event representations in a domain containing such community structure, but in
which transition probabilities (the basis of uncertainty and surprise) are uniform. We present a
computational account of how the relevant representations might arise, proposing a direct
connection between event learning and the learning of semantic categories.

Introduction
As we observe and act in the world, perceptual information arrives in a more-or-less
continuous manner over time, yet we do not experience the world as an unpunctuated
stream. Instead, we apprehend coherent and bounded sub-sequences that have beginnings,
middles and ends. In the cognitive literature, these segments have been termed events, and a
core problem has been to understand how and why the continuous flow of experience is
partitioned in this way. Operationally, segmentation is often measured by having
participants observe some temporally extended episode and explicitly judge where the
boundaries between sub-sequences lie. Such judgments are quite reliable1,2 — but how do
we come to know where events are bounded?

Prediction error or surprise have a central role in most accounts of event parsing3-6, and
sequence parsing7 more generally. In this class of explanations, event boundaries are
identified on the basis of non-uniform transition probabilities. Within an event, a given
observation is highly predictable from preceding observations, whereas the observation
beginning a new event is less predictable. Thus, uncertainty about an upcoming observation,
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or surprise at the occurrence of an unpredicted observation, can provide a cue for
segmentation.

We present an alternative account of event comprehension and segmentation that does not
rely on predictive uncertainty and does not require the presence of non-uniform transition
probabilities. Instead, we consider how representations of stimuli within an event are shaped
by their temporal context. We propose that stimuli associated with similar temporal contexts
are grouped together in representational space, forming clusters that provide the basis for
event discrimination. This idea has a counterpart in theories of object semantics, which have
aimed to explain why everyday objects seem to fall into natural categories. According to
these theories, semantic category structure reflects a clustering of object representations in
an internal representational space: Items belong to the same category when they are
represented as similar to one another and as dissimilar to other familiar items8-10. The
degree to which items are represented as similar depends on the extent to which they are
observed to share attributes.

We hypothesize that events are like semantic categories in this sense. Individual items ‘go
together’ to form events because they are situated near each other in an internal
representational space, and they lie near to one another because they share attributes. In
object semantics, the attributes are the intrinsic properties of objects (for example, their
parts, shapes, behaviors, functions and so on). In event representation, the relevant attributes
are temporal associations. In particular, we hypothesize that items will fall close together in
representational space when they are preceded and followed by similar distributions of items
in familiar sequences. The resulting representational clustering grounds event perception and
segmentation, just as the representational clustering involved in object semantics grounds
category identification.

To make this idea concrete, consider the graph in Figure 1a. Imagine a scenario in which
each node in the graph is associated with a particular visual stimulus and each edge indicates
a possible transition between stimuli. Given that each node has exactly four neighbors, a
random walk through the graph (used to generate a stream of stimuli) would produce
uniform transition probabilities over all neighbors. Because the set of possible successor
items on each step depends only on the current item, this uniformity in transition
probabilities holds whether one takes into account only the most recent item or the n most
recent items (Supplementary Fig. 1). As every transition that occurs is equally likely, the
graph never gives rise to moments of relative uncertainty or surprise.

Despite this uniformity, the graph remains highly structured, in that it contains three clusters
of densely interconnected nodes. Although any individual node connects to four other nodes,
nodes within a cluster tend to connect to one another and not to nodes in other clusters. In
research on complex networks, this kind of clustering is referred to as community
structure11,12. Community structure is ubiquitous across a wide range of natural
systems13,14, and the construct has proven useful in analyzing networks describing
sequential transition probabilities15, as in the case considered here. Note that in this
sequential setting, nodes in the same cluster or community overlap in their temporal
associations—they are likely to be preceded and followed by overlapping sets of nodes—
whereas those lying in different clusters do not overlap as much in their temporal
associations. Even in the presence of uniform transition probabilities, this pattern of
temporal overlap provides a potential basis for dividing sequences of stimuli into events.

Using the graph in Figure 1a, we conducted three experiments testing two specific
predictions of our theory. First, after exposure to sequences generated from the graph,
human observers should parse sequences at points corresponding to transitions between
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communities. Whereas prior work on parsing has investigated transition probabilities as the
main factor of interest, the graph in Figure 1a controls for this factor, leaving only
community structure as a basis for parsing. Experiments 1 and 2 demonstrated reliable
parsing at community boundaries, supporting the hypothesis that community structure can
drive the formation of event representations. Second, stimuli belonging to the same
community in the graph should come to have more similar neural representations following
the sequence exposure. This prediction is supported by functional magnetic resonance
imaging (fMRI) adaptation and multivoxel pattern analysis results in experiment 3.

Results
Experiment 1

Participants viewed a 35-min sequence of individual characters (Fig. 1b), each presented for
1.5 s, in an order generated by a random walk on the graph in Figure 1a. During this phase,
participants performed a cover task requiring them to decide whether each stimulus was
rotated away from a canonical orientation (Methods). Task instructions avoided any allusion
to the structure or relevance of the order of stimuli. In the next phase of the experiment,
participants were shown another 15-min sequence and were asked to segment the stream by
pressing the spacebar at times that felt like natural breaking points. This sequence alternated
between blocks of 15 images generated from a random walk on the graph and blocks of 15
images generated from a randomly selected Hamiltonian path through the graph (a path
visiting every node exactly once). The purpose of interspersing Hamiltonian paths was to
ensure that parsing behavior could not be explained by local statistics of the sequence (for
example, after seeing items within a cluster repeat several times, participants might use the
relative novelty of an item from a new cluster as a parsing cue).

Accuracy on the rotation detection task indicated task compliance, with participants
detecting rotated images with high A’ sensitivity (mean = 0.901, s.d. = 0.091; versus chance,
t[29] = 24.19, P < 0.001; see Supplementary Table 1 for reaction times). In the parsing phase
of the experiment, participants pressed the spacebar on passage into a new cluster
significantly more often than at other times in the sequence (t[29] = 2.27, P < 0.05; Fig. 2a).
Restricting the analysis to Hamiltonian paths did not change the result; new-cluster parses
were significantly more likely even in these sequences (t[29] = 2.25, P < 0.05).

Experiment 2
The purpose of this experiment was to replicate the results of experiment 1 while
overcoming a subtle limitation of that experiment. The introduction of random Hamiltonian
paths into the testing sequences of experiment 1 resulted in non-uniform transition
probabilities within and between clusters. Specifically, within the set of Hamiltonian paths,
the probability of transitioning from one cluster boundary node (one of the pale nodes in
Fig. 1a) to the adjacent one, if not yet visited, is always exactly 1, whereas the probability of
transitioning from the latter boundary node to each of the adjacent non-boundary nodes is
one-third. To eliminate this difference, we employed one fixed Hamiltonian path for each
subject, rendering uniform transition probabilities in both random walk and Hamiltonian
paths. The Hamiltonian cycle was entered at different points, depending on where the
preceding random walk terminated, and backward and forward traversals were included,
chosen randomly for each Hamiltonian block. In addition to refining the procedure from
experiment 1, we used a stimulus set with less obvious visual similarity relations and that
did not invite verbal labeling (Fig. 1c).

Accuracy on the rotation detection task indicated task compliance, with participants
detecting rotated images with high A’ sensitivity (mean = 0.818, s.d. = 0.130; versus chance,
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t[9] = 7.72, P < 0.001). As in experiment 1, participants pressed the spacebar on passing into
a new cluster significantly more often than at other times in the sequence (t[9] = 2.30, P <
0.05; Fig. 2b). Restricting the analysis to Hamiltonian paths once again preserved this result
(t[9] = 2.35, P < 0.05). Control analyses evaluated the possible contribution of associations
formed between temporally nonadjacent items (Supplementary Fig. 1).

Experiment 3
In this fMRI experiment, we aimed to test our second prediction, namely that items lying in
the same graph community should have more similar neural representations than items
occupying different communities following exposure to the sequence. The experiment began
with a pre-scan exposure phase, which was identical to the exposure phase of experiment 2.
Participants then underwent fMRI as they continued to perform the orientation-detection
cover task (note: not the parsing task) on sequences structured as in the parsing phase of
experiment 2. To avoid potential issues raised by local item repetitions, we performed all
analyses only on the data from Hamiltonian paths. Accuracy on the rotation detection task
indicated task compliance, with participants detecting the rotated images with high A’
sensitivity in pre-scan (mean = 0.865, s.d. = 0.047; versus chance, t[19] = 34.73, P < 0.001)
and scanning phases (mean = 0.893, s.d. = 0.081;versus chance, t[19] = 21.70, P < 0.001).

As an initial analysis, and to match the approach taken in previous fMRI studies of
spontaneous event segmentation16, we ran a general linear model (GLM) with a regressor
that indicated the transitions from one cluster to another. No areas were positively correlated
with this event boundary regressor. A large cluster in medial prefrontal cortex (mPFC) was
negatively correlated with the regressor (Fig. 3a), however, suggesting that this area is
engaged during an event and transiently disengaged at event boundaries (P < 0.05 corrected;
Table 1). To confirm that the effect was temporally specific and not an artifact arising from
the design of the GLM, we ran two additional analyses: one with the event boundary shifted
two steps back in the sequence and another with the event boundary shifted two steps
forward. In both of these cases, there were no regions that reliably exhibited the same
behavior.

To test our prediction that items in the same community would come to be represented
similarly, we ran a GLM with a regressor that modeled an fMRI adaptation response.
Previous research has shown that the a blood oxygen level-dependent (BOLD) response to
an item can be affected by previous presentation of an item that engages an overlapping
neural population, causing either a decreased response (repetition suppression) or, less
commonly, an increased response (repetition enhancement)17,18. Insofar as items within a
community are represented by similar neural populations, we expected that responses to
these items would become progressively suppressed or enhanced as more time is spent in the
community. Consistent with this prediction, a repetition enhancement effect was observed in
bilateral inferior frontal gyrus (IFG) and anterior insula (P < 0.05 corrected; Fig. 3b and
Table 1), with progressively stronger responses as each of the five nodes in a community
was traversed. We also found this profile in the cuneus (P < 0.05 corrected; Table 1).

While these enhancement effects indicate overlapping representations within individual
voxels18, the similarity structure predicted by our theory may also manifest in distributed
patterns of responses across voxels. Thus, another way to test our prediction that items in the
same community are represented more similarly is to examine whether the multivoxel
response patterns evoked by each item come to be clustered by community. We examined
these patterns over local searchlights throughout the entire brain, using Pearson correlation
to determine whether activation patterns were more similar for pairs of items from the same
community than for pairs from different communities. Two clusters of searchlights covering
left IFG, anterior temporal lobe (ATL), insula and superior temporal gyrus (STG) showed

Schapiro et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2013 August 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



this effect across participants (P < 0.05 corrected; Fig. 4 and Table 1). The adaptation and
pattern analyses were performed independently over the whole brain and were sensitive to
different components of the fMRI signal, yet they identified neighboring regions in left IFG
and insula (Fig. 5). No areas showed higher similarity for between- than for within-
community item pairs.

For each community, the three internal items (darker nodes in Fig. 1a) had more overlapping
temporal associations than the two boundary items did with each other. Thus, if the evoked
neural response in these regions expresses overlap in temporal associations, then the internal
items should be more correlated with one another than with the boundary items. This highly
specific prediction was supported by a marginally significant difference in the left STG
cluster (t[19] = 1.71, P = 0.052 one tailed; other regions, P > 0.16).

Computational model
The fMRI adaptation and pattern analysis results from experiment 3 confirmed that temporal
community structure shapes representational similarity, giving rise to clustered item
representations, with transitions between clusters signaling event boundaries, as measured
by parsing behavior in experiments 1 and 2. To articulate a specific hypothesis about the
mechanisms underlying these results, we constructed a three-layer neural network model
(Fig. 6a). The network took input representing the current stimulus and was trained to
predict which stimulus would occur next. To simulate the stimulus sequences involved in
our experiments, we included 15 localist units in both the input (current item) and output
(next item) layers. Note that there was therefore no direct overlap between items in either
the inputs or target outputs presented to the model.

We exposed 20 randomly initialized networks to the same sequences viewed by participants.
On each step of the sequence, the current item was shown as input and the model guessed
which items might occur next. The model modified connection weights from the current-
item layer to the internal (representation) layer and from the internal layer to the next-item
layer to learn to activate only the four possible successor items for a given current item.
Given that items in the same community generated similar predictions about which items
would come next, the model naturally came to represent such items similarly in the internal
layer.

The internal representations learned by the networks can be visualized by performing a
multi-dimensional scaling of the activation patterns evoked by each of the 15 images, just as
was done for visualization of evoked fMRI responses. The resulting plot (Fig. 6b) mirrors
the community structure of the graph, as well as the similarity relations found in left IFG
and insula, left ATL, and left STG (Fig. 4). Nodes within a community lie closer to one
another (that is, are represented as more similar) than nodes from different communities
(t[19] = 140.84, P < 0.0001). The nodes at the boundaries of communities do not share as
many predictions as the other community members do with each other, and are therefore
farther away from nodes that are more internal to the community (t[19] = 22.82, P <
0.0001). As a result of this structure, as the network traverses a Hamiltonian path, the
similarity between the current and previous item representation is strongest for items most
internal to a community, slightly weaker passing to a boundary item and weakest passing to
a new community (Fig. 6c). The resulting temporal variation provides a sufficient basis for
event parsing (even in the absence of explicit instructions to parse the sequence). Note that it
also mirrors the pattern of activity that we observed in mPFC (Fig. 3). The latter observation
prompts the speculation that mPFC may track changes in activity patterns in regions with
community-based representational similarity, providing a signal that could underlie parsing
decisions.
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The neural network model demonstrates one simple way that neural representations might
come to reflect environmental community structure. It is closely analogous to models of
object semantics that describe how object representations cluster on the basis of their
overlapping features10. The only difference is that the relevant overlap occurs in the
distribution of items over time in the sequence, rather than in the intrinsic properties
associated with each item. Specifically, the relevant features for the model are the items that
a current observation predicts will occur in the future.

Discussion
Our behavioral and fMRI data support an account of event representation in which stimuli
are grouped together into events because they share common temporal associations. In
graphic representations of transition dynamics (for example, Fig. 1a), groups of items with
shared contextual associations become clusters, or communities. In this sense, event
representations arise from temporal community structure. When asked to mark event
boundaries, participants segmented sequences at points corresponding to transitions between
graph communities. Notably, this took place in the context of a generative process with
uniform transition probabilities, excluding relative uncertainty or surprise as the only basis
of parsing.

Our second theoretical proposal is that items with overlapping temporal associations
coalesce into perceived events because such items give rise to similar internal
representations. Our fMRI results provide direct evidence for this hypothesis. A pattern
analysis revealed that areas of the left IFG, left insula, left ATL, and left STG represented
items within a community as more similar than items from different communities. Notably,
this effect emerged after only about an hour of exposure to the structured sequences, making
this one of the first cases, to the best of our knowledge, in which multivoxel pattern analysis
has been used to measure such acute learning-induced representational change19.

Also consistent with this proposal was a repetition enhancement effect in bilateral IFG and
insula, where activity increased with dwell time in a single graph community. Although
repetition suppression effects are more common18, repetition enhancement effects have been
documented in numerous studies17 (including in IFG20), especially when stimuli are
degraded, novel or perceptually similar21,22. One explanation for repetition enhancement in
our study might be that evidence for the current community accumulated with each new
item. Given the limited time for learning, each item may have carried partial or indefinite
information about its own community membership, with confidence about the current
community firming up over a succession of member items. Such a gradual accumulation of
evidence would explain repetition enhancement in IFG and insula, in much the same terms
that repeated presentation of a degraded visual stimulus leads to enhancement in visual
cortex.

Both our adaptation and pattern analyses suggest that the left IFG is involved in representing
events. This region has been associated with modality-independent semantic processing in
diverse tasks, including verb generation, semantic classification and selection among
competing semantic alternatives23-26. The pattern analysis found that community structure
was also captured by the left ATL and STG, regions that are strongly implicated in semantic
processing27. These findings are therefore consistent with our proposal that exposure to
structured sequences generates representations similar to those that support object
categorization. The IFG is also sensitive to sequential structure in a range of domains,
including artificial grammar learning28, language29 and music30,31 processing, and action
perception and production20,32. While such effects are clearly relevant to our work, they
involve comparison of overall IFG activity between different experimental conditions. We
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compared the fine-grained pattern of activity within IFG across different individual stimuli,
in a single task context. Understanding how the results obtained from this approach relate to
those proceeding from earlier univariate studies of IFG will be an interesting target for
investigation.

Whereas we found that representations in IFG captured the clustering of items within events,
mPFC seems to support a different function. This region was engaged throughout the
duration of an event, disengaging transiently at event boundaries. An extensive body of
evidence links mPFC to event processing. For example, mPFC is more responsive to objects
that are highly associated with a particular context33; by definition, an item within a
community is strongly associated with other members of the community, and thus with a
particular context. Other work has implicated mPFC in integrating information when
reading about events34, processing structured compared to random sequences35, thinking
about highly familiar events36, thinking about complex events37, and elaborating on past and
future events38. Such findings are broadly consistent with our finding that mPFC was
engaged during sub-sequences with tightly integrated temporal structure. Our modeling
findings motivate the more specific hypothesis that mPFC may track changes in activity
patterns in areas such as left IFG. One way of probing this possibility in the future (not
afforded by the current design) would be to examine functional connectivity between mPFC
and these other regions.

Both our theory and our fMRI findings suggest that stimuli with shared temporal
associations come to be represented similarly. Our computational model illustrates how this
similarity might emerge through learning. The idea that an item’s representation is shaped
by the temporal structure of the episodes in which it participates has a long history in
theories of language and conceptual knowledge. One influential model proposed that
semantic and grammatical relationships among words are latent in the similarity structure of
their linguistic contexts39, an idea that has also been applied in the artificial grammar
learning (AGL) literature40. In research on natural language processing, the conceptual
structure of words, phrases and even whole texts is often estimated by modeling the latent
similarity structure of the contexts in which the text samples appear41-43. Our proposal
therefore builds on numerous precedents, establishing a new link between context-based
representations in language and semantics and the phenomenon of event segmentation.

Our work also shares important links with statistical learning and AGL research7,19,44,45,
both of which are concerned with incidental learning of temporal regularities. In common
with our study, statistical learning studies have often focused on segmentation of continuous
stimulus streams and AGL studies have often considered how participants learn the
sequential structure generated by a random walk on a graph. Our study, however, represents
an important advance from these foundations. Both literatures have mainly emphasized
variation in predictive uncertainty as the primary engine of segmentation and sequential
knowledge generalization. In the case of segmentation, the central claim is that boundaries
are detected when predictive uncertainty is high, a view that presupposes the existence of
unequal transition probabilities. Even when previous studies have matched some transition
probabilities, the underlying goal has been to isolate and test the behavioral effect of other,
unequal transition probabilities46. In AGL research, where judgments of grammaticality
have been the main focus, the central claim has been that test sequences will be treated as
grammatical if they have high conditional probability given the underlying graph, and as
ungrammatical otherwise, again presupposing important differences in predictive strength
across stimuli. To the best of our knowledge, our findings are the first to demonstrate
identification of sequential structure in a context in which predictive strength is globally
uniform and learning is instead driven by community structure.
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Although we have focused on the implications for event representation, our results therefore
have repercussions for theories of sequence representation more generally. For instance, a
prominent idea in the AGL literature proposes that sequential structure, including segmental
structure47, is discovered by encoding commonly occurring sub-sequences (typically
bigrams or trigrams) that are often referred to as fragments or chunks45. An influential
chunking model (PARSER48), however, failed to identify the three communities in our
graph when exposed to sequences structured as in our experiments (Supplementary Figs. 2
and 3). The reason is that all n-grams both within and between communities occur with
equal probability in these sequences. As a result, any version of chunking that relies on
differences in n-gram frequency will fail to explain the parsing behavior that we observed.
One reason that this point is particularly noteworthy concerns the relationship between
chunking and neural network models in AGL research. There has been considerable interest
in understanding the relative strengths of these two formalisms, and this interest has
naturally placed a premium on behavioral findings capable of adjudicating between them.
Our results add to this set of findings by showing that the performance of chunking and
neural network models can diverge when community structure is paired with uniform n-
gram frequency.

One influential neural network AGL model proposed that items reflecting the same
underlying state in a finite-state grammar come to be represented similarly because they
occur in the same temporal context40,49. Unlike the grammars examined in that work, and
throughout the AGL literature, our graph never associates more than one stimulus with a
single underlying state (node). Nevertheless, this proposal is clearly related to our assertion
that items raising overlapping predictions will come to be represented similarly. Our work
applies this general principle to the problem of event segmentation and provides
neuroscientific evidence for its validity.

Our use of sequences with uniform transition probabilities served a critical methodological
purpose, but invites the question of how our theory might apply to sequential domains
(including naturalistic ones) that involve non-uniform and asymmetric transition
probabilities. A useful context for addressing this is provided by the task most heavily used
in statistical learning research. In the classical statistical learning experiment, items (for
example, syllables or images) are grouped so that items within a group always appear in a
fixed order, but the order of the groups is unpredictable. This sequential regime can be
represented as a directed graph with communities that correspond to the item groupings
(Supplementary Fig. 4). Thus, our account predicts that the representational changes
observed in the current experiment should generalize to the statistical learning setting. This
seems to be the case. After exposure to images that always occur in a fixed order in pairs,
but in which the order of pairs is unpredictable, the neural representations of images in the
same pair become more similar relative to images from distinct pairs19. This reorganization
occurs throughout the hippocampus and medial temporal lobe cortex, as well as in the
anterior temporal lobe, as we observed. Future work will be needed to understand how these
areas interact and how different types of structure affect neural representations in different
areas.

It is interesting to consider the extent to which our proposals concerning community
structure, contextual overlap and representational clustering might provide alternative
explanations for findings previously interpreted in terms of prediction error. The brain
regions that we identified overlap partially with those observed in a statistical learning
study19, but not with those reported in previous studies that emphasized the role of
prediction error in event segmentation5,16. The discrepancy may indicate that these other
regions respond specifically to prediction error and do not provide a direct signal for event
parsing, but could also reflect numerous differences in stimuli, methods, etc. Certainly our
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findings do not demonstrate that prediction error is never relevant to event segmentation, nor
do they show that community structure is always involved. Working out the potential role
for these two mechanisms, alongside others, such as goal-based processing50, is a critical
challenge for near-term research.

Methods
Participants

Members of the Princeton University community participated in exchange for monetary
compensation ($12 per h for experiments 1 and 2, and $20 per h for experiment 3) or partial
credit for a course requirement. Experiment 1 had 30 participants (17 females, mean age =
20.2 years, range = 18-30 years), experiment 2 had ten participants (four females, mean age
= 22.0 years, range = 18-30 years) and experiment 3 had 20 participants (nine females, mean
age = 20.9 years, range = 18-33 years). Data from one additional subject in experiment 3
was unusable because of procedural difficulties. Informed written consent was obtained
from all participants, and the study protocol was approved by the Institutional Review Board
for Human Subjects at Princeton University.

Stimuli and design
In experiment 1, the stimuli consisted of 15 glyphs from the Sabaean alphabet (Fig. 1b), an
ancient Semitic language, which were generated from fonts downloaded at http://
www.omniglot.com/. For each participant, the 15 glyphs were randomly assigned to the 15
nodes of the graph from Figure 1a. In experiments 2 and 3, the stimuli consisted of 15
abstract images (Fig. 1c) created in ArtMatic Pro (http://www.artmatic.com/). Again, these
stimuli were assigned randomly to graph nodes for each participant.

In experiment 1, the sequence exposure phase consisted of viewing 1,400 stimuli generated
from a random walk on the graph in Figure 1a. Stimuli were presented one at a time on a
computer screen for 1.5 s each, with no interstimulus interval. In the parsing phase,
participants viewed 600 stimuli, again presented one at a time for 1.5 s each. There were
never any cues as to the structure of the graph; item presentation was continuous within and
across clusters. In the parsing phase, sequence generation alternated between blocks of 15
items that were generated from a random walk on the graph and blocks of 15 items that were
generated from a randomly drawn Hamiltonian path through the graph in which each node
of the graph was visited exactly once. The purpose of interspersing Hamiltonian paths in the
parsing phase was to ensure that parsing behavior could not be explained by local statistics
of the sequence. If participants parse sequences at cluster boundaries in the Hamiltonian
paths, then they must be relying on previously learned statistics. We did not use exclusively
Hamiltonian paths in the parsing phase because we wanted to minimize unlearning of the
temporal statistics.

Experiment 2 was identical to experiment 1 except that abstract, nonverbalizeable stimuli
were used and the Hamiltonian paths were not randomly drawn in each block for each
subject. Instead, one path was drawn for each subject, and the forward and backward
versions of this path were chosen randomly for each block. This was done to remove the
possibility that participants could be parsing on the basis of statistics learned during the
parsing phase about the structure of randomly drawn Hamiltonian paths.

Experiment 3 was identical to experiment 2, except that there was a scanning session after
the exposure phase. The scanning session had the same structure as the parsing phase, with
alternating random walks and Hamiltonian paths, as concerns about the local statistics of the
random walk also applied to our interpretation of the neural data. A rapid event-related
design was used in the scanning session, with items presented for 1 s each with a jittered
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interstimulus interval (1, 3 or 5 s) such that the response to individual items could be
modeled separately. There were five scanning runs lasting 616 s, with 160 items per run.

Procedure
In the exposure phase of all three experiments and the scanning session in experiment 3,
participants were first shown the entire set of stimuli on the screen and told that they would
be asked to detect when the stimuli appeared rotated from this initial orientation.
Participants pressed one key on the keyboard when they thought the stimulus was rotated
from its initial orientation and a second key otherwise, thus responding on every trial. Key
assignment was counterbalanced across participants. Except in the scanner, a beep at one
frequency was played when the response was incorrect and at another frequency when the
response was not within the time frame that the stimulus was displayed. In the scanning
session in experiment 3, participants responded with a button box, using the same fingers
they had used on the keyboard in the exposure phase. Stimuli were rotated 90° from their
initial orientation about 20% of the time in experiments 1 and 2, and 12.5% of the time in
experiment 3. This rotation-detection task was used to keep participants engaged and
attentive to the stimuli. Participants were given the opportunity to take a self-paced break
about every 7 min in experiments 1 and 2, and between runs in experiment 3. The
instructions did not mention anything about sequential aspects of the experiment, and we
recruited participants who were naive to the purposes of the experiment.

In the parsing phase of all three experiments, participants were told that they would see
sequences of items in the correct orientation and to “simply press the spacebar at times in
the sequence that you feel are natural breaking points” (“spacebar” was replaced with “any
button” in experiment 3). We viewed the parsing data in experiment 3, collected during an
anatomical scan, as unreliable because of reports from multiple subjects that their strategy in
the task was heavily influenced by the timing of acoustic scanner noise (Supplementary Fig.
5).

For parsing analyses, we operationalized passage into a new community as involving arrival
into any community following at least four consecutive steps in another single community.
The imposition of this four-step restriction was based on the a priori prediction, independent
of our central theory, that participants might show a simple reluctance to press the parse
button twice in close temporal succession. The specific choice of four steps was based on
the fact that this criterion was met by two-thirds of all boundary-traversal events. However,
the same qualitative pattern of results was obtained in additional analyses employing both
less restrictive (1-3 steps) and more restrictive (5 steps) criteria (Supplementary Table 2).

fMRI acquisition and preprocessing
MRI data were acquired using a 3T Siemens Allegra scanner at Princeton University, and
were preprocessed using AFNI (http://afni.nimh.nih.gov/afni/) and SPM (http://
www.fil.ion.ucl.ac.uk/spm/). An echoplanar imaging sequence was used to acquire 34 3-mm
oblique axial slices with 1-mm gap, repetition time (TR) = 2 s, echo time = 30 ms, flip angle
= 90°, and field of view = 192 mm. An MPRAGE anatomical scan was acquired at the end
of the session, consisting of 176 1-mm axial slices, repetition time = 2.5 s, echo time = 4.38
ms, flip angle = 8°, and field of view = 256 mm. We performed slice acquisition time
correction using Fourier interpolation and motion correction using a six-parameter rigid
body transformation to co-register functional scans. A despiking algorithm was used to
attenuate outliers in each voxel’s time course. Data were spatially normalized by warping
each subject’s anatomical image to match a template in Talairach space using a 12-
parameter affine and nonlinear cosine transformation. This transformation was then applied
to functional data.
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fMRI GLM analysis
For GLM analyses, data were spatially blurred until total estimated spatial autocorrelation
was approximated by a three-dimensional 6-mm full width at half maximum Gaussian
kernel. Signal in each voxel was then intensity-normalized to reflect percent change. We ran
two GLM analyses using AFNI. Both contained zero- through fifth-order polynomial trends
and estimated movement in six directions for 13 participants who had some detectable
movement. Both also included regressors that indicated whether any stimulus was present,
whether the stimulus was rotated, error trials, trials with no response, and whether the
stimulus was generated from a Hamiltonian path. These indicators were convolved with a
standard hemodynamic response function. One of the GLMs was designed to look at
transient responses at event boundaries or responses lasting throughout a community
traversal. It contained a regressor indicating event boundaries (specifically, arrival at an item
in a new cluster) within Hamiltonian paths. We ran two additional control GLMs to test the
specificity of the boundary effects: One shifted the boundary regressor two items back and
the other shifted it two items forward such that they were misaligned in both cases with the
true boundaries. The other GLM was designed to detect adaptation effects during traversal
through communities. It contained a regressor with the (hemodynamic response function
convolved) values 2, 1, 0, −1 and −2 assigned to the first, second, third, fourth and fifth
node, respectively, in a Hamiltonian path through a given community. To test the reliability
of beta weights across participants, we used randomise (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
randomise) in FSL to perform permutation tests and generate a null distribution of cluster
masses for multiple comparisons correction (cluster-forming threshold, P < 0.05 two tailed).

fMRI pattern analysis
We ran a searchlight multivoxel pattern analysis51 to assess the similarity structure of
individual item representations after sequence exposure. We z scored each voxel’s activation
values across time in each run from the preprocessed data. We then took the average z
scored activation for all presentations of a particular item two TRs (4 s) after stimulus onset
(which was always time-locked to a TR). We only included item presentations that occurred
four or more steps into a Hamiltonian path to minimize the possibility of picking up on any
neural responses from items in the preceding random walk. The activity pattern for each of
the 15 items was extracted from a cube of 3 × 3 × 3 voxels (a searchlight) centered on every
voxel in the brain and stored as vectors with 27 elements. The Pearson correlation between
the vector corresponding to each item and the vector corresponding to each other item was
calculated, yielding a 15 by 15 similarity matrix for each searchlight.

We created a statistic on this matrix to evaluate the extent to which a particular searchlight
matched our predictions. The statistic was the average Fisher-transformed correlation
between items in the same cluster minus the average Fisher-transformed correlation between
items not in the same cluster. To ensure that temporal overlap of the hemodynamic response
between item presentations could not bias the results, we only compared between- and
within-cluster item similarities for pairs of items that appeared the same distance away in the
sequence. For example, we compared item pairs that occurred four steps away within a
cluster only to item pairs that occurred four steps away across clusters. We did this for one,
two, three and four steps (five or more steps would not allow any within-cluster pairs) and
then averaged the results. Across these steps, each item participated in exactly four within-
cluster pair correlations and exactly four across-cluster pair correlations. The difference
statistic was assigned to the center voxel of each searchlight for visualization and
hypothesis-testing purposes.

We performed the same permutation test as with the GLM analyses to assess the reliability
of each searchlight across participants. The searchlight procedure creates additional
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smoothness in the data, but this smoothness appears in the null distribution of clusters,
making it appropriately more difficult to find a cluster mass large enough to reach
significance. The searchlight statistic can thus be treated the same way as beta weights (or
any other statistic) in the permutation test. As in the GLM analyses, the permutation test
shuffles voxel values across subjects and uses a cluster forming threshold of P < 0.05 (two
tailed).

Computational model
The model was a fully connected three-layer feedforward neural network implemented in
Emergent (http://grey.colorado.edu/emergent/), with 15 units in the input and output layers
(one for each of the 15 items in the experiments), and 50 units in the hidden layer. The
choice of number of units in the hidden layer was arbitrary, and results were the same for a
wide range of values. The model was exposed to a sequence of stimuli generated from a
random walk on the graph in Figure 1a, the same as for participants in all three experiments.
On each step of the sequence, the input unit corresponding to the item on that trial was set to
a value of 1, and all other inputs were set to 0. Similarly, the output unit corresponding to
the item on the next trial was set to a value of 1, and all other outputs were set to 0. The
network adjusted weights from the input to hidden layer and from the hidden to output layer
to predict what would come next in the sequence using back-propagation with a learning
rate of 0.2. We trained 20 models with weights randomly initialized from a uniform
distribution between −0.5 and +0.5 for 200 epochs (each epoch contained all 60 input-output
possibilities).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Design and stimuli. (a) Graph with community structure, used to generate stimulus
sequences. (b) Stimuli in experiment 1. (c) Stimuli in experiments 2 and 3.
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Figure 2.
Behavioral results. (a,b) For experiment 1 (a) and experiment 2 (b), the proportions of times
participants parsed at a cluster transition and elsewhere in the sequence out of all
opportunities to do so. Data were analyzed for all trials and restricted to Hamiltonian paths.
*P < 0.05. Error bars denote 1 s.e.m. (30 participants for a, 10 for b).
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Figure 3.
Results of GLM analyses. (a) mPFC was engaged throughout the duration of an event. This
response reflects stronger activity within a community (dark red arrows) compared with at a
community boundary (light red arrows). The arrows outline a possible Hamiltonian
trajectory through the displayed portion of the graph. (b) Bilateral IFG and insula showed a
repetition enhancement effect, reflecting progressively greater activity as more items from
the same community were viewed, illustrated here with darker shades of green later in a
community traversal (20 participants for a,b). R, right.
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Figure 4.
Pattern similarity results. Clusters in left IFG and insula, left ATL, and left STG showed
reliable community structure in the BOLD response in a whole-brain searchlight analysis.
The similarity structure in each area was visualized by performing multi-dimensional scaling
on the distances between the multivoxel pattern evoked by each item with each other item
(averaged across searchlights within the area). Items are color-coded in accordance with the
graph nodes in Figure 1a (20 participants).
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Figure 5.
Neighboring regions found in adaptation and pattern analysis. (a) To visualize the proximity
of the regions, the adaptation (green) and pattern analysis (yellow) results are displayed on
the same brain. (b) To provide a sensitive measure of possible overlap between these results,
we calculated the average multivoxel pattern analysis effect across searchlights within each
of the three clusters identified by the adaptation analysis. In the left IFG cluster only, we
found higher pattern similarity for within-versus between-community items. **P < 0.01.
Error bars denote ± 1 s.e.m. (20 participants for a,b).
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Figure 6.
Model architecture and results. (a) Feed-forward neural network model that predicts
subsequent observations given the current observation. (b) Multi-dimensional scaling of the
hidden unit representations after sequence exposure. The dot colors correspond to positions
on the graph shown in Figure 1a. (c) The average cosine similarity in the hidden layer
representations between the current item and the last item in a traversal through a
Hamiltonian path of the graph. Results represent an average over 20 networks initialized
with different random seeds.
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Table 1

Reliable clusters in Experiment 3

Region Brodmann
areas

x y z Extent (voxels)

Boundary regressor

mPFC 9/10/24 −1.4 43.6 16.5 205

Adaptation regressor

Left IFG/insula 13/44 −43.7 0.0 13.1 100

Right IFG/insula 13/44/45 49.6 8.5 7.7 109

Cuneus 18/19 11.7 −80.7 22.5 84

Pattern analysis

Left IFG/insula/ATL 13/38/47 −40.2 10.9 −5.9 150

Left STG 21/22 −52.7 −23.0 −0.8 107

Clusters reliable at p < 0.05 corrected. Coordinates are in Talairach space and correspond to the center of mass of the cluster.
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