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Abstract
Identifying functional networks from resting-state functional MRI is a challenging task, especially
for multiple subjects. Most current studies estimate the networks in a sequential approach, i.e.,
they identify each individual subject’s network independently to other subjects, and then estimate
the group network from the subjects networks. This one-way flow of information prevents one
subject’s network estimation benefiting from other subjects. We propose a hierarchical Markov
Random Field model, which takes into account both the within-subject spatial coherence and
between-subject consistency of the network label map. Both population and subject network maps
are estimated simultaneously using a Gibbs sampling approach in a Monte Carlo Expectation
Maximization framework. We compare our approach to two alternative groupwise fMRI
clustering methods, based on K-means and Normalized Cuts, using both synthetic and real fMRI
data. We show that our method is able to estimate more consistent subject label maps, as well as a
stable group label map.

1 Introduction
Resting-state functional MRI (rs-fMRI) is widely used for detecting the intrinsic functional
networks of the human brain. The availability of large rs-fMRI databases opens the door for
systematic group studies of functional connectivity. While the inherently high level of noise
in fMRI makes functional network estimation difficult at the individual level, combining
many subjects’ data together and jointly estimating the common functional networks is more
robust. However, this approach does not produce estimates of individual functional
connectivity. Such individual estimates are an important step in understanding functional
networks not just on average, but also how these networks vary across individuals.

The most common approaches for functional network identification are Independent
Component Analysis (ICA) and its variants [2], which identify the statistically independent
functional networks without a priori knowledge of the regions of interest. The more recently
proposed clustering-based methods [1,8] partition the brain into disjoint spatial clusters, or
label maps, representing the functional networks. Group ICA [2] is a generalization of ICA
to multiple subjects, in which all subjects are assumed to share a common spatial component
map but have distinct time courses. The time courses from all subjects are concatenated
temporally, followed by a single ICA. Although the subject component maps are obtained
by a back-reconstruction procedure, there is no explicit statistical modeling of the variability
between the group and subject component maps. Ng et. al [6] use group replicator dynamics
(RD) to detect subject’s sparse component maps, with group information integrated into
each subject’s RD process. In clustering-based methods, the subjects clusterings are usually
averaged to obtain a group affinity matrix and are followed by a second level clustering on
the group similarity matrix [1,8]. Because the group level clustering is conducted after
subject level clustering, the clustering of one subject is unaware of the information from
other subjects, as well as the group clustering.
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In this paper we propose a Bayesian hierarchical model to identify the functional networks
from rs-fMRI that includes both subject and population levels. We assume a group network
label map that acts as a prior to the label maps for all subjects in the population. This
Bayesian perspective provides a natural regularization of the estimation problem of a single
subject using information from the entire population. The variability between the subjects
and group are taken into account through the conditional distributions between group and
subjects. The within-subject spatial coherence is modeled by a Markov Random Field
(MRF). Both the group clustering and subject clusterings are estimated simultaneously with
a Monte Carlo Expectation Maximization (MCEM) algorithm. The model is data-driven in
that all parameters, regularized by two given hyper-parameters, are estimated from the data,
and the only parameter that must be specified is the number of networks.

Markov Random Fields have previously been used in fMRI analysis to model spatial context
information [3,4]. However, to our knowledge, ours is the first hierarchical MRF applied to
fMRI for modeling both group and individual networks. The model of Ng et al. [5]
combines all subjects into a single MRF and bypasses the need for one-to-one voxel
correspondence across subjects, but the edges are added directly between subjects without a
group layer. In our model, a group layer network map is explicitly defined, and the
consistency between subjects is encoded through adding edges between group and subjects
labels. Our method differs from other clustering methods [1,8] in that their methods identify
the subject’s functional network patterns independently, without any knowledge of other
subjects or group population. Instead, our method estimates both levels of network patterns
simultaneously. The proposed approach can be seen as a counterpart on the clustering
branch of the multi-subject dictionary learning algorithm [9], which also has a hierarchical
model and a spatially smoothed sparsity prior on the group component map.

2 Hierarchical Model for Functional Networks
We define each subject’s network label map as a Markov Random Field (MRF) with
statistical dependency between spatially adjacent voxels. These connections act as a prior
model favoring spatial coherence of functional regions. An additional group label map is
defined on top of all subject label maps. The group label map has the same Markov structure
as the individuals, again to encourage spatial coherence of the functional regions in the
group level. In addition, each voxel in the group is connected to the corresponding voxel of
each subject. These connections model the relationship between the group and the
individuals. Hence, all voxels of subjects and group label map are jointly connected into a
single MRF. See Figure 1 for an illustration. More specifically, define a graph  = ( , ),
and the set of node  = ( , ).  is the set of voxels in the group label map, and  = ( ,
…, ) includes voxels for all of the J subjects’ label maps. An edge (s, t) ∈  is defined if
1) s ∈ , t ∈  and s, t are at the same voxel location, or 2) if s, t ∈ , and s, t are spatial
neighbors, or 3) s, t ∈ , and s, t are spatial neighbors. On each node s ∈ , a random
variable ys ∈  = {1, ···, L} is defined to represent the functional network labels.

MRF Prior
Our MRF prior on the hierarchical model is essentially a Potts model with different weights
for the within-subject connections and the connections between the group and individuals.
Because of the equivalence of MRFs and Gibbs fields, we define our prior as

, where the energy function U(Y) is given by
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Here ψ is a binary function that is zero when the two inputs are equal and one otherwise,
and α and β are parameters determining the strength of the connections. This regularization
encodes two physiologically meaningful a priori assumptions on the functional networks
under investigation: 1) The networks are spatially coherent within single subject. This is
modeled by the β term. 2) The networks are similar between subjects, and therefore between
the group and subjects. This is modeled by the α term.

Likelihood Model
In the generative model, for any individual subject, the observed time course at each voxel is
assumed to be generated from a distribution conditioned on the network label at that voxel.
In fMRI analysis the time series at each voxel is usually normalized to be zero mean and
unit norm, so the analysis is robust to shifts or scalings of the data. This results in the data
being projected onto a high-dimensional unit sphere. After normalization, the sample
correlation between two time series is equal to their inner product.

We use the notation X = {(x1, …, xN) | xs Sp−1} to denote the set of normalized time series
in p-sphere. Given Y, the random vectors xs are conditional independent, hence log p(X|Y)
= Σs∈  log p(xs|ys). The likelihood function p(xs|ys) is naturally modeled by a von Mises-
Fisher (vMF) distribution

(1)

where for the cluster labeled l, μl is the mean direction, κl ≥ 0 is the concentration
parameter, and Cp is the normalization constant. The larger the κl, the greater the density
concentrated around the mean direction.

3 Bayesian Inference
We solve the inference problem in a maximum a posteriori (MAP) framework. That is,
given the observed time course data X, we estimate the posterior mode of p(Y|X). This
consists of the following components.

Parameter Estimation
In this data-driven model, we propose to estimate the parameters θ = {α, β, κ, μ} from the
data using an Expectation Maximization (EM) algorithm. However, the high-dimensionality
and dependency between spatially adjacent voxels in MRF make it infeasible to obtain a
closed form solution of the expectation of [log p(X, Y)] with respect to p(Y|X). Here we
propose to approximate the expectation using Monte Carlo EM (MCEM), in which a
sample, (Y1, ···, YM), generated from density p(Y|X) is used to approximate the expected

value by the empirical average .

Gibbs Sampling
Gibbs sampling converts a multivariate sampling problem into a consecutive univariate
sampling, hence is well adapted to draw the Monte Carlo samples from p(Y|X). In our
hierarchical structure, the sampling procedure is also done in a hierarchical way. At the
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image level, a sample of the group label map, , is drawn given the previous subject label

map, . Next, a sample for each subject map, , is generated given the previous group

label map, . At the voxel level, we can draw samples of the label ys given the rest of
nodes fixed, and update ys, ∀s ∈ S. The conditional probability used to generate samples at
the group and subject voxels are given as

(2)

(3)

where −s is the set of all nodes excluding s, Zs the normalization constant, Up is the
posterior energy, and  is the set of neighbor’s of s. In our model we use 6-neighbor system

in a 3D volume image.  in (2) is the label of subject j’s voxel with the same spatial
location with s, and ys̃ in (3) is the label of group’s voxel with the same spatial location with
s. Because of the dependency on previous samples, the sequence of samples will be a
Markov Chain, hence our method falls into Markov Chian Monte Carlo (MCMC) sampling.
After a sufficient burn-in period, a series of samples Ym, m = 1 ··· M is saved for
approximating the expectation [log p(X, Y)].

Pseudo Likelihood
To evaluate log p(X, Ym; θ) = log p(Y m; θ) + log p(X|Y m; θ) as a function of θ, we face
the difficulty of evaluating the partition function Z in p(Ym). In practice the Gibbs field is
approximated by pseudo-likelihood, which is defined as the product of the conditional
distribution p(ys|y−s), ∀s ∈ . Therefore the energy function can be written as

where  and ys̃ has the same definition with (2) and (3).

Hierarchical MRF Algorithm Using MCEM
With all the preparation above, parameter estimation can be done by maximizing

. The α and β in the MRF prior can be optimized by maximizing

 with a Newton-Raphson method. We assume a Gaussian prior distribution
on α with hyper-parameters μα and σα, which is given manually and does not have
significant impact on the model. In order for MCMC sampling to converge quickly to the
posterior, we need a reasonably good initial network label map. Here the K-means clustering
on a concatenated group dataset is used for the initial maps of both the group and subjects.
After the EM parameter estimation iterations are done, an Iterated Conditional Modes (ICM)
on the current sample map gives the final label maps. Putting this all together, the groupmrf
algorithm to estimate the group and individual label maps is given in Algorithm 1.
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4 Results and Conclusion
Three methods are compared in both synthetic data and in vivo data test. The first method is
K-Means [1] applied on each subject’s fMRI data, as well as on a group dataset constructed
by concatenating all subjects time courses. To alleviate the dependency on initial cluster
centers, we run K-Means 20 times with different initial cluster centers generated by a K-
means++ algorithm. The second method is a Normalized-Cuts algorithm (N-Cuts),
following Van den Heuvel, et al. [8], which is applied in two stages. First N-Cuts is run on
each subject’s affinity matrix, as computed by pairwise correlation between time courses.
Second, N-Cuts is applied on a group affinity matrix, which is computed by summing up all
of the subjects’ segmentation matrices. We use the Ncutclustering 9 toolbox [7], a newer
version of the one used in [8]. The third method is our groupmrf approach applied on all
subjects’ fMRI data. The preprocessing are same for all three methods except that groupmrf
use image data without spatial smoothing, while the other two use data smoothed by a
standard 6mm Gaussian filter.

Synthetic Example
We simulate synthetic time course on each voxel of 16 subjects by first sampling from MRF
with α = 0.4 and β = 2.0 and get both group and subjects network label map. The time
course signals at each voxel are generated by adding Gaussian white noise of σ2 = 40 on
each cluster’s mean time course, which is synthesized from an auto-regressive process of xt
= ϕxt−1 + ε with ϕ = 0.7 and noise variance σε = 1. The sample correlation between the
mean time series is in the range of (−0.15, 0.3). The rand index value on right side of Figure
1 shows that groupmrf algorithm is able to detect both group and subjects label map more
accurately than the K-Means and N-Cuts method. The synthetic images shows that despite
the different assumption of K-Means and N-cuts on the data, our algorithm is able to
estimate subject label maps with more spatial and inter-subject coherence than the other two
methods.

In Vivo Data
We tested our method on the ADHD-200 dataset in the 1000 Functional Connectomes
Project. A total of 66 healthy control adolescent subjects were chosen from the same site
(University of Pittsburgh). BOLD EPI images (TR = 1.5 s, TE = 29 ms, 29 slices at 4 mm
slice thickness, 64 x 64 matrix, 196 volumes) were acquired on a Siemens 3 Tesla Trio
scanner. The fMRI volumes were motion corrected, slice timing corrected, registered to
NIHPD object 1 atlas, bandpass filtered to 0.01 to 0.1 Hz, regressed out nuisance variables
including white matter, CSF mean time courses and six motion parameters, and at last
filtered by a 8 mm Gaussian filter for spatial smoothness.

Figure 2 shows the functional networks computed from the three methods. As in the
synthetic data experiment, all 66 subjects’ time series were concatenated into a single group
dataset. K-means and N-Cuts were applied on the spatially-smoothed, concatenated group
dataset, as well as on each subject fMRI. Our groupmrf was applied on all subjects data
without any spatial smoothing and with the initial parameter values α = 0.7, β = 1.0.
Following [8,1], the number of clusters are set to 7. It can be seen in Figure 2 that our
algorithm is able to detect the major functional networks even for individual subjects, while
K-means and N-Cuts miss some components in the Default Mode Network (DMN) for
certain subjects, due to the high noise level of single subject data.

The real strength of Bayesian statistics lies in the probabilistic explanation of the results.
The last experiment in Figure 3 shows the posterior probability maps of DMN and attention
network of two subjects. The maps are approximated by averaging the Monte-Carlo samples
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from the individual posterior densities. Unlike other approaches, such as ICA or clustering,
these images provide a truly probabilistic interpretation of a voxel’s membership in a
particular network.
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Fig. 1.
Left: Hierarchical MRF depicted by undirected graph. The J subjects are compactly
represented by a box with label J. Right: clustering of K-means and N-Cuts on synthetic
time series with spatial smoothing, and groupmrf without smoothing. Top is group label map
and bottom is one of subjects label map. The table gives the rand index accuracy between
estimated label map and ground truth image. The rand index of all subjects are summarized
by a mean and variance value.
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Fig. 2.
Functional networks estimated by 3 methods shown in separate rows. groupmrf has more
consistent estimation of the DMN (red) and motor network (blue) among two example
subjects of 66 total used.
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Fig. 3.
Posterior probability maps of DMN and attention network for 3 example subjects out of the
66 total used. Top row: DMN, x = −8, z = 26. Bottom row: attention network. x = 40, z =
54.
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Algorithm 1

Monte Carlo EM for group MRF
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