1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

NATIG,

o
HE

s sy,
Y

10

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Brain Lang. 2013 October ; 127(1): 46-54. doi:10.1016/j.bandl.2012.11.007.

The neural correlates of statistical learning in a word
segmentation task: An fMRI study

Elisabeth A. Karuza?, Elissa L. Newport2P, Richard N. Aslin®¢, Sarah J. Starling?, Madalina
E. Tivarus®d, and Daphne Baveliera.c.€

Elisabeth A. Karuza: ekaruza@bcs.rochester.edu; Elissa L. Newport: newport@bcs.rochester.edu; Richard N. Aslin:
aslin@cvs.rochester.edu; Sarah J. Starling: sdavis@bcs.rochester.edu; Madalina E. Tivarus:
mtivarus@rcbi.rochester.edu; Daphne Bavelier: daphne@cvs.rochester.edu

aDepartment of Brain and Cognitive Sciences, University of Rochester, Meliora Hall, Box 270268,
Rochester, NY 14627, USA PCenter for Brain Plasticity and Recovery, Georgetown University,
Building D - 4000 Reservoir Road NW, Washington, DC 20007, USA °Rochester Center for Brain
Imaging, University of Rochester, 430 EImwood Ave., Medical Center Annex, Rochester, NY
14620, USA 9Department of Imaging Sciences, University of Rochester, 110 Science Parkway,
Rochester NY 14620, USA ®FPSE, University of Geneva, Boulevard du Ponte d’Arve, 1211
Genéve 4, Switzerland

Abstract

Functional magnetic resonance imaging (fMRI) was used to assess neural activation as
participants learned to segment continuous streams of speech containing syllable sequences
varying in their transitional probabilities. Speech streams were presented in four runs, each
followed by a behavioral test to measure the extent of learning over time. Behavioral performance
indicated that participants could discriminate statistically coherent sequences (words) from less
coherent sequences (partwords). Individual rates of learning, defined as the difference in ratings
for words and partwords, were used as predictors of neural activation to ask which brain areas
showed activity associated with these measures. Results showed significant activity in the pars
opercularis and pars triangularis regions of the left inferior frontal gyrus (LIFG). The relationship
between these findings and prior work on the neural basis of statistical learning is discussed, and
parallels to the frontal/subcortical network involved in other forms of implicit sequence learning
are considered.
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1. Introduction

The extraction of patterns from our environment is a fundamental form of learning that
enables us to develop rich representations of objects and events in our world. Sensitivity to
statistical regularities in many domains is acquired by a process of distributional learning.
Saffran, Newport and Aslin (1996) provided some of the first evidence of this statistical
learning mechanism in the domain of language acquisition (see also Saffran, Aslin, &
Newport, 1996). They demonstrated that infants and adults could segment word-like units
from a stream of continuous speech by rapidly calculating the transitional probabilities
between syllables. Statistical learning based on the predictability of patterns in sequences of
elements has been shown across age groups (e.g., infants and adults), species (e.g. monkeys:
Meyer & Olson, 2011; rats: Toro and Trobal6n, 2005) and modalities (e.g., non-linguistic
auditory: Gebhart, Newport & Aslin, 2009; Saffran, Johnson, Aslin & Newport, 1999;
visual: Fiser & Aslin, 2002). In addition, a statistical learning approach to pattern extraction
has been applied to levels of the linguistic hierarchy ranging from phoneme discrimination
(e.g., Maye, Werker & Gerken, 2002) to syntax (Gomez & Gerken, 1999; Thompson &
Newport, 2007). These experiments demonstrate that, in the absence of instructions or
feedback, novel patterns embedded in temporally ordered elements can be extracted by a
robust and domain-general statistical learning mechanism.

As noted by Perruchet and Pacton (2006), studies of statistical learning share several key
properties with an older literature on artificial grammar learning (AGL). Classic AGL
studies (e.g., Reber, 1967) used strings of letters presented simultaneously, with strings
conforming to a finite-state grammar, while other studies used visual-motor sequences in a
serial reaction time (SRT) task (e.g., Nissen & Bullemer, 1987). Both statistical learning and
AGL studies involve implicit learning® of patterns that contain temporal order information
(see Reber [1967] for an argument that AGL with explicit instructions may produce a
different type of learning outcome). Both statistical learning and SRT studies present rapid
sequences of elements, but SRT tasks assess learning through response speed while
statistical learning and AGL rely on a post-exposure test of familiar vs. novel strings. Thus
there are commonalities and differences that make comparisons among AGL, SRT, and
statistical learning tasks of considerable interest.

In particular, there is a rich literature on the neural correlates of AGL. One of the most
striking patterns that emerges across finite-state grammar processing and motor sequencing
tasks is the involvement of the basal ganglia (for a review see Conway & Pisoni, 2008),
particularly the caudate (Forkstam, Hagoort, Fernandez, Ingvar, & Petersson, 2006;
Peigneux et al., 2000; Schendan, Searl, Melrose, & Stern, 2003; Simon, Vaidya, Howard, &
Howard, 2012) and putamen (Grafton, Hazeltine, & Ivry, 1995; Lieberman, Chang, Chiao,
Bookheimer, & Knowlton, 2004; Schendan et al., 2003). Furthermore, both learning of
artificial grammar strings and subsequent classification tasks (i.e., indicating whether a
given test string is grammatical or ungrammatical) have been shown to involve prefrontal
areas such as the left inferior frontal gyrus (Fletcher, Buchel, Josephs, Friston, & Dolan,
1999; Forkstam et al., 2006; Opitz & Friederici, 2003; Petersson, Folia, & Hagoort, 2012;
Petersson, Forkstam, & Ingvar, 2004; Skosnik et al., 2002). Taken together, these findings
suggest a modality-independent frontal/ basal ganglia circuit supporting non-declarative
forms of learning (Ullman, 2004).

lin using the term /implicit learning, we refer to a form of learning in which participants are able to extract structure from the stimuli
presented to them but are unable to accurately verbalize exactly what rule or pattern they relied on in discriminating structured from
unstructured test items (e.g., Reber, 1967; Turk-Browne, Scholl, Chun & Johnson, 2009). In the present study we have not tested
directly whether learning is implicit, but our prior studies using the same paradigm suggest that this type of learning is largely implicit.
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In contrast, there are only a handful of neuroimaging studies that have investigated statistical
learning. These studies involve three potentially separate processes: (1) the storage of
elements that occur during exposure, (2) the computation of one or more statistics from the
element distributions, and (3) the recognition of statistically coherent (familiar) patterns
after they have been learned. In many types of experimental designs using standard analyses,
these processes can be difficult to distinguish. The goal of the present study is to provide
insights into the second process: what are the neural substrates that mediate the computation
of underlying structural information during the course of statistical learning? We chose to
employ sequences of speech syllables because they have formed the basis of a substantial
behavioral literature on statistical learning in the context of a word-segmentation task.

Results obtained from neuroimaging studies of statistical learning have been mixed, a fact
potentially attributable to variation in the behavioral evidence of learning obtained during a
scanning session. McNealy, Mazziotta & Dapretto (2006) observed increases in activation in
left lateralized temporal cortices during exposure to continuous streams of speech varying in
syllable-to-syllable transitional probabilities. However, they found that adult participants
were unable to discriminate statistically coherent and less coherent items during a post-
exposure testing phase. The authors proposed that the observed increases in neural activation
were the signature of word segmentation before participants could demonstrate explicit
awareness of the underlying structures. In contrast, Cunillera et al. (2009) conducted a joint
ERP-fMRI study of auditory word segmentation and succeeded in obtaining statistically
significant behavioral evidence of learning. Using a 2-alternative forced choice task, they
found that participants could differentiate clusters of statistically coherent syllables from
clusters of less coherent syllables. They saw increased activation during the exposure phase
in bilateral posterior superior temporal gyrus and the superior part of the ventral premotor
cortex (svPMC). Behavioral performance on the post-exposure test phase was significantly
correlated with increases in activation in svPMC during the first two minutes of the
exposure phase.

Examining statistical learning in the visual modality, Turk-Browne et al. (2009) offered
additional support for the concept of learning without awareness (i.e., before
discrimination). Across the entire exposure phase, they found that participants showed
greater activation for statistically coherent relative to random shape sequences in an
extensive network of areas including the striatum, medial temporal lobe, LOC, and ventral
occipito-temporal cortex. A more fine-grained moving window analysis revealed differences
in activation between these two conditions early on during familiarization. In analyzing the
behavioral results of the posttest, they did not obtain evidence that participants could
discriminate statistically coherent shape sequences from less coherent sequences (but see
Turk-Browne, Scholl, Johnson & Chun, 2010 for evidence of statistical learning during a
face/scene categorization task). However, performance during the first half of the test phase
did show a significant learning effect. Moreover, participants’ familiarity ratings of
statistically coherent sequences during the test phase were shown to correlate with LIFG
activation during the exposure phase, even though between-subject familiarity ratings did
not differ between statistically coherent and less coherent test items.

The foregoing findings suggest some overlap in the brain areas involved in the computation
of statistical regularities both within and across modalities. However, since the previous
fMRI studies of segmentation show mixed behavioral evidence of statistical learning, it is
challenging to compare across studies. The present experiment addresses gaps in our
understanding of the neural substrates underlying statistical learning by first providing
robust behavioral evidence of word segmentation. Furthermore, we assessed learning at
multiple time points throughout the exposure phase, thereby providing a link between
individual participants’ rate of learning during the exposure phase and changes in neural
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activation. Interestingly, most of the prior imaging work used increases in BOLD response
within the first few minutes of exposure as an index of learning across subjects. The work of
Abla, Katahira, & Okanoya (2008), on the other hand, demonstrated that participants
showed considerable differences in the time course and extent of their learning. Participants
were exposed to concatenated tone sequences and tested on their ability to differentiate
statistically coherent and incoherent triplets. Despite a high overall accuracy score,
participants could be divided into low, mid, and high learners. Event-related recordings
revealed that, in the high learner group, the first member of a tonal triplet elicited the largest
N100 and N400 response during the first exposure phase. In the medium learner group, this
effect was found in the later phases, and for the low learner group no triplet onset effect was
found. These findings clearly illustrate the importance of taking into account individual
differences in learning. Correspondingly, we employed a method of analysis that could
accommodate high variability across individual learning curves, assuming neither a
monotonic increase across the exposure to the speech streams nor an early peak in
activation. We took into account the possibility that some participants may learn quickly and
then plateau or even regress in performance, while others may require more exposure before
reaching peak performance. Importantly, this design allowed us to investigate the learning
process as it unfolds, rather than the recognition process for items already acquired or the
changes in neural responses simply due to repeated exposure to a set of stimuli. By first
addressing the question of statistical learning in a word segmentation task, it will then be
possible to compare our findings with the rich and developing neuroimaging literature on
other forms of implicit learning. Our results support the hypothesis that regions involved in
statistical learning during a word segmentation task share certain commonalities with neural
circuits that are activated in other sequence learning tasks used in the AGL and SRT
literatures.

2. Materials and Methods
2.1 Participants

A total of 34 undergraduates recruited from the University of Rochester completed the
study. However, of that number, only 25 were included in the analyses presented here (17
female, mean age= 20.5 years, range=18-23). Two participants were excluded because they
exceeded our cut-off for excess head motion (> 3.0mm in any direction), and 7 participants
had to be excluded due to technical malfunctions that resulted in decreased exposure to the
miniature artificial language. All participants gave written informed consent according to the
protocol approved by the University of Rochester Research Subjects Review Board and
were compensated $30. Participants were right-handed, native speakers of English without
any known neurological problems or learning disabilities.

2.2 Stimuli and procedure

Participants completed alternating runs of exposure and testing. Prior to the start of the
experiment, they were instructed to relax and listen attentively to the stimulus materials.
They were also informed that they should expect tests on the familiarity of aspects of the
language. In this way, we ensured that any learning that occurred during the first exposure
phase would not differ fundamentally from learning during later exposure phases.

Auditory and visual materials were displayed using the presentation software DirectRT v.
2008 (Empirisoft Corporation, NY). Visual stimuli were projected onto a screen located in
the rear of the magnet bore using a Titan model sx+ 3D projector (Digital Projection, Inc.,
GA). The screen was visible to the participants through a small mirror mounted above the
eyes at an angle of 45° (viewing distance= 0.8m). Auditory stimuli were presented using
pneumatic headphones (Resonance Technology Inc., CA). Participants wore earplugs to
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reduce the ambient noise of the scanner and made responses using a custom-built MR-safe
button box held in their right hand.

2.2.1 Exposure phase—Participants were exposed to a modified version of the miniature
artificial language presented in Newport and Aslin (2004). This particular language was
chosen due to the speed and robustness with which it was acquired, rendering it adaptable to
a block design mode of presentation in the scanner. In previous behavioral work in a quiet
environment outside of the scanner, Gebhart, Aslin and Newport (2009) showed evidence of
learning this language after only 5 minutes of exposure. The speech stream contained six
consonants (b, p, d, t, g, k) and 6 vowels (a, i, u, e, 0, ae), which were combined to form 12
consonant-vowel syllables (pa, gi, tae, gu, te, po, da, ki, ku, bae, bu, do) and 16 trisyllabic
words. An equal number of tokens of the 16 trisyllabic words were concatenated into a
continuous stream with the constraint that two identical words could not occur in direct
succession and that each syllable at the end of a word could only be followed by one of two
different word-initial syllables. These constraints ensured that the transitional probabilities
between non-adjacent phonetic segments (consonants) within a word were 1.0. In contrast,
the transitional probabilities between adjacent phonetic segments (consonant — vowel or
vowel - consonant) and syllables within a word were 0.5 and the transitional probabilities
between non-adjacent phonetic segments and syllables across a word boundary were 0.5.
The speech stream was synthesized using the female voice Victoria in MacinTalk© with a
flat monotone setting so that the stream contained no pauses or prosodic cues to indicate
word boundaries and were further edited using Sound Edit 16 version 2, in order to ensure
that all syllable durations, both within and across words, were approximately the same.

The experiment consisted of 4 separate exposure phases each followed by a short testing
phase. Before the first exposure phase, participants were instructed to relax and listen
attentively to 3 different types of sound streams, each of which would be paired with a color
cue indicating the type of stream being presented. The “languages” consisted of continuous
streams of (1) forward speech, (2) backward speech formed by playing the recording of the
forward speech stream in reverse, and (3) overlaid speech formed by layering three copies of
the forward stream on top of one another with a slight temporal offset between them.
Because we tested on forward and backward items, but not overlaid items, forward and
backward speech streams afforded the most comparable task-relevant use of cognitive
resources in this design. Therefore, for the purpose of this study, the analyses will focus on
forward speech and its matched control condition of backward speech. Though the backward
speech still technically contained statistical regularities, it was selected as an appropriate
control because participants were largely unable to extract these regularities. Extensive
behavioral pilot testing revealed that participants could not successfully compute the
statistical relationships between syllables in the reversed stream as they did for the forward
stream.

Participants were asked to listen passively during the 4 exposure phases. Stimuli during
these phases were presented using a blocked design, with the ordering of the three language
streams counterbalanced across participants within each exposure phase. Block duration was
30 seconds, with interleaved 15-second periods of silence paired with a black screen to serve
as a baseline condition (Figure 1). Auditory fade-in and fade-out effects were applied to the
beginnings and ends of each block to ensure that participants would not be able to determine
the precise beginning and end of each type of stream and therefore could not make use of
this potential cue to word boundaries. Within each of the 4 exposure phases, participants
listened to a total of 2 minutes of each language.

2.2.2 Test phase—Following each of the 4 exposure runs, participants were tested on
their recognition of forward and backward ‘words’ and “partwords’ that occurred in the
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exposure streams. Words were defined as those 3-syllable combinations with high
transitional probabilities between non-adjacent phonetic segments (consonants) within the
word and low transitional probabilities between consonants, vowels, and syllables across
word boundaries. Partwords were statistically less consistent groupings of 3 syllables that
consisted of the end of one word and the beginning of another: one pair of consonants within
the partword had a low transitional probability while the other pair of consonants had
transitional probabilities of 1.0. In each test, participants were presented with 16 items (4
forward words, 4 forward partwords, 4 backward words, and 4 backward partwords, in
random order) and were asked to rate each one on a scale of 1 (definitely unfamiliar) to 4
(definitely familiar). Participants had 2 seconds to indicate their response on the button box.
Participants were tested on both forward and backward items in order to verify that they
extracted word boundaries from forward speech but not from backward speech. If
participants demonstrated no rating difference between backward words and partwords, then
we could confidently use backward speech as a valid control for studying learning of our
forward speech stream. Although we were only interested in collecting functional imaging
data during the exposure phase, we continued to scan during each of the testing phases in
order to maintain similar ambient noise conditions throughout the entire experiment.

2.3 MR acquisition parameters

Data were acquired on a Siemens Trio 3T MRI scanner equipped with an 8-channel head
coil. To reduce head motion and cumulative head drift, foam padding was used to secure the
head and neck of participants. Thirty T2* -weighted gradient echo (GE) echo-planar axial
slices were collected in an interleaved order with a TR of 2000ms (TE= 30ms, flip angle=
90°, voxel size = 4.0mm3, FOV=256mm). Data from 277 time points were collected for
each of the 4 exposure runs. Data from the 4 post-exposure tests were not included in the
analyses presented here for the reasons described in section 2.2.2. At the end of the session,
a high-resolution T1-weighted whole brain volume was acquired using an MPRAGE
sequence (TR= 2530ms, TE= 3.39ms, flip angle= 90°, voxel size= 1.3x1.0x1.0mm3,
FOV=256mm).

2.4 Behavioral data analysis

Both reaction times and rating scores were obtained for each of the 4 tests. Data were
excluded from trials in which the participants exceeded the 2-second time window to
indicate a response (2.2% of 1600 total trials). A three-way repeated measures ANOVA was
performed in which language (forward or backward speech), test number, and test item type
(word or partword) were entered as within-subjects factors. Next, we performed planned
comparisons in order to determine the source of significant effects obtained when running
the ANOVA. Because these comparisons were planned, they underwent Least Significant
Difference adjustment rather than multiple comparisons correction (Keppel & Wickens,
2004).

2.5 MR data analysis

2.5.1 Preprocessing—Analyses were carried out using FEAT (fMRI Expert Analysis
Tool), part of the FSL software package (FSL, version 5.98, FMRIB, Oxford, UK,
www.fsl.ox.a-c.uk/fsl, see also Smith et al., 2004; Woolrich et al., 2009). The first 3
volumes of each functional run were discarded to avoid the effects of any start-up
magnetization transients in the data. Motion correction was then applied to each run using
MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002). Data from two participants were
excluded from the analyses due to excessive head motion (> 3.0mm in any direction).
Additional preprocessing steps included: slice timing correction, skull-stripping using the
BET tool (Smith, 2002), spatial smoothing using an isotropic 3D Gaussian kernel (full-
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width-half-maximum = 5mm), grand mean-based intensity normalization of all volumes by
the same factor, and non-linear high pass temporal filtering to reduce low frequency
artifacts. Single-subject and group-level statistical analyses were then performed.

2.5.2 Whole-brain analysis—First level statistical analysis was carried out using FILM
(FMRIB’s Improved Linear Model). Each type of speech (forward, backward and overlaid
speech) was entered as a separate explanatory variable (EV). For each individual run,
parameter estimates for forward, backward, and overlaid speech relative to baseline as well
as for contrasts of interest (e.g., forward>backward) were calculated. In order to combine
data across runs for each participant, these coefficients were then input into a GLM in which
the random effects variance was forced to zero using FLAME (FMRIB’s Local Analysis of
Mixed Effects) (Beckmann, Jenkinson, & Smith, 2003; Woolrich et al., 2004). Registration
to high-resolution images and the MNI-152 structural template was performed using FLIRT
(Jenkinson & Smith, 2001).

At second level, the following explanatory variables were then entered for each participant:
(EV1) all four runs were assigned equal weight and (EV2) delta analysis: a demeaned
learning score was input for each run based on the behavioral performance of each
participant on the test phase following that run. The learning score was calculated as the
change in forward rating [word rating-partword rating] from the previous run: A= (forward
word rating-forward partword rating)testn - (forward word rating- forward partword
rating)testn-1- The learning score for the first run was calculated as the change in forward
word partword rating from 0, as there would be no difference in familiarity of words and
partwords prior to any speech stream exposure. This delta EV was orthogonalized with
respect to the mean response EV in order to capture the addjtional effects of learning on
patterns of neural activity for the contrasts forward>backward and vice versa. Z-
(Gaussianized T/F statistic) images were thresholded using Z >2.3 and a corrected cluster
significance threshold of p = 0.05 (Worsley, Evans, Marrett, & Neelin, 1992).

The inclusion of the delta scores as an additional covariate reveals fluctuations in neural
activity predicted by individual shifts in behavioral performance across the 4 test phases. We
opted to use the change in word/partword difference, as opposed to the absolute difference,
because the delta better captures the learning process. Consider a scenario in which a
participant shows a small word-partword difference on test 1, and then large differences
between word and partword ratings on both of the next two tests (tests 2 and 3). This pattern
of scores would suggest that most of the learning occurred during the exposure phase
preceding test 2, with little learning — simply maintenance of what had already been learned
— between tests 2 and 3. In this example, the learning process that occurred between tests 1
and 2 differs from the form of processing that occurred between tests 2 and 3. Because the
purpose of this study was to determine the brain areas supporting the formation, not the
maintenance, of structural representations, we elected to use a measure of changein
performance that would reflect this process.

After obtaining coefficients for each participant at second level, the neural response across
participants was subsequently modeled using FLAME (FMRIB's Local Analysis of Mixed
Effects) stage 1 and 2 (Beckmann et al., 2003; Woolrich et al., 2004). Z-statistic images for
the mean activation were thresholded using clusters determined by Z>2.3 and a corrected
cluster significance threshold of p = 0.05. Because the delta effects were slightly weaker, the
maps based on these coefficients were thresholded using Z>1.9 and a corrected cluster
significance threshold of p = 0.05 (Worsley et al., 1992).

2.5.3 Region of interest (ROI) analysis—Based on data from prior sequence learning
studies (e.g., Forkstam et al., 2006; Schendan et al., 2003), as well as the basal ganglia
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activation obtained in McNealy et al. (2006) and Turk-Browne et al. (2009), we
hypothesized a pattern of neural activation encompassing specific subcortical areas.
Therefore, separate analyses were conducted in which pre-threshold masks were applied to
the group-level activation maps for the delta analysis (uncorrected, p = 0.05). The masks
consisted of bilateral caudate and putamen defined anatomically by the MNI structural atlas.
Their application served to constrain our analysis to specific areas for which we had a strong
a priorihypothesis of activation relevant to statistical learning.

3. Results and Discussion

3.1 Behavioral results

A three-way repeated measures ANOVA revealed a significant main effect of the test item
type (word or partword) on the rating of triplet sequences (F(1,24)=17.89, p<0.0001, partial
eta squared=0.43). Moreover, we found a significant interaction between the language (that
is, the direction of the speech stream, forward or backward) and test item type (F(1,24)=
9.25, p<0.01, partial eta squared=0.28). Planned comparisons were then carried out to
determine the source of these effects, with the results indicating that for the forward stream,
words were rated significantly higher than partwords for each of the four tests (test 1: mean
word=2.73, mean partword=2.34, F(1,24)= 5.25, p=0.03, partial eta squared=0.18; test 2:
mean word=2.99, mean partword=2.54, F(1,24)=5.70, p=0.03, partial eta squared=0.19; test
3: mean word=3.14, mean partword=2.36, F(1,24)=18.33 p<0.001, partial eta squared=0.43;
test 4: mean word=2.95, mean partword=2.49, F(1,24)=6.37 p=0.02, partial eta
squared=0.21). Figure 2A illustrates the mean rating differences for forward stream words
and partwords. When planned comparisons were performed on backward items, however, no
significant differences were found on three of the four tests (test 1: mean word=2.50, mean
partword=F(1,24)=0.57, p=0.46, partial eta squared=0.02; test 2: mean word=2.60, mean
partword=2.43, F(1,24)=2.94, p=0.10, partial eta squared=0.11; test 4: mean word=2.49,
mean partword=2.42, F(1,24)=0.63, p=0.44, partial eta squared=0.03). As Figure 2B shows,
a significant difference was found for the backward stream words compared to partwords for
test 3 only (mean word=2.63, mean partword=2.37, F(1,24)=5.65, p=0.03, partial eta
squared=0.19).

Although any learning from the backward stream was unexpected given our pilot results,
previous work has shown that adult participants can extract certain types of regularities from
non-linguistic auditory stimuli given sufficient exposure (Gebhart, Newport, et al., 2009).
Note that despite showing some inconsistent sensitivity to transitional probabilities in
backward speech for test 3, the rating difference between words and partwords was greater
overall for forward sequences compared to backward sequences (mean forward difference =
0.52, SD = 0.68; mean backward difference = 0.10, SD = 0.21; t(24) = 3.04, p < 0.01)
(Figure 2C). That is, participants may have extracted some statistical information from the
backward stream, but, as revealed by the three-way ANOVA and planned comparisons, they
learned significantly and substantially better during exposure to the forward stream. While
there is extensive behavioral evidence that statistical regularities drive the acquisition of
structure across domains, statistical learning is not necessarily equivalent for all types of
stimuli. For example, Gebhart et al. found that, in order for successful segmentation to take
place on a stream of complex and unfamiliar auditory noises, participants had to undergo a
period of exposure that was 5 times longer than the exposure necessary for the segmentation
of speech or music. The reduced ability of participants to segment reversed speech in the
present study does not preclude the possibility that, given enough exposure, they would
eventually be able to do so. Our results doindicate, however, that this reduced ability makes
backward speech a suitable control for the rapid extraction of statistics during exposure to
forward syllable streams.
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3.2 Whole brain analyses

3.2.1 Forward speech streams compared to control—Before taking temporal
changes and measures of learning into account, a whole brain analysis was performed in
order to investigate mean differences between the forward and backward conditions. As
described in section 2.5.2, activation maps across participants were created for the contrasts
forward > backward and backward > forward. For the purposes of this particular analysis,
participants were not divided based on the extent of their learning during the four testing
points. The goal here was to determine which areas showed overall differences in activation
during the presentation of forward streams relative to our control streams and to evaluate our
findings with respect to prior work making use of similar contrasts (e.g., structured v.
unstructured syllable streams).

Similar to previous studies contrasting statistically coherent and randomized syllable
streams (Cunillera et al., 2009; McNealy et al., 2006), we obtained greater activation in the
left superior temporal gyrus for the forward speech stream compared to our backward
control (Table 1)2. This left-lateralized cluster in temporal cortex extended to portions of the
middle temporal gyrus, the postcentral gyrus, and the supramarginal gyrus (Figure 4A).
Some homologous regions in right temporal cortex were found as well, including the
posterior portions of the middle temporal and superior temporal gyri. The right-lateralized
cluster had a smaller spatial extent than its left hemisphere counterpart.

We also observed one cluster of activation that was greater in response to backward speech
than forward speech. Aligning with prior work suggesting the superiority of the right
hemisphere for processing of reversed speech (e.g., Kimura & Folb, 1968), this area
encompassed the right angular gyrus and posterior division of the supramarginal gyrus. In
addition, this right lateralized cluster overlaps in part with temporoparietal areas showing
increased activation in response to unexpected or higher entropy sequences during the
processing of patterned tone stimuli (Furl et al., 2011; Overath et al., 2007). While the left
hemisphere areas showing greater response for forward relative to backward speech may
support the processing of familiar, more predictable stimuli, the right hemisphere areas
obtained with the opposite contrast may reflect neural response to unexpected, high entropy,
or unusual stimuli.

3.2.2 Delta analysis: Neural correlates of learning-related changes—Though the
basic comparison of forward speech streams and backward control streams was informative,
it revealed little more than that there are differences in some aspect of the processing of
forward and reversed streams of speech. This contrast alone cannot capture the neural
substrate(s) underlying the learning process because it does not provide a link between
behavioral measures of learning and fluctuations in neural activity. Assigning equal weights
to each of the four exposure runs (as described in analysis 3.2.1) required the following
assumptions: (1) each participant learned to the same extent in each run and (2) each
participant’s rate of learning was consistent across runs. However, Figure 3 illustrates the
considerable amount of variability in behavioral performance between participants, shown
here as the change in forward word-partword rating from one test to the next. While some
participants showed evidence of learning very quickly, others did not show a jump in word-

2In addition, we obtained a significant cluster in posterior regions of the occipital lobe. This pattern seems best accounted for by the
fact that we paired each stream with a different color cue. We did so to assist participants in clearly differentiating the stream types.
Indeed, previous findings demonstrate that explicitly indicating to participants that they are listening to different languages facilitates
learning (Gebhart, Aslin, et al., 2009). Therefore, we made use of color cues in order to obtain strong behavioral evidence of learning
as exposure proceeded in our participants. These color cues were presented as a whole-field background, producing large changes in
spectral intensity and luminance at the start of each stimulus condition. While we cannot discount a participation of occipital cortex in
the auditory learning under study here, it is well accepted that such large visual transients would lead to the robust occipital activation
reported.
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partword rating difference until the third or fourth exposure phase. These results highlight
the importance of taking into account individual differences during the entirety of the
learning process.

The pattern of activation seen in Figure 4B was the result of relating each participant’s
change in learning across the four post-exposure test phases to changes in neural activity
during the forward as compared to the backward exposure phase. This delta analysis resulted
in a cluster of activation localized in the left inferior frontal gyrus (LIFG) pars triangularis
and a small portion of the pars opercularis (peak activation at MNI coordinates x=-52,
y=26, z=—6). The same delta analysis applied to the reverse contrast, backward speech>
forward speech, resulted in no significant activation.

3.2.3 The role of the LIFG—Broca’s area, or the posterior portion of left inferior frontal
gyrus (BA 44/45), has traditionally been viewed as having a specifically linguistic function,
controlling speech production or serving as the seat of syntax (e.g., Broca, 1861,
Geschwind, 1970; Sakai, Hashimoto, & Homae, 2001; Santi & Grodzinsky, 2007a,b).
However, recent hypotheses about the functions of the LIFG hold that it may play a more
general role in the processing of linguistic and also certain types of non-linguistic materials
(e.g., Hugdhal, Thomsen, & Ersland, 2006; Tillman, Janata & Bharucha, 2003). From a
cognitive control perspective, a general regulatory function has been attributed to the LIFG,
supporting the resolution of competing representations in phonological processing, sentence
processing, and semantic retrieval (Moss et al., 2005; Novick, Trueswell & Thompson-
Schill, 2005; 2010). Taking a similarly integrative approach, Petersson et al. (2012)
proposed that “the left inferior frontal region is a generic on-line structured sequence
processor that unifies information from various sources in an incremental and recursive
manner” (p. 85). Our findings extend such interpretations of the LIFG and suggest that it
functions not only as a sequence processor, but also as a substrate that drives sequence
learning through the computation of statistical regularities and the formation of structural
representations.

While the data obtained here can speak only to the role of the LIFG in an auditory linguistic
task, neuroimaging results obtained from studies of visual and auditory non-linguistic
processing raise the possibility that this area subserves domain-general statistical processing.
Turk-Browne et al. (2009) observed that familiarity ratings of shape sequences were
correlated with activation in LIFG. Moreover, Abla and Okanoya (2008) found a similar
relationship between the segmentation of continuous tone sequences and activity in inferior
frontal cortex. Participants were first trained on isolated tone triplets. Next, these statistically
coherent triplets were concatenated in a continuous stream and presented in alternation with
random tone sequences. Multichannel near-infrared spectroscopy recordings revealed
greater changes localized near Broca’s area in oxy-hemoglobin response for the structured
relative to the unstructured condition. Given that similar results were obtained by Turk-
Browne et al. and Alba and Okanoya in both visual and auditory segmentation studies, it is
possible that LIFG operates in a modality-independent fashion. It may play a key role in the
integration of sequential information, regardless of the modality of presentation. This
hypothesis also fits with accounts of the neural circuits involved in implicit learning,
described by many investigators as extending from portions of the basal ganglia to prefrontal
areas.

3.3 Word segmentation and sequence learning circuitry

3.3.1 ROl analysis: Caudate and putamen involvement in segmentation—While
a whole-brain delta analysis resulted in a cluster localized to the LIFG, a more sensitive
measure was needed in order to examine the possibility of basal ganglia involvement during
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word segmentation. When separate pre-threshold striatal masks were applied to the group-
level maps obtained from the delta analysis, activation was also revealed in bilateral caudate
(peak MNI coordinates for RH: x=10, y=8, z=18, max Z= 2.300; LH: x=-20, y=16, z=10,
max Z=2.733) and putamen (peak coordinates for RH: x=30, y=16, z=—-2, max Z=2.605;
LH: x=-20, y=16, z=10, max Z=2.733), indicating a subcortical component in addition to
the prefrontal region obtained in the whole-brain delta analysis. This result suggests a
potential circuit of areas underlying statistical learning and complements connectivity data
showing that prefrontal cortex actually mediates activity across multiple learning and
memory systems (e.g., Poldrack & Rodriguez, 2004).

3.3.2 Neural basis of modality-independent sequence learning—Given the
commonalities between statistical learning tasks and other tasks that involve high demands
on memory for sequential information, there is reason to consider substantial overlap in the
neural structures supporting them. Ullman (2001, 2004) has posited a distinction in language
between a declarative memory system involving medial temporal lobe structures and the so-
called procedural memory system involving frontal, subcortical, parietal and cerebellar
areas. Ullman et al. (1997) proposed that the declarative system, which is responsible for
fast fact learning, is necessary for the formation of the mental lexicon. On the other end of
the spectrum, the procedural system underlies domain-general cognitive abilities that cannot
be accessed consciously or described explicitly. Procedural learning encompasses non-
declarative skills (e.g., swinging a golf club), but it seems to be specialized for the real-time,
incremental processing of rules, especially those governing relationships between any sort of
sequentially presented stimuli (e.g., grammar learning or serial reaction time tasks). As
previously stated, this form of learning corresponds closely to the sort of implicit processing
driving statistical learning, and, indeed, the current study of word segmentation
demonstrates patterns of activation that map onto frontal and subcortical structures within
the proposed procedural network. Anatomical data lend support to such a network, as there
are extensive fiber tracts connecting prefrontal cortex and the basal ganglia. Though many
tracts project /nto the basal ganglia, the primary output of the basal ganglia first passes
through the thalamus and then projects to prefrontal cortex (e.g., Alexander, Delong &
Strick, 1986). This result also fits with the monkey physiology work of Pasupathy and
Miller (2005), which showed that activity in basal ganglia was related to rapid associative
learning, while slow improvements in performance over time were correlated with activity
in prefrontal areas.

3.4 Conclusions

The present study has provided several advances in our understanding of the neural
substrates underlying statistical learning. By presenting speech streams whose structure
could be learned rapidly, even in the scanner environment, we obtained significant
behavioral evidence that participants made use of statistical information in order to perform
our segmentation task. We then capitalized on individual variations in the time-course of
learning by assessing behavioral performance at multiple time points (after each of several
repeated exposure phases). These assessments of learning enabled us to search for those
regions in which neural activation was associated with changes in performance over the
experiment, rather than examining activation in relationship to only a single outcome
measure of learning after all exposure phases were completed. Thus we were able to focus
on the learning process itself rather than the outcome of learning or the resulting recognition
of familiar element sequences. The neuroimaging results from these whole brain analyses
suggested that specific subdivisions of the left inferior frontal gyrus mediate, at least in part,
statistical learning at the level of individual participants. Moreover, a region of interest
analysis implicated a subcortical component encompassing areas of the basal ganglia that
participate in this learning process as well.
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Our findings, when taken together with prior work on the neural correlates of statistical
learning, suggest that these regions, particularly the LIFG, are involved in extracting
temporally ordered pattern information regardless of the modality of the input. However,
because this study involves only spoken language stimuli, further neuroimaging work is
needed to confirm this domain-general hypothesis. Finally, given that much of the work on
statistical and other forms of implicit learning has involved the processing of sequences,
additional study is needed in order to determine whether the LIFG and basal ganglia also
mediate learning of element relationships that are spatially, rather than temporally,
organized (e.g., Fiser & Aslin, 2005).
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Figure 1.
Exposure phase presented in a blocked design. In each of 4 runs, participants listened to 2

minutes each of forward, backward and overlaid speech streams. Each type of speech stream
was paired with a unique color cue. 30-second blocks of language exposure were interleaved
with 15-second periods of silence. The total duration of each run was approximately 8
minutes and 30 seconds.
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Figure 2.

Differences in word and partword rating for test items presented as forward speech and as

backward speech. (A) Forward words were rated as significantly more familiar than forward
partwords on each test. (B) Backward words were rated significantly higher than backward
partwords only on test 3. (C) The rating difference between words and partwords presented
in forward speech was significantly higher than the rating difference for items presented in
backward speech.
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Figure 3.

Variability in learning. On each test, participants’ delta-learning scores across tests spanned
a wide range (measured as change in forward W-PW rating for each test as compared to the
test preceding it). The mean change in rating for each test is indicated in red.
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Figure4.

Results of whole brain analysis with sagittal sections removed (A) Mean activation in
response to forward > backward continuous speech streams (Z>2.3, p<0.05) (B) Neural
changes related specifically to learning in the left inferior frontal gyrus as revealed by a delta
analysis performed on the contrast forward >backward (Z2>1.9, p<0.05).

Brain Lang. Author manuscript; available in PMC 2014 October 01.



Page 21

Karuza et al.

99'c 2§ 9¢- 29 uoIsIAIp Joudisod ‘sniAB [euiBreweldns o
68t v 8h- 29 snAB Jejnbuy ¥
218 T
premiof
< premyoeg
ev'e Z  ve- 1% uoISIAIp Jouiglsod ‘sniAB [eiodway Joradns o
¥5'€  ¥- 02— 9 uoIsIAIp Jouaisod ‘sniAB [erodwiay a|ppIN o
S99t vT  Pe- 85 aledodws) wnue|d o
(014 €
/Tv 0T 8h— 25— uoIsIAIp Jouaisod ‘sniAB feuibreweldns
vevy ¢v  ¢l- 29— snJAB [enuadlsod
€Y 8 9y— 9p— Med |endiooo-olodws) ‘sniAB jeiodwa) 8|ppIA
96t vy 2T- $9- uolisiAlp Jouaisod ‘snAB [esodwsay Joisadng
5801 4
909 v- 8.- 8 snJAB enfui o
229 0 26— o) ajod [endi2o0 o
899 9 98- 9 X81109 dulledjedenu] y
Z8€6T T
premyoeq
< premioH
xew 7 z A X uolbey (spxon)  BINID 1Se 1jU0D
u_IXg

yoaads premio)

Brain Lang. Author manuscript; available in PMC 2014 October 01.

<yd9ads plemxoeq pue yasads premxoeq < Yyosads pJeamtoy) :SUOILIPUOD USaMIB] SBUBIBLIP UBsL 0} S81eulplood |NIA Ul sead uoiieAlloe Jo uoiiedo
TalqeL
NIH-PA Author Manuscript

NIH-PA Author Manuscript NIH-PA Author Manuscript



