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Abstract

Transcription factor (TF) binding to DNA can be modeled in a number of different ways. It is highly debated which
modeling methods are the best, how the models should be built and what can they be applied to. In this study a
linear k-mer model proposed for predicting TF specificity in protein binding microarrays (PBM) is applied to a high-
throughput SELEX data and the question of how to choose the most informative k-mers to the binding model is
studied. We implemented the standard cross-validation scheme to reduce the number of k-mers in the model and
observed that the number of k-mers can often be reduced significantly without a great negative effect on
prediction accuracy. We also found that the later SELEX enrichment cycles provide a much better discrimination
between bound and unbound sequences as model prediction accuracies increased for all proteins together with
the cycle number. We compared prediction performance of k-mer and position specific weight matrix (PWM)
models derived from the same SELEX data. Consistent with previous results on PBM data, performance of the k-
mer model was on average 9%-units better. For the 15 proteins in the SELEX data set with medium enrichment
cycles, classification accuracies were on average 71% and 62% for k-mer and PWMs, respectively. Finally, the k-mer
model trained with SELEX data was evaluated on ChIP-seq data demonstrating substantial improvements for some
proteins. For protein GATA1 the model can distinquish between true ChIP-seq peaks and negative peaks. For
proteins RFX3 and NFATC1 the performance of the model was no better than chance.

Introduction
Many proteins bind DNA and do that in a sequence spe-
cific way. These DNA-binding proteins include transcrip-
tion factors (TF), among others, which have an important
function in regulating gene expression by affecting tran-
scription and chromatin state. Given the fundamental
role of TFs in cellular processes and difficulty in measur-
ing their binding sites, computational analysis of binding
sites can provide tremendous help in understanding
complex regulatory mechanisms [1]. The DNA prefer-
ence of DNA-binding proteins can be modelled with dif-
ferent computational methods [2]. All methods require
known binding sites or data from biological experiments,
such as gene expression profiling, chromatin immuno-
precipitation followed by sequencing (ChIP-seq), protein

binding microarrays (PBM) or systematic evolution of
ligands by exponential enrichment (SELEX) followed by
sequencing, to build the models.
The modeling method which has become the major

paradigm is the position specific weight matrix (PWM)
model [3,4]. Position weight matrices are constructed by
using sequences from an experiment or automatically
aligning binding sites within longer sequences [5,6]. The
number of each base is calculated in each position of the
alignment, and then each base is assigned a score based
on the counts. This way each position treats the nucleo-
tides independently from the other positions: the score is
based only on the frequency of the base in that certain
position. Consequently, PWMs have been criticized that
they might lose some important dependencies between
nearby nucleotides, but PWMs provide a very easy and
intuitive modeling framework and, moreover, thousands
of different PWMs exist in several databases [7,8].

* Correspondence: juhani.kahara@aalto.fi
1Department of Information and Computer Science, Aalto University School
of Science, FI-00076 Aalto, Finland
Full list of author information is available at the end of the article

Kähärä and Lähdesmäki BMC Bioinformatics 2013, 14(Suppl 10):S2
http://www.biomedcentral.com/1471-2105/14/S10/S2

© 2013 Kähärä and Lähdesmäki; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:juhani.kahara@aalto.fi
http://creativecommons.org/licenses/by/2.0


k-mer models offer a different perspective in DNA-
protein interactions. In k-mer models each k-mer, a
nucleotide sequence of length k, is given a score that
describes the binding affinity of the protein towards
the k-mer. The score can be assigned to each k-mer
for example by utilizing the distribution of k-mers in the
binding sites, or solving the score using modeling
approaches. k-mer models help in capturing depedencies
between the nucleotide positions in the binding. A recent
comparison study demonstrated that k-mer models can
provide equal or better performance compared to tradi-
tional PWM models, particularly so on high-throughout
PBM data [2]. On contrary, performance of k-mer models
relative to PWM-based methods was found to severely
degrade when tested on in vivo data.
Here we focus on the k-mer model by Annala et al. [9]

which was ranked the first in the original DREAM5 chal-
lenge and was among the two most accurate methods in a
comprehensive comparison by Weirauch et al. [2]. We
apply the k-mer model to 15 proteins for which SELEX
data is available [10] and, thus, report performance of the
k-mer model on another high-throughput protocol com-
plementary to PBM data used in [2]. The performance is
also compared against PWM models derived from the
same data.
To improve robustness and generalization of k-mer

models we studied different feature selection strategies for
choosing the most informative k-mers to the model. The
first feature selection strategies were to select the most fre-
quent or the most enriched k-mers. In addition we imple-
mented the cross-validation scheme for choosing the
k-mers. Finally, the k-mer model trained with SELEX data
was evaluated on ChIP-seq data with varying results.

Materials and methods
SELEX data
In SELEX protocol [10] the experiment starts with a large
pool of all different DNA-sequences of fixed length. The
protein of interest is introduced into the pool, and
the protein will recognize and bind its target sequences.
Then an antibody is added to the solution and the
protein-DNA complexes are immunoprecipitated. The
bound sequences are then amplified and sequenced.
The process is repeated by using the bound sequences as
a new initial pool of sequences. The protocol produces
massive amount of bound sequences (reads) for different
iterations which can be used to construct models for
describing DNA-protein interactions as well as to evalu-
ate their predictive performance.
The SELEX data from [10] contained enriched reads

from the SELEX process for different enrichment cycles.
To account for non-specific carryover of DNA from pre-
vious cycles, a specially designed multinomial method
was used to construct PWMs from high-throughput

SELEX data in [10]. The obtained PWMs were found to
be very similar with those obtained by the standard
MEME [5], thus providing us a good benchmark. The
PWM-models were however constructed using only one
cycle, and only that cycle was taken into consideration in
the performance comparison between k-mer and PWM
models. Cycles that were included consisted between
9000 and 175000 reads with average being 62000 reads.
These sets of reads were randomly divided to training
and test sets with ratio 7:3. The training set was used for
training the k-mer model, and the test set was used in
the performance analysis and comparisons. Random
reads (negative set) were generated to match the number
of enriched reads for each training and testing set. The
choice to use uniformly random sequences instead of
picking random genomic locations was justified by the
fact that in the original experiment the initial pool of
nucleotide sequences included evenly all 14-mers. The
model performance and comparison was evaluated by a
classification task where the test data set consisting of
enriched reads not used in the training and equal amount
of random reads.

Description of the linear k-mer model
The linear k-mer model presented by Annala et al. [9]
assigns an affinity score to each k-mer and the total
binding affinity to a certain sequence is the sum of the
binding affinities of the k-mers in that sequence. In the
original work this affinity was measured by signal
strength of a spot in PBM. The affinity score for the
k-mers can be solved from the linear model Ax = b + ε,
where A is the design matrix, x is the affinities (col-
umn vector), b is signal strength and E represents
noise. In the design matrix each row represents a
probe and columns are the variables, the k-mers. The
Aij element of the matrix is one if the k-mer corre-
sponding to the jth column can be found in the ith
probe, zero otherwise.
The k-mer model is trained by solving the linear equa-

tion Ax = b. In the original application for PBMs the b
vector resulting from the multiplication consisted of
probe intensities. For SELEX experiments no intensity
data is measured but instead the b vector is a binary vec-
tor where one denotes a detected enriched (i.e. bound)
read and zero denotes a random read (unbound). The
training requires both bound and unbound sequence
reads in order to produce useful predictive models. In
this model training scheme the reads were treated as
equally important, which might not be true, as the bind-
ing affinity of a protein will vary between individual
reads. However, given sufficient sequencing depth, the
substantial number of reads could compensate this
assumption because strongly bound k-mers would occur
more frequently in the data.

Kähärä and Lähdesmäki BMC Bioinformatics 2013, 14(Suppl 10):S2
http://www.biomedcentral.com/1471-2105/14/S10/S2

Page 2 of 9



The choice of k-mers
A key question with the linear k-mer model is which
k-mers should be included into the model. To begin
with, we chose two ways to do this. First way was to
choose the most common k-mers in the whole data, the
second way was to choose the most enriched k-mers.
The enriched k-mers were picked from the k-mer table
which lists the counts of each k-mer in the set of bound
reads and random unbound reads and sorts them based
on either the difference or fold change of those counts.
The higher the difference or fold change, the more
enriched the k-mer in question is. The standard cross-
validation scheme was also implemented. First we
started with a predefined number of most frequent
k-mers, and then we started removing those k-mers
from the model, whose removal improved the results
most or had the smallest negative effect in 10-fold
cross-validation classification within the training set,
essentially implementing a wrapper type of feature selec-
tion technique. The number of k-mers in the beginning
should not be too high, because cross-validation compu-
tation gets heavy easily. Note that, to avoid the selection
bias [11], the final prediction performance for the cross-
validated model was assessed on the separate testing
data used neither during the model training nor during
the feature selection.

Results
The k-mer models trained as explained above and the
PWM models taken from Jolma et al. [10] were used in
classifying the reads in the testing set. Note that the PWM
models were derived using a combination of training and
testing data, which may slightly positively influence the
PWM results. The classification using PWMs was con-
ducted by scanning the reads in the testing set with the
given model and the maximum of the scores was assigned
to that read. The reads were classified using threshold that
was found optimal in the training set. Classification accu-
racy is estimated as the proportion of reads that are classi-
fied correctly. The confidence intervals are normal
approximation intervals.
The classification accuracies together with 95% confi-

dence intervals are shown in Figure 1. The k- mer model
clearly outperforms the PWM models as can be seen
from the figure. In the first bars the accuracy of the
k-mer model is the accuracy using the optimal number of
most frequent k-mers. The average classification accuracy
is 71% for the k-mer model and 62% for the PWM mod-
els. In the second and third bars the accuracy is obtained
with k-mer model using the most enriched k-mers. Sur-
prisingly k-mer model performance is better, when
choosing the most frequent k-mers instead of the most
enriched k-mers. This might indicate that assigning high
affinity scores to k-mers responsible for binding as well

as giving negative affinity scores to frequent k-mers that
are not part of the binding are important.
The effect of the number of k-mers in the model is

shown in Figure 2. The average classification accuracy
increases sharply when k-mers are added to the model,
and the accuracy reaches its maximum at about 600
k-mers. Using more than 600 k-mers has little effect on
results. However, for individual proteins the classifica-
tion accuracy seems to peak at around 600 or 1500
k-mers. In later cycles the data can be classified with
great accuracy by using only one k-mer. For protein
XBP1 it suffices to include only k-mer ACGT to the
model, and the data can be classified with accuracy of
91%. It is worth noting, that the k-mer is its reverse
complemented and can be therefore detected from both
strands.

Selection of k-mers improves prediction accuracy
The cross-validation gives a slight improvement to the
results. If we start with for example 200 k-mers, we can
end up in a set of 100 k-mers which is better than tak-
ing just the 100 most frequent k-mers–the main motiva-
tion for feature selection in discriminatory analysis. The
change in classification accuracy, when starting with 100
k-mers, is shown for four proteins in Figure 3. The blue
line represents the accuracy in the 10-fold cross-valida-
tion within the training set, and red line is the classifica-
tion accuracy in the testing set. Green line represents
the classification accuracy, when the model is trained
using the equal number of k-mers that are most fre-
quent in the data. Horizontal axis represents the num-
ber of k-mers in the model.
The binding prediction results vary between proteins.

For example for PRDM1 and HSF2 the cross-validation
scheme can choose k-mers producing much better clas-
sification results. The data can be classified reliably with
only seven k-mers (HSF2). With FOXJ3 taking the most
frequent k-mers is equally good as choosing the k-mers
with cross-validation. This means that for those proteins
the most frequent k-mers are truly the most important
ones in classification. On the other hand, for example
for HSF2, for which the results are better using the
cross-validation, the most important k-mers are some-
what longer and therefore also less frequent k-mers.
Cross-validation starting with higher number of k-mers

yields similar results (Figure 4). Sometimes the most fre-
quent k-mers yield equal or even slightly better results
than cross-validation scheme, but for some proteins the
cross-validation introduces great advantages. For exam-
ple for HSF2 the cross-validation clearly improves results
as the classification accuracy is maximized around 150
k-mers and difference between the cross-validated and
the enrichment method increases even more for lower
smaller number of k-mers. Moreover, especially for
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Figure 1 Classification accuracies of the k-mer model and PWM models. The test set classification accuracy is plotted for 3 different k-mer
model approaches and the PWM model. The 95% normal approximation confidence intervals are plotted on top of each bar.

Figure 2 Classification accuracy as a function of number of k-mers in the model. The test set classification accuracy plotted as a function
of number of k-mers in the model. The 95% normal approximation confidence intervals are plotted around each curve as grey area.
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Figure 3 Illustration of classification accuracy using the CV-scheme for four proteins. The test set classification accuracy as a function of
number of k-mers, when the k-mers are chosen with the CV-scheme. The CV is started from 100 most frequent k-mers. The 95% normal
approximation confidence intervals are plotted around the curves.

Figure 4 Illustration of classification accuracy using the CV-scheme when starting with greater number of k-mers. The test set
classification accuracy as a function of number of k-mers, when the k-mers are chosen with the CV-scheme. The CV is started from 450 and 600
most frequent k-mers for proteins HSF2 and FOXJ3. The 95% normal approximation confidence intervals are plotted around the curves.
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smaller number of k-mers the cross-validated feature
selection provides significantly better results than the
standard approach (Figures 3 and 4).
It was also investigated how the chosen SELEX

enrichment cycle affects the classification accuracy. The
results are plotted in Figure 5. It is clear that the perfor-
mance is higher at later cycles. This is quite intuitive
because the set of sequences should get more homoge-
nous as the enrichment process proceeds. It is also
noticeable how classifying the first SELEX rounds is
much more difficult than the later cycles. At later cycles
there is also much more variability in the results
between proteins. The round used in the performance
comparison is marked with a star.
The cross-validation scheme does not choose necessa-

rily those k-mers to the model that are important origin-
ally with higher number of k-mers. It was investigated if
the highest affinity k-mers would be included late in the
cross-validation. There was little overlap between the ten
last k-mers in the cross-validation and ten most impor-
tant (highest affinity score) k-mers in the most-frequent
approach. Nevertheless the k-mers are quite similar to
each other in the sense that the top k-mers in the differ-
ent methods align relatively well to the PWMs: examples
of FOXJ3 and HSF2 are shown in Figures 6 and 7. The
k-mers aligned to the logo in the left are from the latest

rounds in the cross-validation and in the right the k-mers
are top-affinity k-mers from the most-frequent approach.
Both k-mers and their reverse complements are taken
into account when aligning the top k-mers to the motifs.

Application to ChIP-seq data
We also assessed the applicability of the linear k-mer
model, trained on SELEX data, to ChIP-seq data. That is,
the model was still trained with the SELEX data but per-
formance was evaluated using data from ChIP-seq experi-
ments. This required finding suitable data sets for some of
the proteins for which SELEX data was produced in [10].
Three data sets, for proteins RFX3, NFATC1 and GATA1,
were used. Data for RFX3 and NFATC1 is described in
Jolma et al. [10] and data for GATA1 was taken from the
ENCODE data set. Each data set contained true peaks
supposedly bound by the protein of interest, and negative
peaks, locations that were chosen randomly and are most
likely unbound by the protein.
Area under the curve (AUC) metric was chosen for

performance evaluation: the classification threshold pre-
viously identified from SELEX data might not be applic-
able to other types of data, because the reads to be
classified are longer. AUC reports the probability that a
true bound sequence will score higher than a random
non-bound sequence. AUC of 1 corresponds to perfect

Figure 5 Classification accuracy in different enrichment cycles. The classification accuracy from different SELEX enrichment cycles for five
proteins. The 95% normal approximation confidence intervals are plotted around the accuracies.
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discovery of the true peaks without making any false
positive predictions, and AUC of 0.5 can be reached by
classifying the peaks randomly. Mann-Whitney confi-
dence intervals are suitable for estimating the confidence
interval of the AUC metric [12]. From each data set AUC
was calculated using the entire peak regions that can
span several hundred nucleotides and for the centers of
each peak (50nt and 100nt regions).

For protein NFATC1 AUC is plotted against the num-
ber of k-mers in the model in Figure 8. As can be seen
the AUC stays quite steadily in the range of 0.5 meaning
that the k-mer model fails to distinquish between true
peaks and negative peaks.
For GATA1 the results are more interesting, as in some

cases the k-mer model provides great predictive power.
The ChIP-seq peaks can be quite accurately distinguished

Figure 6 Top k-mers aligned to FOXJ3 logo. The top k-mers chosen with the CV-scheme (left) and the top affinity k-mers from the most
frequent approach (right) aligned to FOXJ3 sequence logo.

Figure 7 Top k-mers aligned to HSF2 logo. The top k-mers chosen with the CV-scheme (left) and the top affinity k-mers from the most
frequent approach (right) aligned to HSF2 sequence logo.
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from false peaks as the AUC rises close to 0.9 with rela-
tively high number of k-mers in the model (Figure 9, left).
The summits in turn can be distinquished from false
peaks by using only small number of k-mers selected with
the cross-validation scheme (Figure 9, right). There is
however somewhat controversial phenomenon of AUC
dropping significantly below 0.5 when using greater num-
ber of k-mers in the model. Whether its a property of the
data or the k-mer model remains to be investigated.

Nevertheless, taken together, our results indicate that the
previously reported poor performance of the k-mer model
on in vivo data can be improved using careful feature
selection strategies.

Discussion
Feature selection in k-mer models can be approached in
many different ways. Our results indicate that it is prefer-
able to include the most frequent k-mers in the model

Figure 8 AUC as a function of number of k-mers in the model for two NFATC1 ChIP-seq samples. (left) AUCs when the true binding sites
are taken to be within 100 nucleotides around the summit of the ChIP-seq peak. (right) The same as (left) except each binding site is taken to
be the whole ChIP-seq peak region. The 95% Mann-Whitney confidence intervals plotted around the curves.

Figure 9 AUC as a function of number of k-mers in the model for GATA1 ChIP-seq samples. AUC as a function of number of k-mers for GATA1,
when k-mers are selected with the CV-scheme. In left figure (red) the AUC is plotted when using the most frequent k-mers. In right figure the AUC is
calculated when only the centers of the ChIP-seq peaks are used. The 95% Mann-Whitney confidence intervals plotted around the curves.
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instead of choosing the most enriched ones. This
approach inevitably favours shorter k-mers because they
are statistically more likely to appear frequently in
sequence data. We also observed that, for SELEX data,
increasing the number of k-mers in the model does not
improve predictions after certain point (about 600
k-mers). This point most likely changes depending on
which kind of data the model is applied to.
The number of k-mers can be reduced without great

negative effects in prediction accuracy using the standard
cross-validation scheme. Consequently, this decreases the
number of parameters which need to be estimated for
the k-mer models making them more attractive and
applicable binding prediction model.
Although it is quite clear that the k-mer model outper-

forms widely used PWM-models within the SELEX data
set, the performance of the k-mer model with in vivo data
still remains an open question. For two data sets (proteins
NFATC1 and RFX3) the k-mer model failed to distinquish
between true binding sites and unbound sites. For GATA1
the results however seem very promising as the AUC of
close to 0.9 was reached.
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