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Abstract

One interesting finding of controlled cortical impact (CCI) experiments is that the CA3 region of the hippocampus, which

is positioned further from the impact than the CA1 region, is reported as being more injured. The current literature has

suggested a positive correlation between brain tissue stretch and neuronal cell loss. However, it is counterintuitive to

assume that CA3 is stretched more during CCI injury. Recent mechanical studies of the brain have reported on a level of

spatial heterogeneity not previously appreciated—the finding that CA1 was significantly stiffer than all other regions

tested and that CA3 was one of the most compliant. We hypothesized that mechanical heterogeneity of anatomical

structures could underlie the proposed heterogeneous mechanical response and hence the pattern of cell death. As such, we

developed a three-dimensional finite element (FE) rat brain model representing detailed hippocampal structures and

simulated various CCI experiments. Four groups of material properties based on recent experiments were tested. In

group 1, hyperelastic material properties were assigned to various hippocampal structures, with CA3 more compliant than

CA1. In group 2, linear viscoelastic material properties were assigned to hippocampal structures, with CA3 more com-

pliant than CA1. In group 3, the hippocampus was represented by homogenous linear viscoelastic material properties. In

group 4, a homogeneous nonlinear hippocampus was adopted. Simulation results demonstrated that for CCI with a 5-mm

diameter, flat shape impactor, CA3 experienced increased tensile strains over a larger area and to a greater magnitude than

did CA1 for group 1, which best explained why CA3 is more sensitive to CCI injury. However, for groups 2–4, the total

volume with high strain ( > 30%) in CA3 was smaller than that in CA1. The FE rat brain model, with detailed hippocampal

structures presented here, will help to engineer desired experimental neurotrauma models by virtually characterizing brain

biomechanics before testing.
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Introduction

In vivo animal traumatic brain injury (TBI) experiments

have demonstrated heterogeneous injury patterns under various

trauma conditions. In controlled cortical impact (CCI), despite the

fact that the CA3 region of the hippocampus is positioned deeper

beneath the impactor and is more resistant to hypoxia-ischemia,

compared to CA1,1 interestingly, the CA3 region was more injured

compared to the CA1 region.2–6 Through stereological analysis,

Witgen and colleagues7 reported similar CA1 and CA3 injuries

under lateral fluid impact, whereas with the similar fluid impact

device and stereological estimation, Grady and colleagues8 ob-

served a significant neuronal loss in CA3. Such regional suscepti-

bility to trauma load may be the result of both regional mechanical

responses and cellular or physiological processes. Understanding

mechanisms for this heterogeneous pattern can help TBI re-

searchers to better understand the experimental CCI model to fa-

cilitate the translation of knowledge from in vivo experiments to

real-world TBI injuries more efficiently.

In vitro TBI models provide a unique method to directly in-

vestigate correlations between neural responses and mechanical

loading, such as stretch and shear.9–11 Morrison and colleagues

started to test whether CA3 was more vulnerable to stretch load-

ings, compared to CA1, using a well-controlled uniform stretch

in vitro experimental TBI model.12–14 Results demonstrated that

under the same stretch level, cell losses for CA1 and CA3 regions

were similar.15 Elkin and colleagues have recently reported on

mechanical property data for the rat brain at a spatial resolution not

previously achieved.16,17 In their studies, the CA1 region was the

stiffest brain region measured, whereas the CA3 region was one of
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the softest. These studies lead to the question of whether CA3 does,

in fact, experience higher tensile strains, compared to CA1, during

CCI experiments, despite its deeper location away from impact.

The ideal solution is to measure brain tissue tensile strain under CCI

directly, which is currently nearly impossible for high-rate CCI

loadings. Alternatively, the next best approach is to use a high-

resolution three-dimensional (3D) finite element (FE) rat brain

model to simulate CCI experiments and predict tissue stretch in

CA1 and CA3 regions during CCI. For these simulations to suc-

cessfully recreate in vivo brain response to CCI, the model requires

accurate material definitions. The new material data16–18 make it

possible to develop a detailed 3D rat brain model with heteroge-

neous hippocampus substructures, which were not yet achieved

based on the review of available anatomically detailed 3D rodent

brain models.19–26

The aim of this study was to first develop a high-resolution 3D

FE rat brain model including detailed CA1, CA2, CA3, and dentate

gyrus (DG) structures in the hippocampus. The next aim was to use

the model to simulate three CCI experimental settings. Both ho-

mogeneous and heterogeneous material properties of hippocampal

structures were numerically tested to study the effect of recently

measured heterogeneity on regional brain tissue strain responses.

This would explain the stereotypical pattern of cell death observed

in CCI with more damage in CA3, compared to CA1.

Methods

Rat brain model with detailed hippocampus structures

The previously developed and validated 3D FE rat brain model22

was improved to develop a higher resolution FE rat brain model

incorporating heterogeneous hippocampus structures. Hypermesh
10.0 (Altair, Troy, MI) was used to divide each hexahedral element
of the previous rat brain model22 into eight hexahedral elements,
which increased the total number of hexahedral elements of rat
brain from 255,700 to 2,045,600. Forty-one coronal images from
bregma - 1.72 mm to bregma - 6.48 mm of the rat brain atlas27

were digitalized using Scion image software (National Institutes of
Health, Bethesda, MD) to get feature curves for inclusion of a
detailed hippocampus, which were then imported into HyperMesh
software. The fine 3D hippocampus hexahedral meshes were then
carefully adjusted to match hippocampus substructure feature
curves. The developed detailed FE rat brain model includes CA1,
CA2, CA3, and DG for hippocampus (as shown in Fig. 1). In total,
2,222,216 elements, including 2,045,600 hexahedral and 176,616
quadrilateral shell elements, were developed. For 3D hexahedral
elements, 99.1% of elements had a Jacobian matrix level above 0.4.
Further, 0.03% of elements had a warpage of over 50, 0.01% of
elements had an aspect ratio above 8.0, 0.05% of elements had
a minimum angle of less than 25 degrees, 0.08% of elements had a
maximum angle above 160 degrees, and 0.02% of elements had
a skew angle above 65 degrees. For two-dimensional quadrilateral
elements, 0.005% of elements had a Jacobian matrix level below
0.40, 0.001% of elements had a warpage above 45, 5% of elements
had an aspect ratio over 4, and 0.01% of elements had a skew angle
over 65 degrees. Figure 2 shows one coronal section through
bregma - 3.0 mm, indicating the specific region selections for
material definition in more detail. The cerebellum white matter was
not defined in the FE rat brain model; as such, the cerebellum gray
matter was used for the entire cerebellum. Regarding mesh density,
Mao and colleagues28 reported that the rat brain model with a mesh
size less than 0.2 mm could be deemed as convergent for CCI
simulation. The current fine rat model with a typical 0.1-mm ele-
ment length was considered acceptable.

FIG. 1. Detailed rat brain model. (A) Global view of the rat brain model. (B) Coronal sections.
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Material properties

Three sets of simulations were performed with different material
properties specific for the hippocampus. Group 1 consisted of the
most recent heterogeneous nonlinear material properties for the hip-
pocampus.16 Group 2 consisted of heterogeneous linear viscoelastic
material properties for the hippocampus.15 Group 3 consisted of ho-
mogeneous linear viscoelastic material properties for the hippocam-
pus defined as the average of those in group 2. Group 4 consisted of
homogeneous nonlinear material properties for the hippocampus
based on data for group 1. Material properties for other regions of the
brain were the same for each material group. Table 1 lists material
constants for various brain regions for each material group.

Group 1. Heterogeneous nonlinear material properties were
implemented with the LS-DYNA software (Livermore Software
Technology Corporation, Livermore, CA) material definition,
MAT_77_O (MAT_OGDEN_RUBBER). For this material, hy-
perelasticity is described by Equation 1, in which l and a are
parameters associated with strain energy and for which n was 1 in
this study. Material parameters were derived from experimental
results in adult rat brain tissue14 and are listed in Table 1.

W� ¼ +
3

i¼ 1

+
n

j¼ 1

lj

aj

(kaj
i � 1) (1)

Group 2. Heterogeneous linear viscoelastic material proper-
ties were implemented with Kelvin-Maxwell’s model using the
LS-DYNA software material definition, MAT_061: MAT_
KELVIN-MAXWELL_VISCOELASTIC, shown in Equation 2.
The short-term shear modulus (G0), long-term shear modulus (GN),
and decay constants (b) for different hippocampus structures as
well as other brain regions for all simulation groups were defined
according to recently reported experimental data.17 One decay term
was sufficient to describe the mechanical behavior of the tissue over
the short time scales relevant to the simulations.

G(t)¼G1 þ (G0�G1)e� bt (2)

Group 3. Homogeneous linear viscoelastic properties were
implemented in LS-DYNA software, as for group 2, with material
definition MAT_061. In this group, hippocampal material proper-
ties were homogeneous. The short-term shear modulus was defined
as 3568 Pa, the long-term shear modulus as 1643 Pa, and the decay
constant as 63 s - 1, representing the average of hippocampal sub-
structure properties in group 2. In calculating average material
properties, no weighting factor was used to account for differences
in regional volumes.

Group 4. Homogeneous nonlinear material properties were
implemented in LS-DYNA software, as for group 1, with material

FIG. 2. Region selections for material definitions. CC, corpus callosum; DG, dentate gyrus.
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definition MAT_77_O (MAT_OGDEN_RUBBER). In this group,
hippocampal material properties were homogeneous, where l was
defined as 8.9 Pa and a was defined as 18.3 in Equation 1 for all
regions of the hippocampus. These material parameters represent a
least-squares fit of Ogden’s model to the measured strain-
dependent modulus averaged across all adult hippocampal regions
from Elkin and colleagues.16

Simulation of CCI experiment

CCI simulation. The CCI simulation was defined carefully to
accurately represent experimental settings. A 6.0-mm-diameter
craniectomy was simulated over the left frontoparietal cortex, with
the center 3.0 mm posterior to bregma and 3.0 mm lateral to the
midline. A flat impactor tip (5.0 mm in diameter) of the CCI device

was positioned over the dura mater at a 15-degree angle and im-
pacted the brain at a velocity of 6 m/s to a depth of 2.0 mm. Figure 3
shows the relative position between impactor and CA1/CA3 in the
CCI simulation. Because of computational costs, the CCI simulation
was solved for the first 5 msec, during which time the peak tissue
strains were reached. Because strain magnitude was reported to be
positively correlated with neuronal loss,12,14,29 the rest of the strain
history after 5 ms was not simulated. To investigate hippocampus
responses under various CCI settings, including 4 mm diameter, flat
impactor, and 5 mm diameter, sphere impactors were simulated.

Results

Approximately 142 h were required to finish up to 5 ms of a CCI

simulation with linear viscoelastic material using four AMD

Table 1. Material Constants for Four Groups

Group 1 Group 2 Group 3 Group 4

Region
l1

(Pa) a1

G0

(Pa)
GN
(Pa)

beta
(s^ - 1)

G0

(Pa)
GN
(Pa)

beta
(s^ - 1)

l1

(Pa) a1

CA1P 12.3 20.6 4060 1860 59.1 3568 1643 63.0 8.9 18.3
CA1SR 8.3 21.4 4060 1860 59.1
CA3P 9 15.9 3385 1587 58.6
CA3SR 8.1 15.7 3385 1587 58.6
Dentate Gyrus 8 14.3 2951 1320 81.1
Inner cortex 10.8 17.3 2701 1362 52.5 2701 1362 52.5 10.8 17.3
Middle cortex 9.9 16.4 2553 1261 51.5 2553 1261 51.5 9.9 16.4
Outer cortex 7.4 19.7 3234 1620 63 3234 1620 63.0 7.4 19.7

G0

(Pa)
GN
(Pa)

beta
(s^ - 1)

G0

(Pa)
GN
(Pa)

beta
(s^ - 1)

Thalamus 3082 1303 58.1 3082 1303 58.1 3082 1303 58.1 3082 1303 58.1
Alveus 3603 1256 115.1 3603 1256 115.1 3603 1256 115.1 3603 1256 115.1
Corpus callosum 2399 950 68.5 2399 950 68.5 2399 950 68.5 2399 950 68.5
Brainstem 2549 940 84.9 2549 940 84.9 2549 940 84.9 2549 940 84.9
Cerebellum 2521 908 106.7 2521 908 106.7 2521 908 106.7 2521 908 106.7

P, pyramidal cells; SR, stratum radiatum.

FIG. 3. Two views showing complete 3D rat brain and 3D impactor for CCI simulations. (A) Transparent view showing relative
position between impactor and hippocampus structures. (B) Caudal (posterior) view showing how the impactor was offset from midline
and perpendicular to the 3D brain surface. 3D, three-dimensional; CCI, controlled cortical impact.
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Opteron� 2380 Processors. Using Ogden’s nonlinear materials, a

slightly shorter length of time of 138 h was needed. Figures 4–6

show a typical strain distribution in CA1 and CA3 at various time

points when the peak strains were experienced. Because simula-

tions with different material groups demonstrated a heterogeneous

strain pattern and local peak strains did not occur at the same time

point across all groups, multiple time points were selected for

Figures 4–6. With a homogeneous linear viscoelastic hippocampus

(group 3), the volume of the CA1 region experiencing high strains

( > 30%) was 0.77 mm3, which was larger than 0.16 mm3 in CA3.

FIG. 4. CA1, CA3, and DG strain contours for CCI case with 5-mm diameter, flat impactor. CA3 experienced largest areas of high
strains when using group 1 heterogeneous nonlinear materials. Brain model was slightly rotated along the rostral-caudal axis to better
demonstrate strain contours. These time points were selected when the maximum areas of large strain elements were observed,
compared to nearby time points. DG, dentate gyrus; CCI, controlled cortical impact.
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Using heterogeneous linear viscoelastic material properties for the

hippocampus (group 2), the volume of the CA3 region with high

strains was 0.46 mm3, which was larger than that in CA3 of group 3,

but still lower than 0.89 mm3 in CA1. For the simulation with a

heterogeneous nonlinear hippocampus (group 1), the volume of the

CA3 region with high strains was 1.77 mm3, which was larger than

1.65 mm3 in CA1. For the simulation with a homogeneous non-

linear hippocampus (group 4), the CA3 region with high strains was

0.97 mm3, which was smaller than 1.19 mm3 for CA1.

Figure 7 summarizes all the peak strains for 12 CCI cases. CA1

experienced the highest strains for group 1 with heterogeneous

nonlinear hippocampus for all different CCI settings. The peak

strains in this region were not affected much when using either

homo- or heterogeneous linear viscoelastic materials (group 2 or 3).

In contrast, when using the nonlinear material (group 1), the peak

CA1 strain close to the caudal rim of the impactor was increased

from 32 to 46%. The peak CA3 strain through the impactor center

was increased from 42 to 62%, and the peak CA3 strain close to the

posterior rim of the impactor was increased from 28 to 53%. Such

increases were smaller when using homogeneous nonlinear mate-

rials of group 4. The time histories of tissue strains for the CA1 and

CA3 regions beneath the impact center and close to the caudal

(posterior) rim of the impactor are shown in Figure 8. Strains were

calculated by averaging strains from four elements so as to avoid

strains in one element from biasing the reported results. The ele-

ments at the caudal rim were selected at - 5.3 mm to bregma for the

5-mm-diameter impactor and - 4.8 mm to bregma for the 4-mm-

diameter impactor. The ratio of CA3 to CA1 strain further dem-

onstrated the effect of material heterogeneity and material laws,

with the CA3 strain at the caudal rim of the impactor increasing to

the greatest degree with the group 1 material properties (Fig. 9).

Discussion

In this study, we developed a 3D FE rat brain model with de-

tailed hippocampal structures to investigate the consequence of

recently determined heterogeneous material properties on the pat-

tern of tissue strain resulting from the CCI injury model within the

FIG. 5. CA1, CA3, and DG strain contours for CCI case with 4-mm diameter, flat impactor. CA3 experienced largest areas of high
strains when using group 1 heterogeneous nonlinear materials. Brain model was slightly rotated along the rostral-caudal axis to better
demonstrate strain contours. These time points were selected when the maximum areas of large strain elements were observed,
compared to nearby time points. DG, dentate gyrus; CCI, controlled cortical impact.
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hippocampus. The specification of nonlinear and time-dependent

material behaviors critically altered the pattern of hippocampal

strain when the impactor was held in position after striking the

exposed cortex (Figs. 4–7). The inclusion of a nonlinear hetero-

geneous hippocampus (group 1) resulted in greater tensile strains in

CA3 than in CA1, which may provide a biomechanical explanation

for why CA3 is more vulnerable than CA1 during CCI. Using

heterogeneous linear viscoelastic material properties for the hip-

pocampus (group 2), strains in CA3 were elevated, compared to the

homogenous case (group 3), but the volume of CA3 experiencing

large strains ( > 30%) was still smaller than that for CA1. The major

reason that strains in CA3 were much larger with nonlinear mate-

rials (group 1), compared to linear viscoelastic materials (group 2),

is that the CA3 region was much softer than CA1 under larger

tensile strain loading.16 Another reason could be because of the

differences between Ogden’s materials and linear viscoelastic

materials in LS-DYNA software. These results suggest that the

choice of material properties affects the predicted strain field in

response to CCI and that accurate representation of both the het-

erogeneity and nonlinear viscoelasticity of the hippocampus can

more accurately predict the experimentally observed pattern of

brain damage.

FE predictions are inevitably model dependent. Hyperelastic or

linear viscoelastic material laws with different material constants

have been used for rodent brain models in the past.19,20–23,25,26 In

this study, care was taken to minimize the bias of brain stiffness

across the four groups of material properties simulated. Material

parameters for group 1 were derived from experiments on adult rat

brain tissue that probed the nonlinear elastic material behavior.16

For group 2, linear viscoelastic parameters were derived from ex-

perimental data.17 Once determined, these material properties were

not altered to tune the FE model to produce a desired output, which

is often done when attempting to fit simulations to experimental,

histological data. For group 3 with a homogeneous hippocampus,

the short-term shear modulus, long-term shear modulus, and decay

constant were averaged from those used in group 2. Further,

FIG. 6. CA1, CA3, and DG strain contours for CCI case with 5-mm diameter, sphere diameter. CA3 experienced the largest areas of
high strains when using group 1 heterogeneous nonlinear materials. Brain model was slightly rotated along the rostral-caudal axis to
better demonstrate strain contours. These time points were selected when the maximum areas of large strain elements were observed,
compared to nearby time points. DG, dentate gyrus; CCI, controlled cortical impact.
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heterogeneity in other anatomical regions, such as cortex, corpus

callosum, and thalamus, were identical for all three simulations.

Groups 1 and 4 with Ogden’s nonlinear materials demonstrated

biphasic strain peaks. A slight second peak was also observed for

CA1 at the impactor posterior rim for group 2 with heterogeneous

viscoelastic materials. The second peak strains in group 1 were

much higher than those in group 4, indicating that material het-

erogeneity played an important role in regional strain responses.

Meanwhile, differences between linear viscoelastic material and

Ogden’s nonlinear viscoelastic material indicated that the biphasic

strain pattern was also related to the material model. Ideally, a

FIG. 7. Summary of peak strains for 12 CCI cases. For all CCI
cases with various impactor diameters and shapes, using group 1
nonlinear, heterogeneous materials, CA3 experienced the highest
strains. Meanwhile, different material laws (groups 1 and 4 vs.
groups 2 and 3) affected peak strain magnitudes, with nonlinear
material property (MAT_77_O) induced high strains resulting
from larger dynamic motion allowed for brain tissue. DG, dentate
gyrus; CCI, controlled cortical impact.

FIG. 8. Tissue strain histories in the hippocampus through the
center of the impactor and in a coronal section near the posterior
(caudal) rim of the impactor. These time histories were selected
from four elements, which experienced the highest strains during
CCI. Under different CCI loading conditions, peak strains oc-
curred at different elements. CCI, controlled cortical impact.
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material model that can represent both viscoelastic and nonlinear

characteristics with damping control is desired. Nevertheless, this

study demonstrated that a heterogeneous hippocampus model with

nonlinear materials was critical to predict hippocampus mechanical

responses, which explained the vulnerability of CA3 observed

experimentally.

The ratios between CA3 and CA1 peak strain further dem-

onstrated the effect of material heterogeneity in the hippocam-

pus. For regions beneath the center of the impactor, strain in CA3

was slightly lower than that in CA1 when modeling a homoge-

neous hippocampus (Fig. 9, group 3). For regions beneath the

caudal rim of the impactor, CA3 strains generally were larger

than CA1 strains. The maximum ratio obtained in this region was

2.6 for group 1 simulations. It should be noted that strains in the

cortex and thalamus were not affected appreciably by the hip-

pocampal material heterogeneity in terms of peak values and

regions of high strains when using the same material constitutive

models. These findings highlighted the importance of adopting a

high-resolution FE mesh of the rat brain with advanced hippo-

campual material heterogeneity to study tissue biomechanics in

the hippocampus. In terms of the mechanical response of the

cortex and thalamus, a lower resolution model can still provide

accurate predictions.

In the rat brain model, brain elements were connected without

any sliding. Future in vivo quantifications of structure tethering,

such as bonding strength between hippocampus and surrounding

tissues, can be combined with this model to examine how tethering

strength affects brain regional strain responses. The effect of hip-

pocampal cell layer orientations was not considered in this study.

For future studies, a submodeling approach can be introduced to

study how dorsal hippocampal cells (perpendicular to the impact

direction) and ventral hippocampal cells (parallel to the impact

direction) affect hippocampus regional strains.

Conclusion

A 3D rat brain model with 2 million hexahedral elements was

developed to thoroughly investigate region- and time-dependent

CA1 and CA3 strain patterns during CCI at a cost of long com-

putational time. Material heterogeneity of the hippocampus was

found to be critical for FE model predictions. Representation of a

heterogeneous hippocampus with nonlinear material properties

predicted a large region of high strains in CA3, which provides a

biomechanical explanation to the long-standing question as to why

CA3 is damaged to a greater extent, compared to CA1, despite its

deeper position from impact in CCI.
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